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Abstract

Semi-supervised learning (SSL) algorithms have at-
tracted much attentions in medical image segmentation
by leveraging unlabeled data, which challenge in acquir-
ing massive pixel-wise annotated samples. However, most
of the existing SSLs neglected the geometric shape con-
straint in object, leading to unsatisfactory boundary and
non-smooth of object. In this paper, we propose a novel
boundary-aware semi-supervised medical image segmenta-
tion network, named Graph-BAS3Net, which incorporates
the boundary information and learns duality constraints
between semantics and geometrics in the graph domain.
Specifically, the proposed method consists of two compo-
nents: a multi-task learning framework BAS3Net and a
graph-based cross-task module BGCM. The BAS3Net im-
proves the existing GAN-based SSL by adding a bound-
ary detection task, which encodes richer features of object
shape and surface. Moreover, the BGCM further explores
the co-occurrence relations between the semantics segmen-
tation and boundary detection task, so that the network
learns stronger semantic and geometric correspondences
from both labeled and unlabeled data. Experimental results
on the LiTS dataset and COVID-19 dataset confirm that our
proposed Graph-BAS3Net outperforms the state-of-the-art
methods in semi-supervised segmentation task.

1. Introduction
Accurate medical image segmentation is an essential

prerequisite for many clinical applications [19]. Recently, a
variety of convolutional neural networks (CNNs) have been
developed for segmentation tasks. Though these methods
achieved satisfactory results, they needed massive pixel-
wise annotated samples and to be trained in fully supervi-
sion. In the medical field, however, sufficient labeled data
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Figure 1. (a) shows the boundary results of four methods on LiTS
dataset with 10% labeled data, where cyan edges are ground truth
boundaries; while red edges are predictions. (b) shows the num-
ber of error pixels (horizontal axis) vs. their Euclidean distances
(vertical axis) to the boundaries on four methods. We can see that
pixels with larger distance tend to be well-classified, while pixels
with smaller distance (boundary pixels) have larger errors.

is unavailable as the manual annotation is costly and time-
consuming. To address this issue, semi-supervised learning
(SSL) has been introduced, which uses both labeled data
and arbitrary amounts of unlabeled data in training.

Recent efforts in SSL have been focused on incorpo-
rating unlabeled data into training, which can be cate-
gorized into following groups: self-training [2, 5], co-
training [22,29,35], GAN-based methods [10,14,21,33,34]
and self-ensembling (Π model [12, 16] and Mean-Teacher
model [7, 25, 31]). For example, Chen et al. [5] proposed
a self-training-based SSL that alternately updated the seg-
mentation results of unlabeled data; while Ouali et al. [22]
achieved co-training by exploiting cross-consistency, which
learned the generalized feature from the unlabeled data.
Hung et al. [10] designed a GAN-based SSL that enforced
the segmentation of unlabeled data to be similar to the la-
beled ones. Tarvainen et al. [25] proposed a Mean-Teacher
model to guide the student network learning. However, they
often ignored the geometric information and/or the inher-
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ent semantic and geometric correspondences, which lead
to unsatisfactory boundary and non-smooth of object since
the ambiguity of structure boundary and heterogeneous tex-
ture (see Fig.1(a)). As shown in Fig.1(b), the number of
error pixels significantly decrease with larger distances to
the boundary. In other words, the boundary accuracy is cru-
cial to the final semantic segmentation, yet its importance is
often overlooked in previous methods.

Therefore, in this work, we propose a novel Graph-
based boundary-aware semi-supervised segmentation net-
work (Graph-BAS3Net) to address the aforementioned lim-
itations. Our main idea is to incorporate the boundary rep-
resentation in the network, and learn the duality constraints
between semantics and boundaries in the graph domain.
The Graph-BAS3Net comprises of two components: (i) a
Boundary-Aware Semi-Supervised Segmentation Network
(BAS3Net) that mitigates the blurry boundary problem by
incorporating a boundary detection task into the GAN-
based segmentation framework. (ii) a Bilateral Graph
Convolution Module (BGCM) that models the duality con-
straints between tasks and captures long-range dependen-
cies over non-local regions. The design rationale of the
above two components is elaborated as below.

Firstly, considering that the boundary surrounded the
mask encodes richer features of object shape and surface,
our generator of BAS3Net jointly predicts semantic seg-
mentation and object boundary with a shared encoder. The
shared encoder encourages the network to extract common
features for different tasks, thus making the network more
compact. To utilize the unlabeled data and learn more de-
tailed edge information, we then introduce a discrimina-
tor to distinguish the predicted semantic segmentation map
and boundary detection results (‘fake’) from ground truth
labels (‘real’) for semi-supervised learning. In this multi-
task learning way, the semantic segmentation provides the
smoothness and continuity constraints; while the boundary
detection enforces a global shape and geometric constraints.

