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Abstract

Although gait recognition has drawn increasing research
attention recently, it remains challenging to learn discrim-
inative temporal representation since the silhouette differ-
ences are quite subtle in spatial domain. Inspired by the
observation that humans can distinguish gaits of differ-
ent subjects by adaptively focusing on temporal sequences
with different time scales, we propose a context-sensitive
temporal feature learning (CSTL) network in this paper,
which aggregates temporal features in three scales to ob-
tain motion representation according to the temporal con-
textual information. Specifically, CSTL introduces rela-
tion modeling among multi-scale features to evaluate fea-
ture importances, based on which network adaptively en-
hances more important scale and suppresses less important
scale. Besides that, we propose a salient spatial feature
learning (SSFL) module to tackle the misalignment prob-
lem caused by temporal operation, e.g., temporal convo-
lution. SSFL recombines a frame of salient spatial fea-
tures by extracting the most discriminative parts across the
whole sequence. In this way, we achieve adaptive tempo-
ral learning and salient spatial mining simultaneously. Ex-
tensive experiments conducted on two datasets demonstrate
the state-of-the-art performance. On CASIA-B dataset, we
achieve rank-1 accuracies of 98.0%, 95.4% and 87.0% un-
der normal walking, bag-carrying and coat-wearing con-
ditions. On OU-MVLP dataset, we achieve rank-1 ac-
curacy of 90.2%. The source code will be published at
https://github.com/OliverHxh/CSTL.

1. Introduction
Gait recognition is a long-distance biological identifica-

tion technology, which relies on the walking patterns of
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(a) Two sequences from subject ’53’ and ’119’ on CASIA-B can be dis-
tinguished relying on short-term temporal clues, e.g., several frames at the
beginning.

(b) Two sequences from subject ’39’ and ’77’ on CASIA-B, which have to
be distinguished relying on long-term temporal clues, e.g., all of the frames.

Figure 1. Illustration that humans can distinguish gaits of various
subjects by adaptively focusing on temporal fragments with differ-
ent time scales. Color bar indicates the human focus distribution.
Darker color represents more attention needed for corresponding
frames. Best viewed in color.

human beings, and reveals great application potential on
identity recognition [20, 1, 22]. Although gait recognition
has drawn increasing research attention recently, it remains
challenging to learn discriminative temporal representation
since the silhouette differences in spatial domain are quite
subtle.

Moreover, as mentioned in [6], body parts possess di-
verse motion patterns which requires temporal modeling to
take multi-scale representation into consideration. Multi-
layer temporal convolution has been widely used in current
methods [6, 28, 18, 31, 32] to model temporal information
in multiple scales. They aggregated multi-scale temporal
features in a summation or a concatenation way. However,
these manners are not flexible enough to adapt to variation
of complex motion and realistic factors, i.e., occlusion of
clothing and change of camera viewpoints, since the fusion
method of multi-scale features is fixed. Thus, the perfor-
mance is hindered especially considering gait is a kind of
fine-grained motion pattern, whose identification of sub-
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jects depends on the diverse expression on tiny motion of
local body.

It can be seen from life experience that humans distin-
guish gait sequences of different subjects by adaptively fo-
cusing on temporal fragments with different time scales. A
qualitative illustration is given in Fig.1, where voting re-
sults from seven volunteers are used to calculate the fo-
cus distribution. In Fig.1(a), the differences between two
gait sequences are so obvious that we can distinguish them
by observing several frames from beginning. On the con-
trary, in Fig.1(b), differences between two sequences are
quite subtle that we have to observe more frames to distin-
guish them. Therefore, in this situation, short-term clues are
not enough to make a distinction between the two subjects.
Long-term features need to be considered since they pro-
vide richer temporal information. Hence, the adaptive ad-
justment among multi-scale temporal features leads to flex-
ible focus along temporal dimension, which offers a new
perspective for gait modeling.

