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Abstract

Video activity localisation has recently attained increas-
ing attention due to its practical values in automatically
localising the most salient visual segments corresponding
to their language descriptions (sentences) from untrimmed
and unstructured videos. For supervised model training, a
temporal annotation of both the start and end time index of
each video segment for a sentence (a video moment) must
be given. This is not only very expensive but also sensi-
tive to ambiguity and subjective annotation bias, a much
harder task than image labelling. In this work, we develop
a more accurate weakly-supervised solution by introducing
Cross-Sentence Relations Mining (CRM) in video moment
proposal generation and matching when only a paragraph
description of activities without per-sentence temporal an-
notation is available. Specifically, we explore two cross-
sentence relational constraints: (1) Temporal ordering and
(2) semantic consistency among sentences in a paragraph
description of video activities. Existing weakly-supervised
techniques only consider within-sentence video segment
correlations in training without considering cross-sentence
paragraph context. This can mislead due to ambiguous ex-
pressions of individual sentences with visually indiscrimi-
nate video moment proposals in isolation. Experiments on
two publicly available activity localisation datasets show
the advantages of our approach over the state-of-the-art
weakly supervised methods, especially so when the video
activity descriptions become more complex.

1. Introduction
Video activity localisation by natural language is an im-

portant yet challenging task, which aims to localise tempo-
rally a video segment (moment1) that best corresponds to
a query sentence in an untrimmed (and often unstructured)
video [21, 8]. Most of the existing methods address this
task in a fully supervised manner [22, 6], i.e. the untrimmed

*Corresponding authors.
1Video segment and moment are used interchangeably in this paper.
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Figure 1: Different video activity localisation methods: (a)
Given a paragraph description and the per-sentence tempo-
ral annotation (start and end time index), fully-supervised
methods learn to align sentences with ground-truth seman-
tically matching video moments [6, 22]. (b) Without fine-
grained temporal annotations, weakly-supervised models
often generate proposals of video segments corresponding
to sentences in a paragraph before learning the best visual-
text alignment [20, 18]. (c) The CRM model explores the
temporal order of different sentences in a paragraph to min-
imise the ambiguities in matching the best video moments
to specific sentences in the context of a paragraph. (d) To
deal with ambiguous expressions in descriptions, CRM fur-
ther explore plausible sentence expansion, e.g. pairing two
sentences (concatenation) as a more complex query to con-
strain the localisation of pairwise video moment proposals.
This explores cross-sentencing semantic consistency.

video data are annotated by both a paragraph description,
in which each sentence is describing a video moment-of-
interest (MoI), and per-sentence temporal boundaries on the
precise start and end time indices of every MoI. Given such
fine-grained labelling, models can generate MoIs from the
original videos to learn the best alignment of MoIs with
their descriptions (Fig. 1 (a)). To avoid the high annotation
cost and subjective annotation bias2, recent works focus on

2Different temporal boundaries are marked for the same sentences [1].
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weakly-supervised learning without per-sentence temporal
boundary annotations in training [8, 11, 21].

Existing weakly-supervised solutions [37, 25, 18] lo-
calise different MoIs individually (Fig. 1 (b)), which is
not optimal as it neglects the fact that the cross-sentence
relations in a paragraph play an important role in tempo-
rally localising multiple MoIs. Critically, an individual sen-
tence is sometimes ambiguous out of its paragraph con-
text [30, 24, 39]. For example in Fig. 1 (c), without the
consideration of the temporal relations with the second sen-
tence, the first query sentence (purple) can be easily mis-
matched with incorrect video segment, which is visually in-
discriminate from the ground-truth moment. Our analysis
on the ActivityNet-Captions [15] shows that the temporal
relations of over 65% moment pairs predicted by a latest
model [18] are contradictory with the true order of their
descriptions. Yet, MoIs described by a paragraph are of-
ten semantically related to each other in their correspond-
ing sentences. For example in Fig. 1 (d), “the man” in the
blue query exhibits ambiguity if its semantic relations with
previous sentences are ignored. We also observed that more
than 38% descriptions in ActivityNet-Captions [15] contain
ambiguous ways of referring to expressions, e.g. pronouns.
To conclude, there are large error-margins in mis-localising
individual sentences to video segments in isolation.