Secondly, as there exists duality constraints between
two tasks, it is obvious and remarkable that semantic seg-
mentation and boundary detection can benefit each other
by mutual interaction and promotion to boost the over-
all performance of semi-supervised segmentation. Based
on this, we design the BGCM to explore co-occurrence
relations and diffuse information between the semantics
segmentation and boundary detection task. To establish
the relationships effectively, we utilize graph convolution
[6, 8, 11, 13, 15, 17, 26, 28, 32] to mine the intra-task and
inter-task relations within and between two tasks. Specif-
ically, the intra-task reasoning can capture long-range de-
pendencies over non-local regions and refine the visual fea-
tures in separate tasks; while the inter-task reasoning can
model the similar latent representations between tasks and
enable information propagation in a bidirectional way. In

this way, our Graph-BAS3Net, that consists of the backbone
BAS3Net and the cross-task module BGCM, can be aware
of the reciprocal relations between semantics segmentation
and boundary detection and exhibits superior performance.

The major contributions of this work are four-fold: (i)
We propose a Graph-BAS3Net to enforce semantic and ge-
ometric constraints in semi-supervised medical image seg-
mentation. It combines a multi-task learning framework
BAS3Net and a graph-based cross-task module BGCM rea-
soning between tasks. (ii) We devise a BAS3Net that jointly
predict the semantic segmentation and object boundary,
which improves the segmentation performance of the gen-
erator and further introduces boundary information to the
discriminator. (iii) We propose a BGCM to enforce dual-
ity constraints between semantics and boundaries by using
bilateral graph convolution, which globally mines the intra-
task and inter-task relations.(iv) We conduct extensive ex-
periments on a typical liver datasets and a more challenging
COVID-19 dataset, where the proposed Graph-BAS3Net
outperforms the state-of-the-art methods.

2. Related Work

Semantic Segmentation. Current state-of-the-art methods
for semantic segmentation are based on the rapid develop-
ment of CNNs, e.g., FCNs [18], SegNet [1], and a se-
ries of UNet variations [9,23,36] designed for medical im-
age segmentation. However, to achieve high robustness and
segmentation accuracy, fully supervised segmentation ap-
proaches require massive pixel-level annotated data, which
is often expensive and complex to collect.

GAN-based SSL. SSL approaches are developed to reduce
the workload of ground truth labeling, among which genera-
tive adversarial networks (GAN) based SSLs yield progres-
sive performance. Hung et al. [10] proposed a pioneering
adversarial learning segmentation network (ALS-Net). It
regarded the segmentation network as the generator, while
the objective of the discriminator is to differentiate ground
truths from segmentation probability maps to obtain a con-
fidence map. Nie et al. [21] extended ALS-Net to segment
the pelvic images with a focal loss based attention mecha-
nism. Zheng et al. [34] proposed a deep atlas prior and
incorporated it into ALS-Net to further improve the perfor-
mance of liver segmentation. However, these GAN-based
SSLs fail to produce trustworthy pseudo label in the organ
boundary, especially when lacking sufficient labeled data.

Visual Reasoning via Graph Convolutional Network.
Recently, graph convolution [11] has been incorporated
into computer vision tasks to capture long-range dependen-
cies, which projects the feature into a non-coordinate space.
For instance, Graph Convolutional Unit (GCU) [17] assigns
pixels with similar features to the same vertex via nonlinear
feature encoding method; Global Reasoning (GloRe) unit

7387



Figure 2. An overview of our Graph-BAS3Net. First, the input image passes two networks, Semantic Segmentation Networks and Boundary
Detection Networks with a shared encoder. This generates coarse results supervised by the ground truth for labeled data. BGCM then takes
semantic segmentation and boundary detection features as the inputs and outputs the enhanced features after Graph Projection, Bilateral
Graph Convolution and Graph Reprojection. This results in the refined semantic segmentation map and boundary detection result. The
refined results are then concatenated and fed into the discriminator to obtain a confidence map.

[6] constructed a fully connected graph via channel-wise
similarity. Te et al. [26] further introduced the edge atten-
tion into the feature projection, which emphasizes features
of edge pixels. Considering the graph interaction, Wu et al.
[28] then mined the relations within and between the fore-
ground objects and background stuff classes for Panoptic
Segmentation. Different from these approaches, we intro-
duce the graph structure into a multi-task framework for
semi-supervised medical image segmentation to globally
model the mutual relations between multi-tasks.

