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Figure 1. 3D scene stylization. Given a set of images of a 3D scene (left) as well as a reference image of the desired style (middle), our
method is able to modify the style of the 3D scene, and synthesize images of arbitrary novel views (right). The novel view synthesis results
1) contain the desired style and 2) are consistent across various novel views, e.g. the texture in the yellow boxes.

Abstract

We tackle a 3D scene stylization problem — generating
stylized images of a scene from arbitrary novel views given
a set of images of the same scene and a reference image
of the desired style as inputs. Direct solution of combining
novel view synthesis and stylization approaches lead to re-
sults that are blurry or not consistent across different views.
We propose a point cloud-based method for consistent 3D
scene stylization. First, we construct the point cloud by
back-projecting the image features to the 3D space. Sec-
ond, we develop point cloud aggregation modules to gather
the style information of the 3D scene, and then modulate
the features in the point cloud with a linear transformation
matrix. Finally, we project the transformed features to 2D
space to obtain the novel views. Experimental results on
two diverse datasets of real-world scenes validate that our
method generates consistent stylized novel view synthesis
results against other alternative approaches.

1. Introduction

Visual content creation in 3D space has recently attracted
increasing attention. Driven by the success of 3D scene rep-
resentation approaches [38, 46, 64], recent methods make

significant progress on various content creation tasks for 3D
scenes, such as semantic view synthesis [16, 19] and scene
extrapolation [34]. In this work, we focus on the 3D scene
stylization problem. As shown in Figure 1, given a set of
images of a target scene and a reference image of the de-
sired style, our goal is to render stylized images of the scene
from arbitrary novel views. 3D scene stylization enables a
variety of interesting virtual reality (VR) and augmented re-
ality (AR) applications, e.g. augment the street scene at user
locations to the Cafe Terrace at Night style by van Gogh.

Learning to modify the style of an existing 3D scene is
challenging for two reasons. First, the synthesized novel
views (i.e. 2D images) of the stylized 3D scene must con-
tain the desired style provided by the reference image. Sec-
ond, since our goal is to stylize the holistic 3D scene, the
generated novel views need to be consistent across differ-
ent viewpoints for the same scene, such as the texture in the
yellow boxes shown in Figure 1.

To handle these challenges, one plausible solution is to
combine existing novel view synthesis [46, 64] and image
stylization approaches [30, 53]. However, such straightfor-
ward approaches lead to problematic results since image
stylization schemes are not designed to consider the con-
sistency issue across different views for the same scene.
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Figure 2. Motivation. While the existing methods can be used for the 3D scene stylization task, these methods either produce blurry (image
stylization — novel view synthesis), short-range inconsistent (novel view synthesis — image stylization), or long-range inconsistent (novel

view synthesis — video stylization) results.

We present the examples in Figure 2 where the results may
be blurry if the input images of the target scene are styl-
ized before conducting novel view synthesis. On the other
hand, if we apply image stylization after novel view syn-
thesis, the results are not consistent across different views.
Another possible solution is to treat a series of novel view
synthesis results as a video, and use the video stylization
frameworks [9, 11, 56] to obtain temporally consistent re-
sults. However, as shown in Figure 2, these approaches are
not able to enforce long-range consistency (i.e. between two
far-away views) as the video stylization schemes only guar-
antee the short-term consistency.

In this paper, we propose a point cloud-based method for
consistent 3D scene stylization. To synthesize novel views
that 1) match arbitrary style images and 2) render images
with consistent appearance across different views, the core
idea is to operate on the 3D scene representation, i.e. point
cloud, of the target scene. Given a set of input images of
the target scene, we first construct the point cloud by back-
projecting the image features to the 3D space according to
the pre-computed 3D proxy geometry. To transfer the style
of the holistic 3D scene, we develop a point cloud transfor-
mation module. Specifically, we use a series of point cloud
aggregation modules to gather the style information of the
3D scene. We then modulate the features in the point cloud
with a linear transformation matrix [30] computed accord-
ing to the style information of the point cloud and reference
image. Finally, we project the transformed features from the
point cloud to the 2D space to obtain the novel view synthe-
sis results. Since our method synthesizes novel view images
from the same stylized point cloud, the rendered results not
only demonstrate the desired style, but also are consistent
across different viewpoints.