In this work, we introduce a weakly-supervised method
for video activity localisation by natural language called
Cross-sentence Relations Mining (CRM). The key idea is
to explore the cross-sentence relations in a paragraph as
constraints to better interpret and match complex moment-
wise temporal and semantic relations in videos. Given the
one-to-one moment-sentence mappings, the inherent cross-
moment relations are unknown and not straightforward to
be modelled in videos but intrinsically available in the para-
graph descriptions. Hence, we impose the same cross-
sentencing relations to their potentially matching video mo-
ments for more reliable proposal selections. The proposed
CRM method differs significantly from the existing weakly-
supervised models [37, 20, 25] which localise per-sentence
queries individually. They lack fundamentally any ability
to make use of the cross-sentence relations for moment pro-
posal selection in model training. Even though such rela-
tional information is less complete than per-sentence fine-
grained temporal annotation, it requires no annotation and
avoids subjective bias from inherent ambiguity in tempo-
ral labelling [1]. Specifically, by assuming different activ-
ities in videos are described sequentially, we formulate a
temporal consistency constraint to encourage the selected
moments to be temporally ordered according to their de-
scriptions in a paragraph (Fig. 1 (c)). This is different from
the temporal pretext tasks in self-supervised video learn-
ing where the temporal constraint is adopted within a single
modality. We exploit it in a cross modality setup, i.e., con-

straining the temporal order of event in visual modality by
the sentences order in text modality. Moreover, we encour-
age moment proposal selections to satisfy cross-sentence
broader semantics in context to minimise video-text match-
ing ambiguities. To that end, we introduce a semantic con-
sistency constraint to ensure that a moment selected for any
pairing of two sentences (concatenation) in a paragraph is
consistent (overlapping) with the union of the selected seg-
ments per sentence (Fig. 1 (d)).

Our contributions are: (1) To our best knowledge, this
is the first idea to develop a model using cross-sentence re-
lations in a paragraph to explicitly represent and compute
cross-moment relations in videos, so as to alleviate the am-
biguity of each individual sentence in video activity locali-
sation. (2) We formulate a new weakly-supervised method
for activity localisation by natural language called Cross-
sentence Relations Mining (CRM), that trains a model with
both temporal and semantic cross-sentence relations to im-
prove per-sentence temporal boundary prediction in test-
ing. (3) Our approach achieves the state-of-the-art perfor-
mance on two available activity localisation benchmarks,
especially so given more complex query descriptions.

2. Related Works

Early studies of video activity localisation by natural lan-
guage mostly concentrate on making use of temporal anno-
tations to learn visual-text alignment with strong supervi-
sion [9, 2, 12, 34, 33, 6]. However, due to the unafford-
able annotation cost of the fine-grained temporal boundary,
a growing number of works in recent years have turned to
tackle this task with only the video-level moment’s descrip-
tion, i.e. weak supervision [8, 11, 21, 18, 28, 37].

Strong Supervision. With the help of temporal an-
notation, fully-supervised methods localise activity in
untrimmed videos either in frame or segment-level. SAP [5]
proposed to compute the visual-linguistic correlation scores
of the sentences and every frame in videos and group
the highly correlated frames as the predicted moments.
MCN [13] instead pre-divided videos into candidate seg-
ments (proposals) with variant lengths in different posi-
tions so to conduct segment-level semantic alignment. The
latest methods either follow SAP to predict the probabili-
ties of boundary across frames [3, 33, 6, 4, 22] or in the
same spirit as MCN to select from a set of pre-defined pro-
posals constructed by explicit sliding windows [9, 19] or
implicit multi-granularity anchors [34, 29, 32]. Recently,
DPIN [27] proposed to combine the two localisation strate-
gies by a dual path interaction network so to take the ad-
vantage of both. Regardless of their remarkable success,
fully-supervised methods rely heavily on the fine-grained
temporal annotation, which is not only expensive but also
prone to subjective bias [1]. In this work, we propose to
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further exploit the video-level descriptions of MoIs as well
as their relations so to reduce the gaps between the weakly
and fully-supervised models without extra annotation cost.

Weak Supervision. In the absence of temporal bound-
ary annotations, most of the existing weakly-supervised ap-
proaches are either based on multi-instance learning [14]
(MIL) or jointly learn with reconstruction task. The MIL-
based methods [11, 25, 20, 37] learn the visual-text align-
ment in the video-level by maximising the matching scores
of the videos and their corresponding descriptions manu-
ally annotated on the datasets while suppressing that of the
videos and the descriptions of others. Such learned visual-
text alignment is then applied to localise the moments which
are best matched with the given queries in inference. An-
other commonly adopted strategy [18, 8] aims at selecting
the video segments which can help accomplish the recon-
struction task to the largest extent, e.g. WS-DEC [8] jointly
optimises the sentence localisation and video captioning
tasks so to identify the video segments which yield con-
sistent captions with the queries. Even though remarkable
progress has been made in the past few years, none of these
methods fully exploit the video-level descriptions but treat
different sentences in the paragraph independently. In this
work, we propose to explore the relations of sentences in
paragraphs to constrain the selections of moments in train-
ing so that only the reliable video segments with consistent
relations will be aligned with the query sentences.

