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Abstract

We present PrimitiveNet, a novel approach for high-
resolution primitive instance segmentation from point
clouds on a large scale. Our key idea is to transform the
global segmentation problem into easier local tasks. We
train a high-resolution primitive embedding network to pre-
dict explicit geometry features and implicit latent features
for each point. The embedding is jointly trained with an
adversarial network as a primitive discriminator to decide
whether points are from the same primitive instance in lo-
cal neighborhoods. Such local supervision encourages the
learned embedding and discriminator to describe local sur-
face properties and robustly distinguish different instances.
At inference time, network predictions are followed by a re-
gion growing method to finalize the segmentation. Experi-
ments show that our method outperforms existing state-of-
the-arts based on mean average precision by a significant
margin (46.3%) on ABC dataset [31]. We can process ex-
tremely large real scenes covering more than 0.1km2. Abla-
tion studies highlight the contribution of our core designs.
Finally, our method can improve geometry processing algo-
rithms to abstract scans as lightweight models. Code and
data will be available based on Pytorch1 and Mindspore2.

1. Introduction
3D scanning techniques have made rapid advances in re-

cent years with 3D sensors. State-of-the-art algorithms [47,
28, 65, 12] or commercial softwares [1] ease the reconstruc-
tion and digitization of the real-world environments. How-
ever the quality and the complexity of the output model
are below the required standards for target applications
including gaming and virtual/augmented reality (AR/VR).
For example, a typical indoor scan contains several mil-

1https://github.com/hjwdzh/PrimitiveNet
2https://gitee.com/mindspore/mindspore/tree/

master/model_zoo/research/3d/PrimitiveNet

(a) Object segmentation (b) Chunk segmentation

(c) Scene segmentation (d) Scene abstraction

Figure 1. We propose PrimitiveNet to robustly segment primitive
instances at the level of (a) objects or (b) chunks of scenes. (c)
We can handle extremely large scenes covering 0.1km2. (d) We
improve scene abstraction and deliver lightweight models.

lion faces filled with noises, which is not affordable for a
cell phone. Main directions to address these issues include
local mesh decimation [18, 37, 52] and primitive instance
assembly [5, 32, 23, 2]. Mesh decimation collapses edges
iteratively but fails to preserve important structures. Prim-
itive assembly requires segmenting points into instances of
primitives and thus is limited by the segmentation quality.
We aim to significantly improve the segmentation quality
and the final production of lightweight models from scans.

Primitive instance segmentation has a long history in
geometry processing with two standard solutions using
Ransac [53] or region growing [41, 51]. The main chal-
lenge is to find appropriate parameters to robustly recover
shapes from noises and robustly preserve boundaries of sim-
ilar primitives. Recently, this problem is partially addressed
using deep learning techniques [35, 57, 39] at the object
level. However, they require to extract global shape proper-
ties and have limited capacity for correctly predicting small
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instances or processing point clouds on a large scale.
To address these limitations, we transform the global

primitive fitting problem into local tasks that are easier to
learn and generalize, which robustly distinguish different
instances and derive high-quality segmentation at different
scales (Figure 1 (a-c)). We train a primitive embedding net-
work that focuses on learning per-point local surface prop-
erties including both explicit geometry features and implicit
latent features. One popular choice of explicit feature is the
object center, which proves to be effective for accurate se-
mantic instance segmentation[29, 15, 22] with post cluster-
ing. However, it is not suitable for primitive segmentation:
While object scale is relatively local, sizes of primitives like
floor planes can be large enough to cover the whole scene.
Further, centers can be shared among different primitives
and thus not a discriminative feature for clustering. Instead,
we design explicit features for a point as its local tangent
plane supervised by the location with a normal direction on
the ground truth shape nearest to the point. We use latent
features to distinguish primitive instances. We supervise
features with primitive types if available during training.
Since it is insufficient to distinguish instances with the same
type, we additionally train an adversarial metric as a prim-
itive discriminator to decide whether two latent features in-
dicate different instances. To encourage latent features to
capture local properties, we constrain the primitive discrim-
inator to evaluate features of closed points. We find such
local constraint highlights feature differences at boundaries
and is robust for supervision.

Our design of primitive embedding network combines
PointNet [49] and sparse convolution [20, 7] to extract high-
resolution point features locally and regular volume fea-
tures within a larger receptive field. They are concatenated
and passed through multi-layer perceptrons to derive per-
point explicit and implicit surface features, where implicit
features are translated as primitive type scores via a linear
layer. Explicit features and primitive scores are supervised
by ground truth data. To enforce primitive discriminator
and implicit features to be local, we sample implicit fea-
tures from only pairs of closed points below a certain dis-
tance threshold for discriminator input.

Experiments show that we significantly outperform ex-
isting methods at ABC dataset [31] and self-collected scene
dataset under several metrics. Notably, we outperform
state-of-the-art methods under mean average precision by
46.3% on the ABC dataset. We handle extremely large
scenes by processing chunks and merging them seamlessly.
Ablation studies show that local properties are critical to
the performance, and our high-resolution backbone further
improves the prediction. Our explicit property supervision
helps to increase robustness for different levels of noise. Fi-
nally, we integrate our approach into a robust pipeline to
abstract scanned point clouds as light-weight models.