We evaluate the proposed 3D scene stylization method
through extensive qualitative and quantitative studies. The
experiments are conducted on two diverse datasets of real-
world scenes: Tanks and Temples [25] and FVS [45]. We
conduct a user preference study to evaluate the stylization
quality, i.e. whether the novel view synthesis results match
the style of the reference image. In addition, we use the
Learned Perceptual Image Patch Similarity (LPIPS) [65]
metric to measure the consistency of the results synthesized

across different novel views.

We make the following contributions in this paper:

* We propose a point cloud-based framework for the 3D
scene stylization task.

* We design a point cloud transformation module that
learns to transfer the style from an arbitrary 2D refer-
ence image to the point cloud of a 3D scene.

* We validate that our method produces high-quality and
consistent stylized novel view synthesis results on the
Tanks and Temples as well as FVS datasets.

2. Related Work

Novel View Synthesis. Given a set of images for a scene,
novel view synthesis aims to generate high-quality images
at arbitrary viewpoints. It can be categorized by the num-
ber of input images that cover the scene. One line of work
takes as input a single image or stereo images. These meth-
ods use multi-plane images [52, 54, 58, 67], layer depth
image [27, 50], or point cloud [40, 57] representations to
synthesize images at novel views near the input views, e.g.
3D photo. To enable the image synthesis at arbitrary novel
views, several recent frameworks take hundreds of input im-
ages of a scene as the input. These frameworks leverage
different 3D representations to accomplish the task. Image-
based rendering approaches [45, 46] compute 3D proxy ge-
ometry of the scene, and generate images by warping the
input frames to the desired novel views. Neural radiance
field schemes [35, 38, 63, 64] use multi-layer perceptrons
to implicitly encode the scene for novel view synthesis.
Point cloud-based methods [37, 1] solve different optimiza-
tion problems to construct the point cloud for a specific 3D
scene. Different from these frameworks, our goal is to gen-
erate stylized novel view images of the 3D scene. As shown
in Figure 2, while existing algorithms can be used for the
3D scene stylization task, they fail to generate high-quality
novel view synthesis results with the desired style.

Image and Video Stylization. Image stylization [12] aims
to transfer the style of a reference image to the single in-
put image. Existing methods [5, 22, 32, 49, 55] are de-
signed based on feed-forward networks for transferring a
set of pre-defined styles. For arbitrary image style transfer,
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Figure 3. Algorithmic overview. The proposed method consists of three steps: 1) constructing the 3D point cloud from the set of input
images {I,,}2_1, 2) transforming the point cloud according to the reference image S with the desired style, and 3) synthesizing the stylized
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Figure 4. Point cloud transformation. We model the 3D scene
stylization process as the linear transformation between the con-
structed and stylized point clouds. Specifically, the constructed
point cloud is modulated using the predicted linear transformation
matrix T, as described in (1). We use a series of point cloud ag-
gregation modules to gather the point cloud information, and the
convolution layers to process the reference image feature F* to
compute the matrix T.

Huang and Belongie [20] use first-order statistics to encode
the style information, and transform the image style via the
AdalN normalization layers. The WCT [33] approach uses
whitening and coloring transformation to match the second-
order statistics of the input image to those of the reference
image. In addition, the LST [30] scheme leverages the con-
volutional neural networks to reduce the computational cost
of solving the transformation matrix in the WCT method for
real-time universal style transfer. Most recently, the TPFR
method [53] proposes a regularization layer to facilitate the
generalization of image stylization models.

Video stylization aims to transfer the style of a refer-
ence image to a sequence of video frames. To address the
temporal flickering issue produced by the image stylization
approaches, numerous approaches [4, 7, 10, 15, 18] incor-
porate optical flow modules to train feed-forward networks
for transferring a particular style to the videos. Several re-
cent frameworks [9, 11, 56] enable the video style trans-

fer to arbitrary styles. Although significant advances have
been made, existing methods are designed specifically for
transferring the style of 2D images or video sequences. As
shown in Figure 2, simply applying these schemes for the
3D scene stylization task leads to problematic results, such
as blurry or short/long-range inconsistent images across dif-
ferent novel views.