3. Graph-BAS3Net

In this section, we first provide an overview of our
method and then present each component in detail. As
seen in Fig.2, Graph-BAS3Net consists of two parts: (i)
BAS3Net that improves the existing GAN-based SSL by
adding a boundary-aware task and works as a backbone net-
work; (ii) BGCM that interacts between tasks to further im-
prove the segmentation accuracy.

The BAS3Net is composed of three networks: The se-
mantic segmentation network (GNs), boundary detection
network (GN b), and discriminator network (DN ). During
training, GNs and GN b learn the feature representations
Xs and Xb by focusing on the semantics and boundaries,
respectively. To explore the mutual information between
two tasks, our BGCM firstly projects Xs and Xb in the co-
ordinate domain into the fully-connected graphs Gs and Gb
in the graph domain, where relational reasoning can be effi-
ciently computed. After reasoning, relation-aware features
are reversed back to the coordinate domain for further pre-

diction. Then the refined results are concatenated and de-
livered to DN , which differentiates the prediction from the
ground truth. The networks GNs, GN b, and DN are de-
signed to work in an adversarial fashion, tackling the prob-
lems of insufficient labeled data and blurry boundaries.

3.1. BAS3Net

Formally, let DL = {(Il, Yl)}Nl=1 denotes the labeled
set and DU = {Iu}N+M

u=N+1 denotes the unlabeled set,
where Yl =

{
Y sl , Y

b
l

}
is the segmentation ground truth Y sl

and boundary ground truth Y bl extracted from the semantic
ground truth using the Roberts operator [20].

Multi-task Generator Network. As seen in Fig.2, the gen-
erator of BAS3Net contains two networks, i.e., GNs for
semantic segmentation and GN b for boundary detection,
which share the same encoder but have task-specific de-
coders. GNs is trained with the pixel-wise semantic an-
notations and yields coarse segmentation mask GNs(I),
while GN b is optimized to predict object edges GN b(I).

Concretely, we adopt DeepLabV2 [4] as the encoder
shared by GNs and GN b. We also remove the last clas-
sification layer and modify the stride of the last two con-
volution layers from 2 to 1. This reduces the resolution of
the output feature maps to 1/8 of the size of the input im-
age size. GNs and GN b adopt the same decoder architec-
ture but do not share the parameters. To enlarge the recep-
tive fields, we apply the dilated convolution [30] in conv4
and conv5 layers with strides of 2 and 4, respectively. We
employ the Atrous Spatial Pyramid Pooling (ASPP) [4] to
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fuse the feature having different receptive scale. Finally,
we apply an up-sampling layer to transfer feature map from
H/8×W/8× 64 to H ×W × 64 and apply a convolution
with 1× 1 kernel size as the classifier.
Discriminator Network. The discriminator of BAS3Net
is employed to distinguish predicted segmentations from
manually-annotated labels. We further introduce the bound-
ary information into the discriminator network (DN ) via
combining the boundary-aware detection result GN b (I)
with the semantic-aware segmentation map GNs (I).

Specifically, it consists of four convolution layers with
kernel of 3 × 3, channel numbers of {16, 32, 64, 128}, and
stride of 2. A deconvolution layer is further added to the
last layer to rescale the output to the size of the input map.
To maintain more detailed information, we concatenate the
result with the first encoder layer which has the size of the
input map. Then, a convolution with 1 × 1 kernel size is
applied as the final classifier.

3.2. Bilateral Graph Convolutional Module

Formally, we define a graph as G = (N ,A,H), whereN
is a set of nodes, and |N | denotes the number of nodes. The
adjacent matrix A ∈ R|N |×|N| describes the edge weights
and H ∈ R|N |×K is the feature matrix of the graph. Our
BGCM consists of three operations: Graph Projection, Bi-
lateral Graph Reasoning and Graph Reprojection. Specifi-
cally, Graph Projection is the first step that maps the feature
map X in the coordinate domain onto a set of node fea-
tures H in the graph domain; while Graph Reprojection is
the final step that finally reverse the updated graph features
H̃ back to X̃ . Bilateral Graph Convolution is the critical
step that models the intra-task and inter-task relations and
diffuses information between tasks.