Temporal action localisation [10, 17, 38] is a similar task
which localises the pre-defined action classes in untrimmed
videos. However, the language query is usually composed
of multiple actions with intricate correlations, which make
it more practical but challenging to be localised.

3. Weakly-Supervised Activity Localisation
Suppose we have N untrimmed video V = {Vi}Ni=1

with each composed of Lc disjoint clips Vi = {cji}
Lc
j=1 in

fixed duration. Corresponding to each video, we have a de-
scription paragraph consisting of Lq text query sentences
Qi = {Qj

i}
Lq

j=1 one-to-one describing the MoIs in Vi. Given
a video-query pair (Vi, Q

j
i ), by dividing the untrimmed

video Vi into Ls candidate segments {Sk
i }

Ls

k=1 using sliding
windows [18, 20] as the proposals, our objective is to select
the Sk

i from all the proposals which is most aligned with Qj
i

in semantic. For simplicity, we take a single video V and its
description paragraph Q = {Qj}Lq

j=1 as example in the fol-
lowing discussion and deprecate the subscript i. Although
the video-query (multi-sentences) relations are available in
training, there is no access to the ground-truth per-sentence
temporal boundary. This is a weakly-supervised learning
problem where video proposals Sk interact with the text
queries Qj to discover the most plausible matches between
video segments and text sentences.

Here we formulate a Cross-sentence Relations Mining
(CRM) method for this task. Fig. 2 shows an overview.
We first learn the visual-text alignment in video-level with
the same spirit of MIL to feed a video-query pair into a
modalities matching network (MMN), which predicts the
matching score of the query and every proposal and super-
vise the max-pooling of scores by binary cross-entropy loss.
We then explore the order of two descriptions in the para-
graph and optimise their joint matching scores to a propos-
als pair with consistent temporal relations. Furthermore, we
synthesise a longer query by forming pairs of sentences in
a paragraph (concatenation) and encourage its pairwise lo-
calisation to be semantically consistent with the union of
proposals individually selected for each sentence. This is
to minimise the ambiguities in sentences so to improve the
model’s interpretation of multiple video moments in a more
complex sentencing context.

3.1. Video-Sentence Alignment

We start with the alignment of representations from
two different modalities, i.e. an untrimmed video V =
{c1i , c2i , · · · , c

Lc
i } ∈ RLc×Dv composed of Lc clips and a

query sentence Qj = {wj,1, wj,2, · · · , wj,Lw} ∈ RLw×Dt

with Lw words. To explore the relation of V and Qj and
enable visual-text interaction, both the representations are
first projected into D-dimensional spaces by two indepen-
dent fully-connected layers, respectively. For clarity con-
cern, we reuse the symbols V ∈ RLv×D and Qj ∈ RLw×D

after projections. Both the video V and the query Qj will
then be fed into a Modalities Matching Network (MMN),
which will generate a set of candidate moments (proposals)
{S1, S2, · · · , SLs} by sliding windows [18, 20] and pre-
dicts their individual matching scores with the input query
{p(Sk|Qj)}Ls

k=1 (Fig. 2 (a)). Motivated by the remarkable
success of Transformer [26, 7] on sequence analysis, the
MMN is composed of a stack of attention units to explore
both the within and cross-modal correlation.
Attention Unit. As the building block of our MMN, the
attention unit plays a significant role to learn the represen-
tation of a target sequence in terms of its correlations with
every element in a reference sequence. Given a target se-
quence Xt ∈ RLt×D and a reference Xr ∈ RLr×D, an
attention unit F(Xt, Xr) attends Xt using Xr as follows:

A = Softmax(XtW q⊤W kXr⊤/
√
D) ∈ RLt×Lr

F(Xt, Xr) = FC(Xt +AXrW v⊤) ∈ RLt×D.
(1)

The notions {W q;W k;W v} ∈ R3×D×D in Eq. (1) are
three learnable matrices and the coefficient 1/

√
D is to

counteract the effect of small gradients caused by large
D [26]. The Softmax(·) is the row-wise softmax normal-
isation and A is the correlation scores of target-reference
element pairs. The FC(·) is a linear projection with consis-
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Figure 2: Overview of the proposed Cross-sentence Relations Mining (CRM) method. (a) The modalities matching network
(MMN) is composed of self and cross-attention units and trained by MIL objective. (b) The joint matching scores of two
queries to a pair of proposals are optimised to encourage the consistency of cross-sentence and cross-moment temporal
relations. (c) A longer query is synthesised by pairs of sentences in a paragraph (concatenation), whose their pairwise
localisation is constrained to be consistent with the union of the two proposals selected for each sentence.

tent input-output dimensions. The attended result serves as
the updated representation of the target sequence.