Several efforts have been made to perform the styliza-
tion in 3D space. However, these approaches are only ap-
plicable to single objects [23], narrow-baseline stereo im-
ages [6, 13], or light field images [17]. In contrast, our
method stylizes complex 3D scenes, and produces consis-
tent results at arbitrary viewpoints.

Deep neural networks for point clouds. Various deep neu-
ral network (DNN)-based models [24, 28, 29, 31, 41, 42, 59,
61, 66] that take point clouds as input are widely studied for
vision recognition tasks including 3D semantic segmenta-
tion [2], 3D shape classification or normal estimation [60],
and 3D object part segmentation [62]. Recently, Mallya et
al. [36] proposes a point cloud colorization approach for
the video-to-video synthesis task. In this work, we propose
a DNN-based point cloud transformation model for the 3D
scene stylization task. We note that the PSNet [3] model
aims to transfer the style of the point cloud. Nevertheless,
there are two issues for the PSNet method to be applied
to the 3D scene stylization task. First, it does not support
synthesizing high-quality stylized images at novel views,
which makes the PSNet framework limited for real-world
(e.g. AR) applications. Second, since the PSNet scheme re-
quires the optimization process for each specific scene, it
is time-consuming, and fails to handle large-scale scenes in
the real-world with more than 60M points, such as those in
the Tanks and Temples dataset [25]. In contrast, we propose
a feed-forward point cloud model that is efficient, capable
of handling large-scale 3D scenes, and generating images
with arbitrary styles at various novel views.
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3. Methodology

We present the overview of the proposed 3D scene styl-
ization framework in Figure 3. Given a set of NV input im-
ages {I,,}2_, of a static scene, and a reference image S
with the desired style, our goal is to synthesize the image
O, at the novel view v with the camera pose (R,,t,) and
intrinsic K,,. Specifically, the generated novel view image
O, needs to 1) match the style of the reference image S and
2) be consistent for different viewpoints v. To handle such
(especially the consistency) requirements, our core idea is
to 1) construct a single 3D representation, i.e. point cloud,
for the holistic scene, and 2) transform the representation
to produce not only stylized but also consistent novel view
synthesis results. The proposed approach consists of three
steps: point cloud creation, point cloud transformation, and
novel view synthesis, described in the following sections.

3.1. Point Cloud Construction

Pre-processing. Our method leverages camera pose and
proxy geometry to construct the 3D point cloud. Given the
input images {I,,}2_,, we first use a structure-from-motion
algorithm [47] to estimate the camera poses {R.,, ¢, }_;
and intrinsic parameters {K,}"_;. For each image I,,, we
use the COLMAP [47, 48] and Delaunay-based reconstruc-
tion [21, 26] schemes to obtain the depth map D,, that can
appropriately back-project the points from the image plane
to the 3D space.

Feature extraction and back-projection. Since our goal
is to transform the point cloud representation for the 3D
scene stylization purpose, we need the point cloud repre-
sentation to encode the style information. Therefore, we
use the VGG-19 model [51] pre-trained on the ImageNet [8]
dataset to extract the relu3_1 feature maps {F¢}Y_, of the
input images {I,,}2'_,. The width and height of each feature
map is H and W. According to the depth map {D,,},,
we back-project all the points in each feature map to build
the 3D point cloud {f5}/"_,, where P = NHW is the total
number of points in the constructed point cloud.

3.2. Point Cloud Transformation

We model the 3D scene stylization process as a linear
transformation [30] between the constructed and stylized
point clouds. Intuitively, the goal is to match the covari-
ance statistics of the stylized point clouds and those of the
reference image S. To achieve this, we use the pre-trained
VGG-19 network to extract the relu3_1 feature map from
the reference image S as the style feature map F°. Given
the constructed point cloud {f5}/_;, we use a predicted
linear transformation matrix T to compute the modulated
point cloud { f¢}I”,, namely

fy=T(y—F)+F vpell Pl M

where f¢ is the mean of the features in the point cloud
{5 5:1, and f* is the mean of the style feature map F*.