3.2.1 Graph Projection and Reprojection

We adopt the same strategies to project and reproject
semantic-aware graph Gs and boundary-aware graph Gb.
For simplicity, we take Gs as an example. As seen in Fig.3,
an attention mechanism is applied into the projection, which
monitors the object parts through performing a dot multipli-
cation� between coarse segmentation maskMs (GNs(I))
and Xs. The dot multiplication assigns a higher weight to
the features of pixels which belong to the object, and sup-
presses the non-object regions. In practice, we use a con-
volution, φs(·), with a kernel size of 1 × 1 to reduce the
dimension of Xs from C to L, which enhances the capac-
ity of the projection process. The next step is to perform
an average pooling, AvgPool(·) ,with stride s to obtain the
anchors of the vertices. These anchors represent the centers
of each region of pixels. We adopt the multiplication, ⊗, of
φs(Xs) and anchors to capture the similarity between an-
chors and each pixel. The range of the projection matrix,

ps, is constrained to (0, 1) by applying a softmax function:

ps = softmax(AvgPool(φs(Xs)�Ms)⊗ φs(Xs)T ) (1)

Based on the projection matrix ps, the feature map Xs

is then mapped into the graph domain as the following:
Hs = ps ⊗ θs(Xs), where θs(·) is a convolution operation
with 1 × 1 kernel to obtain the features of dimension
reduction, leading to θs(Xs) ∈ RHW×K . The projection
process is formulated as a linear combination, which
aggregates the pixels with similar features as an anchor to
one node. This results in a semantic-aware graph feature,
Hs ∈ RHW/s2×K . Similarly, we can obtain a boundary-
aware graph feature Hb.Note that the down-sampling rate,
δ, in AvgPool(·) can be different from the one (stride s) in
constructing Gs, resulting in |N s| 6=

∣∣N b
∣∣.

After the reasoning, we adopt linear reprojection given
by X̂s = (ps)

T H̃s. But the small-sized X̂s ∈ RHW×K is
inconsistent with the original feature map Xs ∈ RHW×C .
Thus, we attach a 1 × 1 convolution layer ψs(·) for
dimension expansion, so that the output can seamlessly
match the input to form a residual path:

X̃s = Xs + ψs((ps)T H̃s) (2)

3.2.2 Bilateral Graph Reasoning

Given Gs and Gb, we adopt the graph convolution to dif-
fuse information on the graphs. In this work, we use a sim-
ilar approach as in [11] to define graph convolution. We
first define the augmentation form of a bilateral graph as:

H =
[
(Hs)T , (Hb)T

]T
,W =

[
(Ws)T , (Wb)T

]T
(3)

where H ∈ R(|N s|+|N b|)×K , W ∈ R2K×K
′

is the aug-
mented form of bilateral node feature and weight matrix.
Ws and Wb ∈ RK×K

′

are two trainable weight matrixes
that alter the node dimension ofHs andHb, respectively.

Instead of performing on a single graph as in [11],
our bilateral graph convolution captures the co-occurrence
relations over two graphs via the intra-graph and inter-
graph reasoning. Specifically, the intra-graph reasoning
models the non-local dependencies in each graph. This is
performed on the semantic-to-semantic edges (As→s) and
boundary-to-boundary edges (Ab→b). The inter-graph rea-
soning explores the mutual relations between the graphs
hence it is applied to the semantic-to-boundary edges
(As→b) and boundary-to-semantic edges (Ab→s). Based
on the above, the adjacent matrix A in this work is a com-
bination of intra-graph matrix (Aintra) and inter-graph ma-
trix (Ainter) which is formulated as:

A = Aintra +Ainter, (4)

Aintra =

(
As→s 0

0 Ab→b

)
Ainter =

(
0 Ab→s

As→b 0

)
(5)
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Figure 3. Architecture of the Bilateral Graph Convolution Module.

where As→b =
{
as→bij

}
∈ R|N

s|×|N b| assembles the cor-
relation weight from j-th node of Gs to the i-th node of Gb,
and As→s,Ab→b,Ab→sare explained similarly. The coef-
ficients, aij , which indicate the importance of node j for
node i, are obtained for every neighboring node pair using
an attention mechanism [27]:

aij =
exp (δ (W [hi ||hj ]))∑

z∈Ni
exp (δ (W [hi ||hz]))

(6)

where the attention function is a single-layer neural network
parameterized by a weight vector W ∈ R2K . || is the con-
catenation and δ is LeakyReLU nonlinear. Ni is the neigh-
borhood of node i, which contains all nodes in our fully-
connected graph. Note that the graphs constructed here is a
directional graph, as weight vector W is different in learn-
ing aij and aji. With the normalized adjacent matrix A ,
augmented bilateral node feature H and weight matrix W ,
a single graph convolution layer is formulated as:

H̃ = F (H ||σ (A (H⊗W))) (7)

H⊗W =
[
(HsWs)T , (HbWb)T

]T
(8)

where F(·) fuses the original features and updated features,
which is realized by a convolution with kernel 1× 1 .