Motivated by such observation, we propose a context-
sensitive temporal feature learning (CSTL) network for gait
recognition. The core idea of this method is to integrate
multi-scale temporal features according to the contextual
information along temporal dimension, which allows infor-
mation communications among different scales. Here, con-
textual information is obtained by evaluating the relations
among multi-scale temporal features, which reflects diverse
motion information existing in context features. CSTL pro-
duces temporal features in three temporal scales, i.e., frame-
level, short-term and long-term, which are complementary
to each other. The frame-level features retain frame charac-
teristics at each time instant. The short-term features cap-
ture local temporal contextual clues, which are sensitive to
temporal locations and beneficial to model micro motion
patterns. The long-term features, on behalf of motion fea-
tures across all frames, reveal global action periodicities of
different body parts, which are invariant for temporal loca-
tions. Then, the relation modeling among these temporal
features guides the network to adaptively enhance or sup-
press temporal features with different scales, then generates
appropriate temporal descriptions for motion learning on
different body parts. This method provides the possibility
of modeling complex motion, which makes it very suitable
for gait recognition.

Further, during the investigation of temporal modeling,
we notice the misalignment problem in temporal model-
ing that has not been investigated in gait recognition yet.
As shown in Fig.2, the same pixel locations from differ-
ent frames may correspond to different foregrounds and
backgrounds. Naturally, the utilization of temporal oper-
ations, e.g., temporal convolutions and temporal poolings,
may result in blurry and overlapped appearances. To ad-
dress such issue, we propose a salient spatial feature learn-

Misalignment

Figure 2. Illustration of misalignment problem caused by tempo-
ral convolution, since pixels of same spatial locations in different
frames may correspond to different semantic content.

ing (SSFL) module to select discriminative spatial clues
across the whole sequence, which is considered as a sup-
plement to remedy the corruption in appearance features.

The adaptive temporal modeling and salient spatial
learning provide complementary properties for each other.
On one hand, CSTL mainly considers temporal modeling
and SSFL focuses on spatial learning. Specifically, CSTL
produces temporal aggregation of multi-scale clues which
describes motion patterns, and SSFL generates recombi-
nant frame features which involve with still images. On
the other hand, CSTL aggregates temporal clues in a soft-
attention way and SSFL selects salient spatial features in
a hard-attention manner. In a word, by jointly investigat-
ing motion learning and spatial mining simultaneously, we
achieve outstanding performance over the existing methods.

The major contributions of this paper can be summarized
as the following three aspects:

• In this paper, we propose a temporal modeling network
CSTL to fuse multi-scale temporal features in an adap-
tive way, which considers the cross-scale contextual
information as a guidance for temporal aggregation.

• we propose a salient spatial feature learning (SSFL)
module to remedy the misalignment problem caused
by temporal operation. SSFL extracts salient spatial
features from different frames to form a recombinant
frame which maintains high quality spatial features.

• Extensive experiments conducted on two popular
datasets CASIA-B [30] and OU-MVLP [24] demon-
strate the state-of-the-art performance of our method.
And further ablation experiments prove the effective-
ness of the proposed modules.

2. Related Work
Gait Recognition. Current gait recognition methods can be
categorized into two types: model-based and appearance-
based. Model-based models [17, 16, 25] were proposed
to model walking patterns and body structures of humans
based on extracted pose information [2, 23, 3]. Model-
based methods are robust to variations of clothing and cam-
era viewpoints. However, due to the inaccurate key point
estimation results from low-quality images and the missing
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Figure 3. Overview of CSTL. Arrows, G, P , T , S and O denote operations, input gait sequence, pooled part-level features, temporal
aggregated features and recombinant spatial features respectively. Ltri and Lce represent triplet loss and cross-entropy loss respectively.

of identity-related shape information, model-based methods
are usually inferior to appearance-based methods in perfor-
mance comparison. Appearance-based models [4, 6, 12,
18, 31, 27, 9, 10, 29, 13] extracted spatio-temporal features
based on RGB images or binary silhouettes by CNN net-
works or handcrafted algorithms. [9, 10, 29, 13, 15] gener-
ated Gait Energy Image (GEI) [9] by temporal average pool-
ing, which greatly reduced the computation cost but lost dis-
criminative expression. [4, 6, 12, 18, 31] processed gait se-
quences frame by frame, which maintained the frame-level
discriminative feature in a large extent . Our approach be-
longs to appearance-based method and takes silhouette se-
quences as input.
Temporal Modeling. Current literatures proposed different
strategies for gait temporal modeling, including 1D convo-
lutions, LSTMs and 3D convolutions. GaitSet and GLN
[4, 12] considered a gait sequence as a unordered set, which
mainly focused on spatial modeling but neglected inter-
frame dependency modeling. GaitPart [6] and Wu et al.
[28] extracted local temporal clues by 1D convolutions and
aggregated them in a summation or a concatenation man-
ner. LSTM networks were applied in [31, 32] to achieve
long-short temporal modeling, which fused temporal clues
by temporal accumulation. With the help of stacked 3D
blocks, MT3D [18] incorporated temporal information with
small and large scales, then concatenated these features as
outputs. In summary, there are obvious shortcomings in
learning flexible and robust multi-scale temporal features of
current methods, which were incapable of satisfying tempo-
ral modeling requirements for gait motion.