Linear transformation matrix T. The transformation ma-
trix T is computed from the style feature map F* and con-
structed point cloud { Iy 5:1. As shown in Figure 4, we
adopt the strategy similar to the LST [30] method that uses
the convolution layers, covariance computation, and fully-
connected layers to compute the matrix T® from the style
feature map F'°. On the other hand, we develop a series of
point cloud aggregation modules to process the point cloud
{ f;}le, and use the covariance computation followed by
the fully-connected layers to calculate the matrix T¢. Fi-
nally, we obtain the transformation matrix T = T*T*.

Point cloud aggregation. It is challenging to gather the in-
formation contained in the constructed point cloud { f; }11;1
due to the sparsity and non-uniformity. We note that the
constructed point cloud is non-uniform if the input images
cover a particular region of the 3D scene. In this work, we
leverage the set abstraction [43] concept to aggregate the
point cloud. The input {f5}/_, to a point cloud aggregation
module is a set of P points with feature dimension ¢, and
the output { £ }2”, is a set of P’ points with dimension ¢’
We first sample a subset of P’ points { f§}5;1 using the it-
erative farthest point sampling algorithm [14, 39]. Viewing
the sampled points as the centroids in the 3D space, we use
aradius parameter r to find the nearby points to form a point
group. By using the MLP layers and the max pooling oper-
ator to map each point group to a vector, we obtain the ag-
gregated point cloud { f;/ }5;1. The output {f5' }1”, is then
used as the input for the next module. We use three point
cloud aggregation modules sequentially in our pipeline.

3.3. Novel View Synthesis and Model Training

We aim to synthesize stylized image O, at an arbitrary
novel view v. Given the target camera pose (R, t,) and
intrinsic K,,, we use Pytorch3D [44, 57] to render the trans-
formed 2D feature map F'¢. We then use a decoder network
to generate the stylized novel view image O,, from the 2D
feature map F2.

Model training. We keep the pre-trained VGG-19 feature
extractor fixed during the whole training phase. We first
train the decoder network to perform the non-stylized novel
view synthesis. Since the ground-truth (non-stylized) novel
view image is available in the training sets, we use the /1
reconstruction loss to optimize the decoder network. We
then keep the decoder network fixed, and train the proposed
point cloud transformation module with the following loss
functions:
¢ Content loss L. ensures the preservation of the con-
tent information by measuring the distance between
the pre-trained VGG-19 features of the generated styl-
ized image O,, and the ground-truth (non-stylized) im-
age[,.
 Style loss L encourages the synthesized image O,
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Figure 5. Visual comparisons to image stylization-based approaches. We compare the stylized novel view images generated by the three
image stylization alternative schemes and our model on Tanks and Temples dataset [25].
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Figure 6. Visual comparisons to video stylization-based approaches. We compare the stylized novel view images generated by the three
video stylization alternative schemes and our model on Tanks and Temples dataset [25].
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Figure 7. Qualitative results on the FVS dataset. We demonstrate the generalization of the proposed approach by training on the Tanks

and Temples dataset, then testing on the FVS dataset.

to match the style of the reference image S. Similar to
recent style transfer approaches [22, 30], we extract the
features at different layers of the pre-trained VGG-19
model, and compute the gram matrix differences.
The overall loss function for training the point cloud trans-
formation module is

L= Ec(ovaIv) +/\£s(0vas)7 2
where A controls the importance of each loss term.

4. Experimental Results

We conduct extensive experiments on two real-world
datasets to validate the efficacy of the proposed 3D scene
stylization model.

Datasets. We use the Tanks and Temples [25] dataset for
quantitative evaluation. Similar to the setting in FVS [45],
we use 17 out of the 21 scenes for the training. The four
remaining scenes (Truck, Train, M60 and Playground) are
used for testing. We also present qualitative results on
the FVS [45] dataset, which consists of 6 scenes: Bike,
Flowers, Pirate, Digger, Sandbox and Soccertable. Note
that both datasets are collected by handheld cameras in un-

constraint motions.

Evaluated methods. As the 3D scene stylization task is
a relatively new problem, we evaluate our method against
alternative approaches built upon the state-of-the-art novel
view synthesis NeRF++ [64], SVS [46], and image/video
stylization schemes:
¢ Image stylization — novel view synthesis: We first
use image stylization schemes LST [30] or TPFR [53]
to transfer the style to the input images {I,})_,, then
perform novel view synthesis.
* Novel view synthesis — image stylization: We apply
image stylization to the novel view synthesis results.
* Novel view synthesis — video stylization: We use a
series of novel view synthesis results to create a video,
then apply video stylization methods Compound [56],
FMVST [11], or MCC [9].