3.3. Loss Functions

In our approach, we optimize the Graph-BAS3Net with
five losses:LD, LG−adv , LG−seg , LG−det, LG−semi.
LD is the binary cross-entropy loss of the discriminator

network, which is utilized to distinguish the ground truths
and the segmentation maps:

LD = −
∑

H,W (1− yl) log
(
1−DN

(
G̃Ns(Il) || G̃Nb(Il)

))
+yllog

(
DN

(
Y

s
l ||Y

b
l

)) (9)

where || is the concatenation operation. yl = 0 if the
input is drawn from the refined semantic segmentation
map G̃Ns(Il) and the refined boundary detection result

G̃N b(Il), and yl = 1 if the input is combined with their
corresponding ground truth labels Y sl and Y bl . Note that
the unlabeled data is not included in the calculation of LD.

Furthermore, LG−adv is the adversarial loss term,
which improves the generator and fools the discriminator
via maximizing the probability maps from the generator
being considered as the ground truth labels. Hence, it
enforces higher-order consistency between the automatic
segmentation and the ground-truths and is defined as:

LG−adv = −
∑

H,W log
(
DN

(
G̃Ns(Il) || G̃Nb(Il)

))
(10)

In our approach, LG−seg is the segmentation loss of the
labeled data; while LG−det is defined as the detection loss.
Given an input image Il, one-hot encoded ground truth Y sl
and Y bl , the binary cross-entropy loss is calculated by:

LG−seg = −
∑

H,W (Y s
l log (GN

s(Il))) + Y s
l log

(
G̃Ns(Il)

)
(11)

LG−det = −
∑

H,W

(
Y b
l log

(
GNb(Il)

))
+ Y b

l log
(
G̃Nb(Il)

)
(12)

Where GNs(Il) and GN b(Il) are the coarse segmentation
mask and coarse edge mask, respectively.

Moreover, LG−semi is the semi-supervised loss of the
unlabeled data Iu. Benefiting from the confidence map
generated from the discriminator, we select the partial high
confidence pixels from the masked segmentation prediction,
which can be considered as ground truth for unlabeled data.
This “self-taught” process is formulated as:

LG−semi = −
∑

H,W ζ
(
DN

(
G̃Ns(Iu) || G̃Nb(Iu)

)
> Tsemi

)
·Ŷ s

u log
(
G̃Ns(Iu)

) (13)

where ζ(·) is an indicator function, and Tsemi is the thresh-
old that controls the sensitivity of the self-taught process.
Ŷ su = argmax(G̃Ns(Iu)) is a binarized segmentation pre-
diction. Combined with the self-taught target Ŷ su , LG−semi
can be viewed as a masked binary entropy loss.

The final loss of the generator LG. is the combination of
LG−adv , LG−seg , LG−det, and LG−semi:

LG = LG−seg + λdetLG−det + λsemiLG−semi + λadvLG−adv (14)

where the λdet, λsemi and λadv are the constraints for bal-
ancing the multi-task training.

4. Experiments and Results

4.1. Datasets

We conducted experiments to verify our proposed
method on a typical liver segmentation and a challenging
COVID-19 infection segmentation: (i) LiTS dataset [3]:
ISBI LiTS 2017 Challenge dataset contains 131 contrast-
enhanced abdominal scans. This dataset was acquired by
different scanners from six different clinical sites, with a
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LiTS Dataset
0.1:0.9 0.3:0.7 0.5:0.5 0.7:0.3 1.0:0.0Models(SSLs) Dice [%] VOE [%] Dice [%] VOE [%] Dice [%] VOE [%] Dice [%] VOE [%] Dice [%] VOE [%]

Fully-supervised 83.87±1.71 27.21±2.21 88.34±2.04 20.51±3.18 91.02±2.03 16.32±3.38 92.35±1.58 14.09±2.66 93.54±0.95 12.10±1.68

Sedai et al. [24] 86.54±1.16 23.55±1.81 89.02±1.55 19.64±2.51 91.50±1.30 15.51±2.19 92.79±1.49 13.35±2.55 93.35±0.98 12.33±1.61

Ouali et al. [22] 89.46±1.13 18.96±1.87 91.31±1.32 15.84±2.19 92.81±1.04 13.30±1.73 93.04±1.10 12.93±1.89 93.56±0.97 12.08±1.70

Chen et al. [5] 87.82±1.34 21.53±2.12 89.28±1.16 19.22±1.85 91.88±0.66 14.93±1.10 93.17±0.95 12.61±1.75 93.80±1.04 11.61±1.81