Compared to the above methods, in the paper, CSFL uti-
lizes temporal features in three scales: frame-level, short-

term and long-term. Such rich temporal clues enable our
network to obtain diverse motion learning capability. And
by employing cross-scale relation modeling of multi-scale
temporal clues, we adjust the feature expression to empha-
size different frames along temporal dimension, then pro-
duce appropriate sequence-level motion representation in a
weighted summation way.
Spatial Preserving. A problem related to temporal mod-
eling is spatial misalignment, which may degrade perfor-
mance severely in person related recognition task, e.g.
Person Re-identification. In video-based Person Re-
identification, different methods were proposed to maintain
the clearness of spatial features. In AP3D [8], researchers
proposed Appearance Preserving Module (APM) to miti-
gate the misalignment problem in temporal modeling. APM
used a feature similarity calculation strategy to match the
foregrounds in continuous frames within a local window
based on the color, texture and illumination et al. Chen
et al. [5] proposed a method dubbed Adversarial Feature
Augmentation (AFA) to capture motion coherence by a ad-
versarial form.

Different from these strategies, in our approach, SSFL
selects discriminative spatial local features to maintain the
spatial characteristics of subjects, which is feasible for bi-
nary inputs. And this operation is parallel to temporal mod-
eling process, thus would not affect temporal feature extrac-
tion.

3. Method

In this section, we firstly describe the overall pipeline
of our method, then illustrate the detailed structure of each
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component in the network.

3.1. Network Pipeline

The overview structure of our method is presented in
Fig.3. A batch of B gait samples of N frames are fed
into the network as input, which is denoted as G ∈
RB×N×H×W . H and W denote the height and width
of each input frame respectively. Firstly, G is passed
through a 2D CNN with 4 layers to produce feature F ∈
RB×N×C×H/2×W/2, where C denotes the number of fea-
ture channels. Afterwards, we implement a multi-scale tem-
poral extraction module on F to generate temporal features
with three different temporal scales, i.e., frame-level, short-
term and long-term, which are denoted as Tf , Ts and Tl

respectively. Tf , Ts and Tl all own size of RB×N×C×K ,
where K denotes the number of horizontal division feature
parts that correspond to body parts in some extent. Next,
temporal features are taken as the inputs for Adaptive Tem-
poral Aggregation (ATA) and Salient Spatial Feature Learn-
ing (SSFL) blocks through which we obtain temporal ag-
gregated feature T ∈ RB×C×K and recombinant spatial
salient feature S ∈ RB×C×K correspondingly. Temporal
aggregated feature T is a weighted summarization of whole
sequence features by the importance of each feature map
to represent the discriminative information in temporal do-
main. Spatial salient feature S is recombined by selecting
the most salient spatial parts which maintain rich undis-
torted silhouette information. Finally, S and T are concate-
nated along channel dimension as outputs O.

3.2. Multi-Scale Temporal Extraction

As discussed in Sec.3.1, we aim to enrich the diversity
of temporal features. Firstly, we divide F into K parts,
then apply Global Max Pooling (GMP) and Global Av-
erage Pooling (GAP) to obtain part-level pooling features
P ∈ RB×N×C×K , where Pn

b represents part-level features
of the n-th frame in the b-th sample. As shown in Fig.4, the
frame-level features are the duplicate of P , which do not
get involved with temporal operation, thus the appearance
characteristics of each time instant are well-maintained.

In order to capture short-term temporal features, we ap-
ply two serial 1D convolutions with kernel size of 3, and
add the features after each 1D convolution as Ts. Obtaining
short-term features enables the network to focus on short
period temporal motion patterns and subtle changes with
perceptive fields of 3 and 5.