4.1. Qualitative Results

Image stylization. Figure 5 presents the qualitative com-
parison between the stylized novel view images generated
by the three image stylization alternative schemes and the
proposed method. Since the images are stylized inde-
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Figure 8. User preference study. We conduct a user study and
ask subjects to select the results that (a) have more consistent con-
tents across different video frames (e.g. less flickering), (b) better
match the style of the example image. The number indicates the
percentage of preference.

pendently without considering the consistency issue across
different viewpoints, we observe two issues in the image
stylization-based methods. First, LST — SVS generally
produces blurry novel view images. Since the stylized in-
put images are not consistent, the novel view synthesis ap-
proach tends to blend such inconsistency, which leads to
blurry results. Second, the novel view synthesis results are
not consistent if we operate in the reverse order, i.e. SVS
— LST. We highlight the inconsistency using yellow boxes
in Figure 5. Note that we observe the same problem if we
replace SVS with NeRF++.

Video stylization. We qualitatively evaluate the results by
the proposed method and three video stylization alternative
approaches in Figure 6. Specifically, we create the videos
using a series of novel view synthesis results. All the al-
ternative approaches generate inconsistent results between
two relatively far-away viewpoints since the video styliza-
tion methods only guarantee short-term consistency in the
video. Although SVS—Compound generates less inconsis-
tent results, the style of the novel view images is bland and
not aligned with that of the reference image. On the other
hand, SVS—FMVST creates images that better match the
desired style, but fails to preserve the content of the original
scene.

In contrast to the image and video stylization alternative
approaches, our method 1) generates sharp novel view im-
ages with correct scene contents and the desired style, and
2) guarantees the short/long-range consistency. Further-
more, we demonstrate the generalization of the proposed

Table 1. Short-range consistency. We compare the long-range
consistency using the warping error ({) between the viewpoints of
(t — 1)-th and ¢-th testing video frames in the Tanks and Temples
dataset [25]. We report the average errors of 15 diverse styles. The
best performance is in bold and the second best is underscored.

Method ‘ Truck  Playground  Train M60 ‘ Average
NeRF++—LST 0.215 0.168 0250  0.274 0.231
SVS—LST 0.192 0.159 0.220  0.241 0.206
NeRF++—TPFR 0.216 0.214 0.299  0.279 0.258
SVS—TPFR 0.235 0.237 0.291  0.276 0.264
NeRF++—Compound | 0.188 0.169 0.229  0.208 0.202
SVS—Compound 0.166 0.156 0.199  0.160 0.172
NeRF++—FMVST 0.342 0.300 0.405  0.348 0.354
SVS—FMVST 0.343 0.304 0.412 0337 0.354
NeRF++—MCC 0.250 0.201 0.269  0.255 0.246
SVS—MCC 0.242 0.198 0.260  0.224 0.232
Ours | 0.184 0.158 0170  0.172 | 0.170

Table 2. Long-range consistency. We compare the long-range
consistency using the warping error ({) between the viewpoints of
(t — 7)-th and ¢-th testing video frames in the Tanks and Temples
dataset [25]. We report the average errors of 15 diverse styles. The
best performance is in bold and the second best is underscored.

Method ‘ Truck  Playground Train M60 ‘ Average
NeRF++—LST 0.570 0.349 0.520  0.639 0.521
SVS—LST 0.567 0.327 0.470  0.603 0.489
NeRF++—TPFR 0.579 0.436 0.503  0.655 0.541
SVS—TPFR 0.605 0.430 0.470  0.581 0.513
NeRF++—Compound | 0.586 0.398 0.477  0.557 0.498
SVS—Compound 0.573 0.388 0.422  0.460 0.449
NeRF++—FMVST 0.742 0.525 0.636  0.695 0.644
SVS—FMVST 0.732 0.519 0.620  0.662 0.626
NeRF++—MCC 0.691 0.450 0.535  0.646 0.571
SVS—MCC 0.693 0.447 0516  0.584 0.548
Ours | 0.559 0.337 0412 0458 | 0.431

framework in Figure 7 , where we use the model trained
on the Tanks and Temples dataset to perform the 3D scene
stylization task on the FVS dataset.