Hung et al. [10] 88.86±0.92 19.90±1.48 90.77±1.07 16.79±1.77 92.16±0.82 14.35±1.48 93.46±0.61 12.18±0.95 93.51±1.33 12.07±2.28

Nie et al. [21] 89.04±1.72 19.54±2.79 91.01±1.22 16.35±2.06 91.96±0.93 14.66±1.50 93.06±1.22 12.91±2.11 93.67±0.85 11.78±1.41

Zheng et al. [34] 90.18±0.98 17.73±1.48 91.71±1.02 15.21±1.73 93.27±0.78 12.47±0.61 93.89±0.81 11.39±1.34 94.49±0.56 10.42±1.01

BAS3Net 91.11±0.91 16.19±1.51 92.65±0.88 13.56±1.47 94.01±0.75 11.27±1.33 94.81±0.67 10.10±0.95 95.23±0.54 9.38±0.71

Graph-BAS3Net 93.19±0.94 12.69±1.61 94.56±0.77 10.27±1.36 94.97±0.72 9.83±1.03 95.25±0.48 9.33±0.60 95.58±0.44 8.76±0.49

COVID-19 Dataset
Fully-supervised 65.87±4.56 50.25±5.61 69.55±3.97 45.67±4.89 74.88±3.35 39.09±4.10 77.11±3.22 36.33±4.15 79.33±2.90 33.51±3.61

Sedai et al. [24] 67.09±3.21 48.72±3.95 71.65±3.96 43.03±4.91 75.74±3.86 37.96±4.79 78.55±2.54 34.47±3.14 79.40±2.78 33.54±3.58

Ouali et al. [22] 69.79±3.00 45.39±3.67 73.05±3.05 41.01±3.49 76.05±2.84 37.72±3.54 78.97±2.73 33.95±3.39 79.33±2.90 33.51±3.61

Chen et al. [5] 67.98±3.54 47.63±4.34 72.31±2.99 42.21±3.71 76.44±3.07 37.11±3.81 77.36±2.81 36.05±3.59 79.74±2.81 32.84±3.82

Hung et al. [10] 68.55±2.83 46.93±3.46 72.33±2.67 42.19±3.31 76.24±2.94 37.29±3.61 79.23±2.95 33.63±3.66 79.60±2.73 33.30±3.51

Nie et al. [21] 70.33±2.88 44.76±3.50 73.36±2.69 40.66±3.09 76.79±2.91 36.76±3.71 79.43±2.68 33.38±3.32 79.98±2.60 32.74±3.26

BAS3Net 72.98±2.11 41.38±2.62 74.85±2.86 38.82±3.23 77.98±2.14 35.18±2.65 80.28±2.11 32.40±2.70 80.91±2.10 31.65±2.70

Graph-BAS3Net 74.22±2.65 39.97±3.16 77.35±2.04 36.00±2.49 80.23±1.51 32.42±1.89 81.48±1.89 30.84±2.39 82.09±1.76 29.70±2.48

Table 1. Comparison of our methods (in orange)with the state-of-the-art semi-supervised methods on two datasets.

Figure 4. Qualitative comparisons of three typical examples with the state-of-the-art methods on COVID-19 dataset with 10% labeled data.
The purple areas are the true positives (TP); the yellow areas are false negatives (FN), and the green areas are false positives (FP).

largely varying in-plane resolution from 0.55 to 1.0 mm and
slice spacing from 0.45 to 6.0 mm. The image resolution is
a relatively high 512×512. The dataset also includes 103
and 28 volumes for training and testing, respectively. We
further randomly divided the 103 training cases into a train-
ing set and a validation set at the ratio of 3:1. To eliminate
the effect of randomness, we conducted the partition op-
eration twice. The hyper-parameters optimization and net-
work development were conducted on validation set. (ii)
COVID-19 dataset: we collected 102 COVID-19 CT scans
from the First Affiliated Hospital. The left, right lung and
infections were annotated by two radiologists with 5-year
experience in chest radiology. Each case had a slice-plane
resolution of 512×512 and was resampled with the same
spacing of 1.0×1.0×1.0 mm3. To reduce the randomness,
the dataset was randomly split into a training set, a valida-
tion set, and a testing set at the ratio of 3:1:1 for twice.

4.2. Implementation Details

To update the parameters of semantic segmentation and
boundary detection network, we adopted Stochastic Gradi-

ent Descent. Here the momentum was set to 0.9 and the
weight decay to 1e-4. The initial learning rate was 1e-3,
which was decreased following the polynomial decay with a
power of 0.9. As for the discriminator, we performed Adam
optimizer with the learning rate as 1e-4 and the same poly-
nomial decay. The betas were set as 0.9 and 0.999.