The long-term feature extraction is based on the com-
bination of all frames. Firstly, a Multi-layer Perceptron
(MLP) followed by a Sigmoid function is applied on P
to evaluate the importance of different frames. Next, the
weighted summation of all frames by the importance scores
is utilized as the long-term temporal features Tl, which is

Conv1d
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+

MLP

•

Sum

Frame-level
Feature

Short-term
Feature

Long-term
Feature

𝑻𝒇 𝑻𝒍𝑻𝒔
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P

Figure 4. Details of Multi-scale Temporal Feature Learning. The
detailed structure of producing temporal features in three levels.

formulated as:

T b
l =

∑N
n=1 Sigmoid(MLP (Pn

b ))⊙ Pn
b∑N

n=1 Sigmoid(MLP (Pn
b ))

, (1)

where ⊙ denotes dot product. It should be noted that, T b
l is

invariant for all frames in the b-th sample, which describes
global motion cues. After that, we obtain temporal features
of three levels, e.g., Tf , Ts and Tl, for subsequent ATA and
SSFL blocks.

3.3. Adaptive Temporal Aggregation

Relation Modeling. In this part, we utilize multi-scale tem-
poral features to explore feature relations, which enable
information exchanging among different temporal scales.
As discussed in [6], different body parts own various mo-
tion patterns, which indicates the diverse expressions are
needed for temporal modeling. Intuitively, feature relation
modeling provides a variety of temporal perceptive fields.
Therefore, the interaction of different type of features would
effectively enrich the diversity of temporal representation,
thus produce suitable motion expression for human body.

As shown in Fig.5, the cross-scale relation modeling pro-
duces individual scores for evaluating importance of tem-
poral features from different scales. Such relation model-
ing leverages rich temporal information in an efficient way,
which involves with diverse temporal granularities for de-
scribing motion patterns of different body parts adaptively.
Firstly, we apply information flowing among temporal fea-
tures from top to bottom:

T̃f = Tf

T̃s = Tf + Ts

T̃l = Tf + Ts + Tl.

(2)

Then, we learn temporal importance weight for each tem-
poral scale by considering the contextual information of the
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Figure 5. Structure of relation modeling across three temporal
scales.

three temporal scales, which is implemented with two fully
connected layers and a Sigmoid function:

WT = Sigmoid(FC(FC(T̃f c⃝T̃s c⃝T̃l))), (3)

where WT ∈ RB×N×3×C×K and W b,n
T denote the tempo-

ral importance weights of the n-th frame in the b-th sample.
WT incorporates importance weights of the three temporal
scales, which is denoted as WT,1, WT,2 and WT,3 respec-
tively. Afterwards, we obtain attentive temporal features by
a soft-attention manner:

T b,n
A = T̃ b,n

f ⊙W b,n
T,1 + T̃ b,n

s ⊙W b,n
T,2 + T̃ b,n

l ⊙W b,n
T,3 . (4)

Based on the cross-scale temporal aggregation, we ob-
tain sequence-level representation in a weighted summation
manner for the b-th sample:

Tb =

∑N
n=1 T

b,n
A∑N

n=1

∑3
i=1 W

b,n
T,i

, (5)

where T = {Tb|b = 1, ...B} and T ∈ RB×C×K . The tem-
poral relation modeling encourages our network to generate
motion features with adaptive temporal perceptive fields,
thus features are highlighted or suppressed adaptively for
motion learning.

3.4. Salient Spatial Feature Learning

In this section, we aim to extract salient spatial parts to
mitigate the damage in appearance features.
Discussion. Intuitively, in order to remedy the corrupted
spatial features, we should select an individual frame as
the methods in [7, 14]. However, due to the camera view-
point and motion occlusion, e.g. occlusion of arms, legs and
torso, a single frame is probably incapable of expressing ap-
pearance features for all body parts clearly. Actually, the
high quality body parts appear and disappear from frame to
frame. Therefore, by utilizing such inherent motion char-
acteristics, we select salient body parts across the whole
sequence to recombine a frame of discriminative features
instead of directly selecting one frame.
Operation. Temporal clues provide contextual information
for evaluating the discrimination of each frame. Therefore,

we apply MLP with Sigmoid function on the temporal fea-
tures of the three levels for producing part scores of each
frame, which is defined as:

P b,n
s = Sigmoid(MLP (T b,n

f c⃝T b,n
s c⃝T b,n

l ))