To investigate the visual-text matching relations, it is es-
sential to explore not only the within-modal context but also
the cross-modal interaction [20]. Hence, the MMN is con-
structed by both self-attention and cross-attention blocks.
The video V and the query Qj are first fed into two in-
dependent self-attention blocks respectively, in which the
target and reference inputs are from the same modalities:

V ← FV2V(V, V ), Qj ← FQ2Q(Qj , Qj). (2)

By doing so, the salient clips/words in the input video/query
are highlighted by considering the context of the video or
sentence. Conventional sliding window strategy [18, 20] is
then adopted to divide the video into Ls proposals V =
{Sk}Ls

k=1 ∈ RLs×D. Each proposal is composed of arbi-
trary continual clips in V and represented by max-pooling
the features of its included clips. After that, the two repre-
sentations are interacted by cross-attention blocks:

V ← FQ2V(V,Qj), Qj ← FV2Q(Qj , V ), (3)

which attends one modality by another so to suppress the
redundant text and irrelevant visual information.
Matching Score. Given the visual features V =
{Sk}Ls

k=1 and the text representation Qj = {wj,k}Lw

k=1, the
matching score p(Sk|Qj) of a proposal-query pair is pre-
dicted according to both the modalities. The sentence rep-
resentation is first computed by aggregating all the words:
Qj ← cmax({wj,k}Lw

k=1) ∈ R1×D where cmax(·) denotes
the column-wise max-pooling function, which is then fused
with every proposal’s representation [9, 13]:

Ek,j = (Sk +Qj)∥(Sk ⊗Qj)∥FC(Sk∥Qj). (4)

The notion (· ⊗ ·) indicates the element-wise multiplication
and (·∥·) is the concatenation of two vectors while FC(·)

standing for a linear projection. After that, the joint repre-
sentations {Ek,j}Ls

k=1 are fed into a linear classifier:

p(Sk|Qj) = σ(Ek,jW⊤ +B). (5)

The variable {W,B}⊤ ∈ RD+1 is the weights of classifier
and σ(·) is the sigmoid function. The yielded probabilities
{p(Sk|Qj)}Ls

k=1 ∈ (0, 1) serve as the matching scores be-
tween proposals and query, which is abbreviated to pk,j .
Multi-Instance Learning. In the absence of temporal
boundary, the ground-truth moment is agnostic. There-
fore, we optimise the matching scores in video-level to fa-
cilitate visual-text alignment. To that end, the matching
score between the video V and the query Qj is obtained
by the max-pooling of all the proposals’ score p(V |Qj) ←
max({pk,j}Ls

k=1). For each positive pair (V,Qj) given man-
ually on the dataset, we construct two negative counterparts
by replacing either V or Qj by a randomly sampled video
V − or sentence Q− from the mini-batch and compute their
matching scores in the same way as p(V |Qj). The binary
cross-entropy (BCE) loss function is then adopted as the
video-query alignment supervision signal:

LBCE(V,Q
j) = 2∗ − log p(V |Qj)

− log(1− p(V |Q−))− log(1− p(V −|Qj)),
(6)

where the coefficient 2 is applied to the positive term con-
sidering the balance of positive and negative pairs. The
rationale behind Eq. (6) is assuming that the MoIs in one
video doesn’t exist in any other videos so (V,Q−) and
(V −, Qj) should be semantically unmatched. By minimis-
ing p(V |Q−) and p(V −|Q), the predictions of the incorrect
proposals in V with different semantics from Qj will also
be minimised implicitly so that the learned matching scores
can reveal the inherent visual-text relations. This takes the
spirit of MIL [14] by treating the proposals as the instances
in a bag (video) and learning with the bag-level annotations.
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3.2. Cross-Sentence Relations Mining

The LBCE in Eq. (6) aligns queries with the proposals
yielding the largest matching scores among all the candi-
dates. However, the predicted scores can be unreliable due
to the visually indiscriminate moment proposals existed in
videos and text ambiguities in individual sentences which
will lead to visual-text misalignment in training. There-
fore, we explore the cross-sentence relations to select re-
liable proposals with consistent cross-moment relations.