We trained the models in 150k iterations on LiTS dataset
and COVID-19 dataset with a batch size of 3. To cap-
ture space context along z-axis, the input image consisted
of three slices: the slice to be segmented and the upper
and lower slices, which was resized to 320×320×3. Our
results showed that BAS3Net was more stable with pre-
trained semantic segmentation and boundary detection net-
works. Therefore, we first pre-trained two networks in a
fully supervised mode for 10k iterations with the labeled
data. Then, the discriminator network joined the optimiza-
tion, which was also updated with the labeled data. To elim-
inate the noisy predictions, semi-supervised learning began
after training for 20k iterations. To ensure the evaluation ro-
bustness, we used two random seeds to sample the labeled
and unlabeled data and obtained the average value of these
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Figure 5. Hyper-parameter of graph node number (a) and feature
dimension (b) on LiTS dataset in fully-supervised mode.

4.3. Comparison with the State-of-the-Art Methods

In Table 1, our methods were compared to other semi-
supervised state-of-the-art methods. Different from GAN-
based SSLs [10, 21, 34], Chen et al. [5] trained an auto-
encoder to reconstruct synthetic segmentation labels created
by attention mechanism. Sedai et al. [24] proposed an un-
certainty guided SSL for medical image segmentation by
using the Monte Carlo (MC) dropout; while Ouali et al.
[22] presented a cross-consistency based SSL for semantic
segmentation. Note that the atlas-prior proposed by Zheng
et al. [34] was difficult to achieve in practice for COVID-
19 infections with large variation in pose and shape. For
fair comparison, we used the same DeepLabV2 [4] back-
bone in these methods. We randomly sampled 10%, 30%,
50%, 70%, 100% images as the labeled data, and used the
rest of the training images as unlabeled data. Compared
with the fully-supervised mode that only trained with the
labeled data (shown in the first row), incremental improve-
ments were coming from the use of unlabeled data. More-
over, our Graph-BAS3Net outperformed other methods on
both two datasets, especially with few labeled data.

4.4. Hyper-Parameter Analysis

Hyper-parameter of the graph node number and feature
dimension. Here we first investigated how the node num-
bers, |N s| and

∣∣N b
∣∣ affect the performance. The experi-

ments were performed with 100% labeled data on the LiTS
dataset. Note that we set the node feature dimension to 32,
i.e., K = 32, in this analysis. As seen in Fig.6(a), the accu-
racy was improved when increasing

∣∣N b
∣∣. This is because

the boundary is changeable and requires more anchors. By
fixing

∣∣N b
∣∣ to 256, it is seen that the accuracy was the high-

est for |N s| = 64. However, increasing |N s| may break
the holistic semantic representation and increase the com-
putational complexity. Therefore, we chose the |N s| = 64
and

∣∣N b
∣∣ = 256, which provided the best results within a

reasonable computational cost.
Following the experiment of the number of the graph

nodes, node feature dimension K was also varied in a simi-
lar experiment setting. We set |N s| to 64 with

∣∣N b
∣∣ = 256

to assess the impact of the K which varies from 8 to 32. As
seen in Fig.6(b), the accuracy was improved by decreasing

labeled λdet λadv λsemi Tsemi Dice [%]

100%
0 0 0 N/A 93.54

0.5 0 0 N/A 94.06
1.0 0 0 N/A 94.73

100%
1.0 0.001 0 N/A 95.47
1.0 0.005 0 N/A 95.58
1.0 0.05 0 N/A 95.03

10%

1.0 0.005 0 N/A 89.54
1.0 0.005 0.005 0.2 92.47
1.0 0.005 0.01 0.2 92.99
1.0 0.005 0.02 0.2 92.60

10%

1.0 0.005 0.01 0 92.24
1.0 0.005 0.01 0.2 92.99
1.0 0.005 0.01 0.3 93.19
1.0 0.005 0.01 0.5 92.95
1.0 0.005 0.01 1.0 91.81

Table 2. Hyper-parameter of λdet, λadv , λsemi and Tsemi in
Graph-BAS3Net architecture. Experiments are performed on
LiTS dataset under the fully/semi-supervised settings.

# GNs GN b DN Dice [%]
GNs(Il) GNs(Il) ||GN b(Il)

1
√

83.87
2
√ √

86.43
3
√ √ √

89.56
4
√ √ √

91.11
Table 3. Ablation of BAS3Net (w/o BGCM) on LiTS dataset with
10% labeled data.

the dimension of the feature and was at its best for K = 16.
Therefore, we chose K = 16 in our experiments.