P̃ b,n
s =

P b,n
s∑N

n=1 P
b,n
s

,
(6)

where P̃ b,n
s ∈ R1×K denotes the part scores of the n-th

frame in the b-th sample and P̃ b,n,k
s denotes the k-th part

score of the n-th frame on the b-th sample. The values
of part scores represent the importance of local parts, thus
higher scores indicate clearer spatial representation. In or-
der to supervise the correctness of saliency description, we
enforce a fully-connected layer with a cross-entropy loss on
the weighted summation of Tf and P̃s. Firstly, the weighted
part features of the b-th sample with a fully-connected layer
is presented as:

P b
w = FC(

N∑
n=1

T b,n
f ⊙ P̃ b,n

s ), (7)

where P b
w ∈ RCt×K , and Ct denotes the number of train-

ing subjects. Then, cross-entropy loss is applied on P b
w to

produce Lce:

Lce = −
B∑

b=1

Ct∑
c=1

yb,c log(SoftMax(P b
w))c, (8)

where yb,c indicates the identity information of the b-th
sample, which equals 0 or 1.

Afterwards, we obtain part indexes of the highest scores
along temporal dimension:

xk
b = argmax

n
P b,n,k
s , (9)

where xk
b denotes the temporal index of the selected k-th

part in the b-th sample. Then, we obtain the recombinant
frame feature Sb by the guidance of {xk

b |k = 1, 2, ...,K} in
a hard-attention way:

Sb = T
b,x1

b ,1
f c⃝T

b,x2
b ,2

f · · · c⃝T
b,xK

b ,K
f , (10)

where c⃝ denotes concatenation. Thus, we get recombinant
spatial features S = {Sb|b = 1, 2, ..., B}. S offers supple-
mentary spatial clues for temporal aggregated features T .
Triplet loss [11] is employed on the combination of S and
T as metric learning loss function. The overall loss function
is presented as following:

L = Lce + Ltri (11)

12913



Table 1. Averaged rank-1 accuracies (%) on CASIA-B, excluding identical-view cases.
Gallery NM Resolution 0− 180◦ MeanProbe − 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM

GaitSet[4] 64× 44 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
128× 88 91.4 98.5 98.8 97.2 94.8 92.9 95.4 97.9 98.8 96.5 89.1 95.6

GaitPart [6] 64× 44 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
MT3D [18] 64× 44 95.7 98.2 99.0 97.5 95.1 93.9 96.1 98.6 99.2 98.2 92.0 96.7
GLN [12] 128× 88 93.2 99.3 99.5 98.7 96.1 95.6 97.2 98.1 99.3 98.6 90.1 96.9

CSTL (ours) 64× 44 97.2 99.0 99.2 98.1 96.2 95.5 97.7 98.7 99.2 98.9 96.5 97.8
128× 88 97.8 99.4 99.2 98.4 97.3 95.2 96.7 98.9 99.4 99.3 96.7 98.0

BG

GaitSet [4] 64× 44 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
128× 88 89.0 95.3 95.6 94.0 89.7 86.7 89.7 94.3 95.4 92.7 84.4 91.5

GaitPart [6] 64× 44 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5
MT3D [18] 64× 44 91.0 95.4 97.5 94.2 92.3 86.9 91.2 95.6 97.3 96.4 86.6 93.0
GLN [12] 128× 88 91.1 97.7 97.8 95.2 92.5 91.2 92.4 96.0 97.5 95.0 88.1 94.0

CSTL (ours) 64× 44 91.7 96.5 97.0 95.4 90.9 88.0 91.5 95.8 97.0 95.5 90.3 93.6
128× 88 95.0 96.8 97.9 96.0 94.0 90.5 92.5 96.8 97.9 99.0 94.3 95.4

CL

GaitSet [4] 64× 44 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
128× 88 66.3 79.4 84.5 80.7 74.6 73.2 74.1 80.3 79.7 72.3 62.9 75.3

GaitPart [6] 64× 44 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
MT3D [18] 64× 44 76.0 87.6 89.8 85.0 81.2 75.7 81.0 84.5 85.4 82.2 68.1 81.5
GLN [12] 128× 88 70.6 82.4 85.2 82.7 79.2 76.4 76.2 78.9 77.9 78.7 64.3 77.5

CSTL (ours) 64× 44 78.1 89.4 91.6 86.6 82.1 79.9 81.8 86.3 88.7 86.6 75.3 84.2
128× 88 84.1 92.1 91.8 87.2 84.4 81.5 84.5 88.4 91.6 91.2 79.9 87.0

4. Experiments

4.1. Datasets and Evaluation Metrics.

We conduct experiments on two standard datasets, i.e.,
CASIA-B [30] and OU-MVLP [24], to verify the superior-
ity of our method. Further ablation experiments are con-
ducted on CASIA-B to demonstrate the positive impact of
each component in our method.