Temporal Consistency. As the video frames are natu-
rally exhibited to the viewers in time order, the temporal
relations of different MoIs should intrinsically be encoded
in the order of their descriptions in the paragraph. With
such an assumption, we can identify the pairs of proposals
both yielding high predicted matching score with the cor-
responding queries but inconsistent in temporal relations,
which are likely to be incorrect. Given arbitrary query
sentences pair (Qj , Qj′) from the description paragraph
of video V , their respective selected segments (Sk, Sk′

)
should satisfy similar temporal structure with them, i.e. Sk

should occur before Sk′
in the video if Qj is in front of

Qj′ in the paragraph and vice versa. The temporal or-
der of two proposals R(Sk, Sk′

) = 0 if Sk starts before
Sk′

in the video, otherwise R(Sk, Sk′
) = 1. Similarly,

R(Qj , Qj′) = 1[j >= j′] where j and j′ are the position
of sentences in the paragraph. The temporal constraint is
then formulated to ensureR(Sk, Sk′

) = R(Qj , Qj′).
By assuming the matching scores of different queries to

any proposals are independent, the joint probability of Qj

and Qj′ are respectively matching with Sk and Sk′
is:

p(Sk, Sk′
|Qj , Qj′) = p(Sk|Qj) · p(Sk′

|Qj′). (7)

As shown in Fig. 2 (b), we take the queries’ order as
the ground-truth for the temporal relation of the pro-
posal pair. Given Qj and Qj′ , the joint probabilities set
{p(Sk, Sk′ |Qj , Qj′)}Ls

k,k′=1 is then divided into two sub-
sets: for all the proposal pairs (Sk, Sk′

), the joint probabil-
ity p(Sk, Sk′ |Qj , Qj′) ∈ P+

t ifR(Sk, Sk′
) = R(Qj , Qj′),

otherwise belonging to P−
t . The MIL loss is re-formulated

with the temporal constraint:

LTMP(V,Q
j , Qj′) =− log(max(P+

t ))

− log(1−max(P−
t )).

(8)

By training withLTMP, the model learns to align the propos-
als with queries only if they are temporally consistent. This
refrains the model from visual-text misalignment in the ab-
sence of ground-truth temporal annotations.

Semantic Consistency. To minimise the negative im-
pact from ambiguous per-sentence expressions in isolation
and to explore the context of a paragraph, it is beneficial

for a model to consider broader semantics beyond individ-
ual sentences by relating other expressed objects/actions in
a wider context [22]. However, it is nontrivial to explic-
itly do so since the object/action’s information is missing
without fine-grained annotation. In this case, we propose
to form pairs of MoIs by concatenation in the same videos:
Qj,j′ = Qj∥Qj′ and train the model to localise the concate-
nated longer query with the consideration of both sentences
in each pair. Given the proposals Sk and Sk′

with the largest
p(Sk, Sk′ |Qj , Qj′) in Eq. (8), the matching scores of Qj,j′

and the video segments Sl is optimised to encourage the
consistency of Sl and Sk ∪ Sk′

(Fig. 2 (c)). As in the tem-
poral constraint, we divide the predicted scores p(Sl|Qj,j′)
into two subsets: for all the proposals Sl in the video V ,
p(Sl|Qj,j′) ∈ P−

s if IoU(Sl, Sk ∪ Sk′
) < τ , and P+

s is
composed of the Sl which is most consistent with Sk∪Sk′

.
The τ decides how two proposals are deemed inconsistent
regarding their intersection over union score (IoU) which is
set to 0.5 in practice. The constraint on the semantic con-
sistency of Sl and Sk ∪ Sk′

is formulated as:

LSMT(V,Q
j , Qj′) =− log(max(P+

s ))

− log(1−max(P−
s )).

(9)

To minimise LSMT, the model is explicitly trained to con-
sider the semantics of both Qj and Qj′ when localising
Qj,j′ so to ensure the overlap of Sl and Sk ∪ Sk′

. By in-
troducing additional longer queries synthesised from pair-
wise sentences in model training, it enhances the model’s
capacity to interpret and match more complex descriptions
to video moments, critical in practice due to that untrimmed
raw videos are often unstructured.

3.3. Model Training

In each training iteration, we randomly sample n videos
with a pair of queries for each from its paragraph descrip-
tion as a mini-batch and the overall loss is computed by:

L =
1

2 ∗ n

n∑
i=1

2∑
j=1

LBCE(Vi, Q
j
i )

+
1

n

n∑
i=1

LTMP(Vi, Q
1
i , Q

2
i )

+
1

n

n∑
i=1

LSMT(Vi, Q
1
i , Q

2
i ).

(10)

Since the objective function L in Eq. (10) is differen-
tiable, conventional stochastic gradient descent algorithm is
adopted for end-to-end model training. The overall process
of a training iteration is summarised in Alg. 1.