Hyper-parameter of λdet, λadv , λsemi and Tsemi. The
experiments were conducted on the LiTS dataset in the fully
supervised mode (100% labeled data) and semi-supervised
mode (10% labeled data). We first evaluated the effect on
λdet in the fully supervised mode, which achieved its best
at λdet = 1.0. It indicates that the boundary detection task
is equally important as the semantic segmentation. Second,
we showed comparisons of different values of λadv under
the fully supervised setting. Overall, λadv with the medium
value of 0.005 achieved the best performance. We further
examined different values of λsemi in the semi-supervised
mode and set Tsemi as 0.2 for comparisons. As shown in
Table 2, the method performed the best for λsemi = 0.01.
Based on the above analysis, we also investigated how the
choice of Tsemi affected the performance and observed that
the best performance was achieved for Tsemi = 0.3.

4.5. Ablation Study

Ablation of BAS3Net. Table 3 presented the segmentation
accuracy on LiTS dataset with 10% labeled data, where the
components were gradually added to the semantic segmen-
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# BAS3Net Gs construction Gb construction Reasoning direction Dice [%]
w/o seg map seg map w/o edge map edge map Gs → Gb Gb → Gs

1
√

91.11
2

√ √
91.78

3
√ √

92.56
4

√ √
91.51

5
√ √

91.82
6

√ √ √ √
92.27

7
√ √ √ √

92.82
8

√ √ √ √ √
93.19

Table 4. Ablation of BGCM on LiTS dataset with 10% labeled data.

Figure 6. Interpretation of two graph projections on LiTS dataset.
The left row in each block indicated the input image with an an-
chor marked in the red rectangle, and the right visualized response
maps to the anchor. Darker color indicated a higher response.

tation network (GNs). First, we examined the impact of
introducing a boundary detection network (GN b), and the
accuracy was improved from 83.87% to 86.43%. This indi-
cates the essential role of edge information in the segmen-
tation. A significant increment from 89.56% to 91.11% was
achieved by combining boundary detection result GN b(I),
which helped the discriminator focus on the edge part.

Ablation of BGCM. To validate the efficiency of the pro-
posed BGCM, we considered different graph construction
and reasoning directions. Regarding the single Gs, the dice
accuracy was improved because of the semantic-wise rea-
soning that considered the correlations among proposals.
Using the segmentation attention map Ms, Gs achieved a
performance of 92.56% with 1.45% gain. This further in-
dicates the effectiveness of incorporating anatomic knowl-
edge for better localization. As for the single Gb, the perfor-
mance was increased from 91.11% to 91.82%, where 0.31%
was incrementally obtained by using the edge attention map
M b. This validates the necessity of enhancing the feature
map with edge via attention mechanism.

With applying the intra-task reasoning, an increment
from 91.82% to 93.19% was achieved, where 0.45% and
1.00% improvements were produced by using a single di-
rection of Gs → Gb (from Gs to Gb) and Gb → Gs (from Gb
to Gs). The best performance was achieved at 93.19% accu-

racy by using bilateral reasoning, which learned the mutual
relations from tasks and yielded clear boundaries.

4.6. Interpretation of Graph Projections

We further visualized the semantic-aware and boundary-
aware graph projections for interpretation. In the graph pro-
jection, we defined a set of anchors (e.g. 8×8 anchors in Gs
and 16×16 anchors in Gb) to bridge the connection between
the pixels and the corresponding nodes. As seen in Fig.7,
we visualized the weight of each pixel that contributed to
an anchor marked in a red rectangle, where darker color in-
dicated a higher response. It is seen that two graph projec-
tions aggregate pixels with similar appearance to the same
anchor. This is because the response areas are consistent
with the anchor. As expected, the semantic-aware projec-
tion modeled long-range dependencies while the boundary-
aware projection focused on edge discriminative patterns.

5. Conclusion

In this paper, we focus on the blurry boundary issue and
propose a Graph-BAS3Net, which consists of two compo-
nents: the backbone BAS3Net and an interaction module
BGCM. BAS3Net adopts a multi-task learning generator
to jointly conduct segmentation and boundary detection.
Then the combined segmentation and boundary maps are
fed into the discriminator for further distinguishing. Under
this framework, the BGCM takes graph structures and inter-
acts between multi-tasks to mine intra- and inter-task rela-
tions, which enhances both two tasks. Experimental results
confirmed that our method surpassed all state-of-the-art ap-
proaches for semi-supervised medical image segmentation.
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