CASIA-B. CASIA-B [30] is composed of 124 subjects, and
each subject contains 110 sequences with 11 different cam-
era views. Under each camera view, each subject contains
three walking conditions, i.e., normal (NM) (6 sequences),
walking with bag (BG) (2 sequences) and walking with coat
(CL) (2 sequences). During training and testing stage, we
follow the protocols in [29]. The samples from the first 74
subjects are considered as train set, and the remaining 50
subjects are considered as test set. At testing phase, the first
4 sequences in NM condition of each subject are regarded
as gallery set and the remaining 6 sequences of each sub-
ject are used as probe set, including 2 sequences of NM, 2
sequences of BG and 2 sequences of CL.

OU-MVLP. OU-MVLP [24] is composed of 10307 sub-
jects. Each subject contains 28 sequences with 14 camera
views, thus each subject contains 2 sequences (index ’01’
and ’02’) for each view. The first 5153 subjects are used for
training, while the remaining 5154 subjects are for testing.
In particular, the sequences with index ’01’ are regarded as
gallery and the sequences with index ’02’ are regarded as
probe set at testing phase.

4.2. Implementation Details

Hyper-parameters. 1) We set the value of B (number of
training samples in one iteration) as 64 and 256 on CASIA-
B [30] and OU-MVLP [24] datasets respectively. 2) The
value of N (input frame number) and K (part division num-
ber) are set as 30 and 32. And ablation experiments on K
are appended in supplementary material. 3) The number
of output channels for FCs shown in Fig.3 is set to 256
and 512 respectively for CASIA-B [30] and OU-MVLP
[24] datasets. 4) All MLPs follow: FC(c,c/16)->ReLU()-
>FC(c/16,c). The two FCs in ATA are FC(c,c/16) and
FC(c/16,c).
Training Details. 1) Each frame is aligned as [24] does,
and we resize each frame to the size of 64 × 44 or 128 ×
88. For each input sequence, we follow the frame sampling
strategy as [6] does. 2) We apply separate Batch All (BA+)
triplet loss to train our network. The batch size for training
is noted as (p, k), where p denotes the number of sampled
subjects and k denotes the number of sampled sequences for
each subject. Particularly, (p, k) are set to (8, 8) on CASIA-
B and (32, 8) on OU-MVLP. 3) Since the data amount of
OU-MVLP [24] is 20 times larger than that of CASIA-B
[30], the numbers of output channels of each layer in 4-
layer CNN are set to 32/64, 64/128, 128/256, 128/256 on
CASIA-B [30] and OU-MVLP [24] datasets respectively,
which follows the design in GaitSet [4] and GLN [6]. And
a max pooling layer with stride of 2 is appended after the
second convolution layer. In addition, Leaky ReLU [19]
activation function is applied after each convolutional layer.
4) Totally, we train 100k iterations on CASIA-B and 250k
iterations on OU-MVLP. Morever, our model is optimized
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Table 2. Averaged rank-1 accuracies (%) on OU-MVLP, excluding
identical-view cases.

Probe Gallery All 14 views
GaitSet [4] GaitPart [6] GLN [12] CSTL (Ours)

0◦ 79.5 82.6 83.8 87.1
15◦ 87.9 88.9 90.0 91.0
30◦ 89.9 90.8 91.0 91.5
45◦ 90.2 91.0 91.2 91.8
60◦ 88.1 89.7 90.3 90.6
75◦ 88.7 89.9 90.0 90.8
90◦ 87.8 89.5 89.4 90.6
180◦ 81.7 85.2 85.3 89.4
195◦ 86.7 88.1 89.1 90.2
210◦ 89.0 90.0 90.5 90.5
225◦ 89.3 90.1 90.6 90.7
240◦ 87.2 89.0 89.6 89.8
255◦ 87.8 89.1 89.3 90.0
270◦ 86.2 88.2 88.5 89.4
Mean 87.1 88.7 89.2 90.2

by Adam, and the learning rate is started to set as 1e-4 and
reduced to 1e-5 at 150k iterations on OU-MVLP. We use
Pytorch [21] and an NVIDIA GeForce GTX 1080Ti GPU
to perform our experiments.