7203



Algorithm 1 Video activity localisation by CRM
Input: Untrimmed videos V , Paragraph descriptions Q.
Output: An updated video activity localisation model.
Sampling a random mini-batch of videos;
Sampling two queries for each video from its paragraph;
foreach video-query pair do

Mapping video and query to D-dimensional spaces;
Conducting V2V and Q2Q self-attention (Eq. (2));
Generating proposals by sliding windows;
Conducting V2Q and Q2V cross-attention (Eq. (3));
Fusing each proposal’s feature with the query (Eq. (4));
Computing the proposal-query matching scores (Eq. (5));

end foreach
Computing the objective loss (Eq. (10));
Updating model weights by back-propagation.

4. Experiment

Datasets. Experiments were conducted on two video ac-
tivity localisation datasets: (1) Charades-STA [9] contains
12,408/3720 video-query pairs from 5338/1334 videos for
training and testing, respectively. The query sentences are
composed of 7.2 words on average and the average dura-
tion of the target video moments and untrimmed videos are
8.1 and 30.6 seconds; (2) ActivityNet-Captions [15] is a
much larger-scale dataset composed of 19,290 videos with
37,417/17,505/17,031 MoIs in the train/val 1/val 2 split.
The average length of queries is 14 words while that of the
MoIs and untrimmed videos are 36.2 and 117.6 seconds.

The activities captured in those two datasets are of vari-
ous complexity: Only 6% of the descriptions involve more
than one actions in Charades whilst 44% in ActivityNet
with 12% vs. 44% regarding the number of people [16].

Performance Metric. We followed previous works [8,
28, 6] to evaluate the activity localisation results by the
“IoU@m” metric where m is the pre-defined temporal In-
tersection over Union (IoU) thresholds. Given the temporal
boundary (s, e) of a target moment and the selected seg-
ment proposal (s̃, ẽ) with the largest predicted matching
score, the IoU between the two video segments is computed
by max(0,min(e,ẽ)−max(s,s̃))

max(e,ẽ)−min(s,s̃) . A prediction is considered cor-
rect if its IoU with the ground-truth is greater than the pre-
defined IoU thresholds set to {0.1, 0.3, 0.5} on ActivityNet
and {0.3, 0.5, 0.7} on Charades [8, 28].

Implementation. We used VGG (4096-D) and
ResNet152 (2048-D) feature representations officially re-
leased with the datasets for per-frame representations in
Charades and ActivityNet, respectively. The videos were
truncated evenly (and zero-padded) into 128 clips in Cha-
rades and 256 in ActivityNet, with each clip represented
by the max-pooling of 5 continual frame’s features. The
pre-trained GloVe embedding [23] was adopted as the word

feature representation (300-D) and the maximal sentence
length was set to 20 words. Both the clip and word rep-
resentations were linearly mapped to 256-D spaces before
being fed into MMN. The sliding windows stride was 8
and the window sizes were {8, 12, 20, 32, 64} in Charades
and {8, 16, 32, 64, 128} in ActivityNet. The temporal de-
pendencies of video segments in terms of the same query
sentences were explored by an additional self-attention unit
before predicting their matching scores. As the paragraph
descriptions were pre-divided into individual sentences on
both datasets, we restored the order of sentences in the para-
graph by the ground-truth start time of MoIs. Note that
timestamps were unavailable in proposal selections, neither
in training nor testing. The proposed CRM was trained 50
epochs by Adam optimiser with a batch size of 64 and learn-
ing rate of 1e− 4. Cross-sentence relations were only used
in training with no extra computational cost in testing.

4.1. Comparisons to the State-Of-The-Art

Table 1 compares the performance of CRM against the
state-of-the-art video activity localisation models including
both fully- and weakly-supervised methods. We observe:
(1) Not surprisingly, fully-supervised models outperform
weakly-supervised models clearly. However, CRM reduces
that performance gap by over 41% on the ActivityNet at
IoU = 0.3. (2) Discovering different video moments corre-
lating to the same-sentence for proposal selection has been
exploited to a good effect by existing methods in the form
of attention [18, 20] or 2D temporal convolution [36, 35].
However, the notably better performance of CRM com-
pared to those methods further demonstrates the additional
advantage of using cross-sentence temporal and seman-
tic relations within a paragraph for learning better visual-
text alignment and benefiting per-sentence localisation in
testing. (3) CRM surpasses the state-of-the-art weakly-
supervised methods across the board except for IoU@0.3
on Charades. This demonstrates compellingly the effective-
ness of CRM from modelling explicitly cross-sentence re-
lations. Our advantages on the OOD split of ActivityNet-
Captions [31] further indicate CRM’s better multi-modal
understanding rather than driven by annotation biases.