4.2. Quantitative Results

Stylization quality. We conduct a user study to understand
the user preference between the proposed and the alterna-
tive approaches. For each testing scene in the Tanks and
Temples dataset, we create a video using a series of stylized
novel view synthesis results. By presenting two videos gen-
erated by different methods for the same scene, we ask the
participants to select the one that (1) has more consistent
contents across different video frames (e.g., less flickering),
and (2) better matches the style of the reference image. As
the results shown in Figure 8, the synthesized images by
the proposed method are consistent and close to the refer-
ence style. We observe that the users slightly prefer the
style generated by SVS—FMVST. However, as illustrated
in Section 4.1 and Figure 6, SVS—FMVST fails to preserve
the content of the original scene.

Short-range consistency. We use the warped LPIPS met-
ric [65] to measure the consistency of the results across dif-
ferent viewpoints. Given a stylized image at a novel view
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Figure 9. Ablation study on the number of point cloud aggregation modules. We compare the visual results of using 0/1/3/5 modules.

We empirically decide to use 3 modules for better visual quality.
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Figure 10. Role of point aggregation. We visualize the point
distribution before and after the point aggregation. Our point ag-
gregation module obtains a more uniform-distributed point set to
fairly estimate the transformation matrix T that achieves better 3D
scene stylization results.

v, we warp the results generated at another novel view v’ to
the view v according to the 3D proxy geometry described
in Section 3.1. We then compute the score by

EW&TP(OU’ Oi}) = LPIPS(OM W(Oi;)a Mv/v)v (3)

where W is the warping function and M, is the mask
of valid pixels warped from the views v’ to v. Note that
we only use the values of valid pixels in the mask for the
“spatial average” operation in [65]. For each of the testing
scenes in the Tanks and Temples dataset, we use 15 style
images [11] to compute the average warping error.

We first present the short-range consistency comparison
in Table 1. In this experiment, we use the nearby view for
a specific novel view to compute the warping error.! In
general, the image stylization alternative methods produce
short-range inconsistent results as they process each novel
view independently. In contrast, the proposed method per-
forms comparably against the video stylization-based ap-
proach SVS—Compound that considers the short-term con-
sistency in videos. Nevertheless, SVS—Compound synthe-
sizes bland styles that do not match the desired styles, as the
results demonstrated in Figure 6 and Figure 8.

Long-range consistency. We also consider the long-range

'We use the viewpoints of (t — 1)-th and ¢-th testing video frames as
the views v’ and v, respectively.

consistency issue in our experiments. In this experiment, we
compute the warping error between the results of two (rel-
atively) far-away views.> As demonstrated in Table 2, the
proposed method performs favorably against the alternative
approaches. Despite the capability of ensuring short-range
consistency, video stylization-based schemes fail to main-
tain the long-range consistency.

Number of point cloud aggregation modules. We con-
duct an ablation study to decide the number of point cloud
aggregation modules described in Section 3.2. The results
are presented in Figure 9. We empirically choose to use
three modules for better visual quality. Moreover, we vi-
sualize the point distributions before and after the aggrega-
tion in Figure 10 to understand the role of the aggregation
module. The point density before the aggregation is higher
around the regions of the 3D scene where more input im-
ages cover. As a result, the prediction of the transformation
matrix T is dominated by such regions, which leads to low-
quality stylization results (2nd column in Figure 9). By us-
ing the point cloud aggregation modules, we obtain a more
uniform-distributed point set that fairly estimates the matrix
T for the 3D scene stylization task.

5. Conclusions

In this work, we introduce a 3D scene stylization prob-
lem that aims to modify the style of the 3D scene and syn-
thesize images at arbitrary novel views. We construct a
single 3D representation, i.e. point cloud, for the holistic
scene, and design a point cloud transformation module to
transfer the style of the reference image to the 3D represen-
tation. Qualitative and quantitative evaluations validate that
our method synthesizes images that 1) contain the desired
style and 2) are consistent across various novel views.
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