4.3. Comparison with the State-of-the-art Methods

CASIA-B. Tab.1 shows the comparison results between the
proposed CSTL and current state-of-the-art methods in av-
eraged rank-1 accuracies on CASIA-B dataset. Three walk-
ing conditions (NM, BG, CL) and 11 different camera views
(0◦ − 180◦) are considered into performance evaluation.
Several conclusions are summarized as: 1) CSTL outper-
forms other methods obviously in mean accuracy compar-
isons under all cases, which demonstrates the robustness
and advantage. 2) It’s natural that performance will drop
with the increase of difficulty of testing conditions. But the
drop of CSTL is significantly less than other methods. Take
GLN [12] as an example, the mean accuracy degradation
is almost 20% (from 96.9% to 77.5%) when walking con-
dition changes from NM to CL. Corresponding to that, the
performance degradation of CSTL is 11% (from 98.0% to
87.0%). The reason is that CSTL captures the most dis-
criminant gait features which brings the robustness to vari-
ous circumstances. 3) CSTL also shows robustness to res-
olution of gait sequences. Comparing the performances on
condition BG in two resolutions, 128 × 88 and 64 × 44,
the accuracy gap for CSTL is 1.8% (from 95.4% to 93.6%),
while for GaitSet the accuracy gap is 4.3% (from 91.5%
to 87.2%). The improvement is still attributed to the ro-
bust feature learning of CSTL. The robustness to resolution
gives CSTL another advantage that it can achieve better per-
formance with smaller resolution in almost all cases. Based
on that, we use resolution setting of 64×44 in the rest of this
paper since it achieves better tradeoff between performance
and computation cost.
OU-MVLP. Tab.2 shows the comparison results between

the proposed CSTL and current state-of-the-art methods in
averaged rank-1 accuracies on OU-MLVP. Our CSTL out-
performs the existing methods under all camera views in
OU-MVLP, which proves the generalization capacity of our
method in a large scale dataset. It is worth noting that,
CSTL is the first network which achieves average rank-1
accuracy over 90% on OU-MVLP dataset.

4.4. Ablation Study

In order to study the exact effectiveness of our method,
ablation experiments are conducted to study the main com-
ponents of our network. It should be noted that, our baseline
does not contain any of the proposed modules in this paper.
Impact of Spatio-Temporal Modeling. The individual
effects of spatial and temporal modeling are presented in
Tab.3. The baseline refers to the 4-layer CNN with a feature
division, while using a BA+ loss for supervision. Several
notable observations can be summarized as: 1) Compared
to spatial modeling network, i.e. GaitSet [4], our baseline
achieves similar mean performance under three conditions
(84.2% and 85.4%). However, with the utilization of MSTE
and SSFL, our method achieves significant mean accuracy
improvement over GaitSet [4] (+6.9%), which proves the
superiority of our salient spatial learning capacity. 2) Com-
pared to temporal modeling network, i.e., GaitPart [6], we
obtain obvious improvement (from 88.0% to 90.1%) with
MSTE and ATA used, which verifies the adaptive temporal
representation ability in our network. 3) Applying both spa-
tial and temporal modeling achieves the best results, which
proves the complementary properties of SSFL and ATA in
our method.
Impact of Multi-Scale Features. We investigate the effects
of the temporal features in MSTE module and the results
are given in Tab.4. It can be noticed that: 1) Comparing
the first three experiments, we find that all the three level
features provide positive effects on improving recognition
accuracies. Thus, joint learning of the three level features
achieves the best performance. 2) The inter-frame relation
modelings, i.e., short-term and long-term, improve recog-
nition performance based on frame-level feature learning,

Table 3. Study of the effectiveness of modules in CSTL on
CASIA-B in terms of averaged rank-1 accuracy. For the sake of
simplicity, we use MSTE to denote multi-scale temporal extrac-
tion.

Model Rank-1 Accuracy
NM BG CL Mean

GaitSet [4] 95.0 87.2 70.4 84.2
GaitPart [6] 96.2 91.5 78.7 88.0

Ours
Baseline 95.3 88.7 72.1 85.4

Baseline + MSTE 96.6 91.1 81.0 89.6
Baseline + MSTE + ATA 97.8 93.4 79.1 90.1
Baseline + MSTE + SSFL 97.1 92.7 83.7 91.1

CSTL 97.8 93.6 84.2 91.9
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Table 4. Study of the effectiveness of multi-scale temporal features
on CASIA-B in terms of averaged rank-1 accuracy.