4.2. Components Analysis

We investigated the effects of different components in
CRM model design to study their individual contributions.
The “val 1” split of ActivityNet was adopted.
Effects of Cross-sentence Relations. We evaluated the
effectiveness of imposing cross-sentence relational consis-
tency by training the baseline model (BCE) with either the
temporal (BCE+TMP) or semantic (BCE+SMT) constraint
as well as with both (BCE+TMP+SMT). Fig. 3 shows that
both constraints are beneficial individually and the benefits
become more clear when they are jointly adopted. More-
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Split Method Moment Query IoU@0.1 IoU@0.3 IoU@0.5

val 2

DPIN [27] ✓ ✗ - 62.40 47.27
2D-TAN [35] ✓ ✗ - 59.45 44.51
DRN [33] ✗ ✗ - - 42.49
LGI [22] ✓ ✗ - 58.52 41.51
HVTG [6] ✗ ✗ - 57.60 40.15

val 1

WS-DEC [8] ✗ ✗ 62.71 41.98 23.34
WSLLN [11] ✗ ✗ 75.4 42.8 22.7
BAR [28] ✓ ✗ - 49.03 30.73
CRM (Ours) ✓ ✓ 76.66 51.17 31.67

val 2

SCN [18] ✓ ✗ 71.48 47.23 29.22
RTBPN [36] ✓ ✗ 73.73 49.77 29.63
CCL [37] ✓ ✗ - 50.12 31.07
CRM (Ours) ✓ ✓ 81.61 55.26 32.19

OOD WS-DEC [8] ✓ ✗ 30.71 17.00 7.17
CRM (Ours) ✓ ✓ 38.35 22.77 10.31

(a) ActivityNet-Captions
Method Moment Query IoU@0.3 IoU@0.5 IoU@0.7
DPIN [27] ✓ ✗ - 47.98 26.96
2D-TAN [35] ✓ ✗ - 39.81 23.25
DRN [33] ✗ ✗ - 53.09 31.75
LGI [22] ✓ ✗ 72.96 59.46 35.48
HVTG [6] ✗ ✗ 61.37 47.27 23.30
TGA [21] ✗ ✗ 29.68 17.04 6.93
SCN [18] ✓ ✗ 42.96 23.58 9.97
LoGAN [25] ✓ ✗ 51.67 34.68 14.54
BAR [28] ✓ ✗ 44.97 27.04 12.23
RTBPN [36] ✓ ✗ 60.04 32.36 13.24
VLANet [20] ✓ ✗ 45.24 31.83 14.17
CCL [37] ✓ ✗ - 33.21 15.68
CRM (Ours) ✓ ✓ 53.66 34.76 16.37

(b) Charades-STA

Table 1: Performance comparisons on video activity local-
isation methods. Fully and weakly-supervised methods are
shown in the upper and lower part of each table, respec-
tively. The ‘Moment’ column refers to methods trained
by exploiting multiple video moments corresponding to the
same-sentence, whilst the ‘Query’ column refers to training
by cross-sentence temporal ordering and sentence pairing in
the context of a paragraph. The ‘Split’ column denotes the
different data splits in the ActivityNet-Captions used in the
evaluations. The discounted recall rates [31] are reported
for the ‘OOD’ split of ActivityNet-Captions.

over, the performance improvement is more significant on
ActivityNet than Charades. Given the generally more com-
plex activities in ActivityNet, this shows that training CRM
on combinations of pairwise sentencing as semantic consis-
tency constraint (Eq. (9)) has its unique advantages in activ-
ity localisation against more complex query descriptions.

Temporal Consistency. To verify our assumption on
temporal order, we compared how many correct predictions
learned with and without LTMP (Eq. (8)) against the ground-
truth. Specifically, for each video consists of n MoIs, we
constructed C2

n MoI pairs and measured the ratio of consis-
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Figure 3: Effects of cross-sentence relations mining. BCE is
the base model trains with only the MIL objective (Eq. (6)).
TMP and SMT are the proposed constraints on temporal
(Eq. (8)) and semantic (Eq. (9)) relational consistency.

Train Test
Temporal ActivityNet Charades ActivityNet Charades

✗ 64.28 73.88 45.02 73.91
✓ 82.43 74.88 70.82 74.65

Table 2: Temporal consistency between the descriptions of
MoI pairs and their selected proposals. Metric: accuracy.