Multi-scale Features Rank-1 Accuracy
Frame- Short- Long- NM BG CL Meanlevel term term

✓ 96.9 91.5 77.2 88.5
✓ 97.2 92.1 81.2 90.2

✓ 95.9 90.8 75.9 87.5
✓ ✓ 97.0 91.9 80.0 89.6
✓ ✓ 97.4 92.3 79.4 89.7

✓ ✓ 97.4 93.2 82.0 90.9
✓ ✓ ✓ 97.8 93.6 84.2 91.9

which proves the effectiveness on short-term and long-term
temporal information. 3) Short-term and long-term features
provide improvements for each other, which explains that
the two type of features focus on temporal clues in comple-
mentary levels.

Table 5. Study of the effectiveness of temporal aggregation strate-
gies on CASIA-B in terms of averaged rank-1 accuracy.

Methods Rank-1 Accuracy
NM BG CL Mean

Max Pooling 97.3 92.9 83.2 91.1
Average Pooling 96.8 92.3 82.7 90.6

ATA 97.8 93.6 84.2 91.9

Comparison of Sequence Aggregating Strategies. In or-
der to investigate the effects of sequence aggregating strat-
egy, we compare ATA with max pooling and average pool-
ing. The results are given in Tab.5. The experimental results
demonstrate the superiority of ATA. We notice that max
pooling outperforms average pooling, which illustrates that
extracting discriminative clues has advantages than aver-
aging global information for fine-grained recognition task.
Our ATA block outperforms max pooling and average pool-
ing, which proves the adaptive aggregation ability of ATA.

(a) Baseline (b) Ours

Figure 6. tSNE visualization examples of the baseline and our pro-
posed model on CASIA-B test dataset. Different numbers with
different colors indicate different identities. Best viewed with
zooming in.

4.5. Visualization

We choose ten identities from CASIA-B test dataset to
visualize feature distributions by t-SNE [26]. Comparing
the feature distributions of baseline and our method, we no-
tice that, in Fig.6(a), the feature distributions of different
subjects are closer to each other thus identities are harder

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7 Frame 8

Part 1
Part 2
Part 3
Part 4
Part 5
Part 6

Part 7
Part 8

(a) A sequence from subject ’39’ under NM condition with camera view-
point of 90 degrees.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7 Frame 8

Part 1
Part 2
Part 3
Part 4
Part 5
Part 6

Part 7
Part 8

(b) A sequence from subject ’106’ under BG condition with camera view-
point of 90 degrees.

Figure 7. Illustration of spatial salient feature learning. The red
boxes indicate selected parts.

to distinguish. Differently, in Fig.6(b), the feature distribu-
tions of different subjects are more scattered to each other
thus identities are more distinguishable, which proves the
feature representation ability of our method.

In order to better understand the positive effects of SSFL,
we give some spatial selection examples in Fig. 7, where we
set the number of selected parts as 8 in SSFL for better vi-
sualization. We can notice that: SSFL tends to select parts
without body overlaps and clothing occlusions, which own
complete appearance features. As shown in Fig. 7(a), SSFL
selects part 8 in frame 5, which keeps the contour informa-
tion of feet in a large extent compared to other frames. In
Fig.7(b), under bag-carrying condition, SSFL selects part 4
in frame 2 while in other frames arms are occluded by the
carrying bag. More examples are given in supplementary
material.

In this way, we can obtain high quality spatial features,
which both remedies the negative influences caused by tem-
poral operations and enhances the robustness of our network
under clothing-changing and multi-view scenarios.

5. Conclusion
In this paper, we propose a context-sensitive tempo-

ral feature learning (CSTL) network for gait recognition.
CSTL extracts temporal features with multiple scales and
captures salient spatial clues for achieving strong spatio-
temporal modeling ability. Specifically, diverse temporal
features in three scales are introduced in CSTL, and tem-
poral relations are considered based on these temporal in-
formation for adaptive temporal aggregation. Besides, dis-
criminative spatial parts are selected across the sequence for
supplying corrupted spatial features. Extensive experiments
on public datasets verify the superiority of our method.
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