Train Test
Semantic ActivityNet Charades ActivityNet Charades

✗ 55.76 35.34 57.84 31.01
✓ 68.14 55.46 71.30 51.33

Table 3: Semantic consistency between the union of two
MoIs’ segments and the one selected for the concatenation
of their descriptions. Metric: prediction recall at IoU = 0.5.

tent pairs by comparing the order of the two ground-truth
moments and that of the selected proposals. Table 2 shows
that by explicitly training CRM with cross-sentence tempo-
ral order constraint, the video segments selected by CRM
is much more consistent in temporal relations on Activi-
tyNet than the base models without it. Although different
moments in the test set are localised independently, such
advantages are still clear. Besides, it is surprising to see that
the cross-moment temporal relations yielded by the base
model on Charades are reasonably consistent with the true
order but the temporal constraint still benefited the locali-
sation results. This implies the potential advantages of op-
timising joint matching scores of moment pairs with their
descriptions in learning effective visual-text alignment.
Semantic Consistency. As in the analysis of temporal
consistency, we enumerated all the possible MoI pairs in the
same videos and quantify the semantic consistency by tak-
ing the union of MoI pairs as the ground-truth moment cor-
responding to the concatenation of their descriptions. More
specifically, given the sentence description of two MoIs and
their temporal boundary Si and Sj , we concatenated the
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two per-sentence queries and identified the video segment
Sk yielding the largest matching scores with the concatena-
tion. We then computed the temporal IoU between Si ∪ Sj

and Sk, where Sk is deemed semantically consistent with
Si ∪ Sj if IoU(Si ∪ Sj , Sl) > 0.5. Note that it is not
necessary for the two moments to be consecutive in time
so that our semantic assumption can hold, as the bound-
ary defined by the concatenated description always matches
their temporal union. Table 3 shows that the baseline model
trained without semantic constraint in Eq. (9) yields sen-
sible performances in localising the paired queries. This
demonstrates that CRM implicitly learns to consider the se-
mantic context of queries by the attention units. The supe-
rior results of CRM trained with explicit semantic constraint
shows that it encourages broader consensus in semantics
across sentences. This explains why the performance ad-
vantages of CRM is more significant when localising more
complex activities in ActivityNet.
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92.1 219.3

88.0 216.0
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16.0

36.9

37.4

One cat then begins to lick the other

The first cat then stops and
the other licks afterwards.

0.0

0.0 6.6

6.5 13.7

13.3 23.2

24.0a person is sitting down
eating a sandwich

person drinking a
glass of water.

A bald man walked towards the monkey bars,
then he walked towards a lower pole.He walked back to

the monkey bar.

Figure 4: Qualitative examples show the interaction be-
tween MoIs in the same videos. The green bars indicate the
ground-truth MoI’s boundaries whilst the blue bars show
the model predictions by CRM. The query sentences are
simplified for illustrations only given the space limit.

Qualitative Examples. Fig. 4 shows some qualitative
examples from both ActivityNet and Charades. They show
how different MoIs in the same videos may interact with
each other so that their relations can be used to optimise per-
sentence activity localisation in the context of a paragraph.
It is evident that localising video moments by per-sentence
independently is unreliable, e.g. in the first example (top-
row), the man reaches the monkey bars both before and af-
ter he walks toward the lower pole. “The first cat” example
in the middle-row is ambiguous without context. By ex-
plicitly exploring the cross-sentence relations, CRM avoids
such ambiguities and minimises video-text misalignment.
Effects of Attention Units. As the building block of our
MMN backbone in section 3.1, the attention units play a
significant role in exploring the videos and sentences data
as well as their correlations. We investigated its effect by
comparing the prediction recall of CRM constructed with
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(a) Self-attention
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(b) Cross-attention

Figure 5: Effects of attention units. Models are constructed
and trained with different numbers of self-attention and
cross-attention units to investigate their effects.

different numbers of attention units, showing its benefits in
sequence analysis and visual-text interactions (Fig. 5). On
the other hand, due to the limited video data available for
training (10K/5K on ActivityNet/Charades), stacking up at-
tention layers fails to further benefit CRM, leading to model
performance degradation possibly due to overfitting.

5. Conclusion
In this work, we presented a novel Cross-sentence Re-

lations Mining (CRM) method for learning video activity
localisation in the absence of per-sentence temporal an-
notation. CRM explores cross-sentence relations within
each paragraph description of a long video to optimise
video moment proposal selections in training so to improve
per-sentence localisation in testing. CRM minimises mis-
matching individual sentences to video moment proposals
during training by constraining their selections according to
the temporal ordering and pairwise sentencing as expanded
queries in the context of a paragraph description of video.
This improves notably CRM’s capacity to localise more ac-
curately video activities against more complex language de-
scriptions. Experiments on two available activity localisa-
tion benchmark datasets show the performance advantages
of the proposed CRM method over a wide range of state-of-
the-art weakly-supervised models. Extensive ablation stud-
ies further provided in-depth analysis of the effectiveness of
the individual components in CRM.
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