In sum, our core research contributions are:
• We design an adversarial primitive embedding network

that learns discriminative local surface properties.
• We propose a high-resolution backbone combining

point and voxel features.
• Our design significantly outperforms the state-of-the-

arts and can handle extremely large-scale environment.

• We integrate our algorithm to a pipeline that produces
lightweight models from real scans.

2. Related Works
Primitive fitting Primitive fitting of point clouds is the
process of clustering input points and fitting them with
explicit parametric models. Two common directions are
through Ransac [9, 17, 30, 8, 59] and region growing [41,
51]. Ransac iteratively estimates parametric models to fit
inliers, where a robust Ransac framework [53] is avail-
able. Region growing methods fit local primitives and
propagate the hypothesis until fitting error is unaccepted.
[36, 48, 44, 25] further refine or regularize the primitive
geometry based on additional assumptions. These meth-
ods usually suffer from low prediction accuracy caused by
noises or complex surface structures.

To address these issues, supervised [68] and unsuper-
vised [60, 56, 16] learning-based primitive fitting algorithm
have been proposed. However, fitting accuracy is still unsat-
isfactory and [68, 60, 16] only support cuboid fitting. [35]
classifies points into a finite number of instances. [57] uses
triplet loss with post clustering steps to segment instances.
These methods extract global features for objects and are
hard to extend to the scene level. [39] learns the boundaries
where final segmentation is sensible to wrong predictions.
Our network design focuses on local properties that recover
segmentation and supports large-scale and accurate primi-
tive segmentation.

Primitive fitting is an important step for holistic 3D re-
construction from scans required by shape assembly [5,
32, 23], space slicing [45, 4, 2] or outer-hull abstrac-
tion [26, 43]. While these methods extract the primitive
instances according to geometry heuristics, our approach
can replace these parts by providing learned instances. We
demonstrate that our result benefits [43] to generate clean
and light-weight models.

Semantic instance segmentation Treating primitive
types as semantic classes, our task is similar to semantic in-
stance segmentation where scene-level solutions are avail-
able [67, 24, 33, 46, 66]. While object center is one ef-
fective feature to learn [29, 15, 22], primitive centers can
be shared by different instances and thus not a discrimina-
tive feature. Our network learns discriminative and latent
features reflecting local surface properties guided by an ad-
versarial metric.
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Figure 2. PrimitiveNet architecture. We jointly train (a) a primitive embedding network and (b) a discriminator network. We combine
PointNet [49] and SparseConvNet [20] to extract high-resolution features, where explicit and implicit features are supervised by ground
truth tangent space (G-Loss) and primitive types (P-Loss), and jointly trained with the discriminator using binary cross-entropy (BCE).

3D backbone 3D feature extraction backbone has been
well-studied for point-based networks [49, 50, 64] and
voxel-based networks [42, 20, 7]. While sparse convolu-
tion [20, 7] is one of the most effective solution for seman-
tic segmentation at limited resolution, point networks accu-
rately describe features at point locations. [38, 58] address
the resolution issue by concatenating point coordinate and
voxel features. We further improve it by integrating Point-
Net [49] features into sparse convolutions [20] to provide
high-resolution point features.

Metric Learning Contrastive loss [21] and triplet
loss [54] are two widely used loss functions for deep met-
ric learning. Accordingly, a Mahalanobis distance can be
learned to measure similarities of samples [13, 19, 55, 62].
Deep learning approaches have been proposed to learn non-
linear mappings [10, 40, 61, 63]. Recent approaches [14, 6,
27] further explores adversarial network as learned metrics.
We introduce such an adversarial metric into the primitive
segmentation task.

3. Approach

3.1. Overview

The input to our problem is< P, C, E > as a set of points
P = {pi} optionally with point features C = {ci} includ-
ing point colors or normals, and an edge set E = {< i, j >}
denoting pi and pj are neighbors. Our goal is to pro-
duce < V,N ,L > as a noise-free point cloud V = {vi}
with per-point surface normal N = {ni} and instance la-
bel L = {li}, where points with the same label belong to

the same primitive instance. For specific applications re-
quiring concrete primitive parameters, we produce primi-
tive type classification scores S = {si} for each instance
where parameters can be directly computed through prim-
itive fitting given point locations and normals. Instead of
directly computing instance labels as a function problem,
we convert it as a decision problem to decide whether ad-
jacent points belong to the same instance. As a result, the
subset of E within the same instances forms a graph where
each connected component represents a primitive instance.
Accordingly, we propose our solution as a high-resolution
primitive embedding network (Figure 2(a)) and a primitive
discriminator network (Figure 2(b)). The embedding net-
work takes input as a point cloud with per-point locations
and features and output per-point features reflecting local
surface properties. The discriminator takes inputs as pairs
of features and produces a 2-dimensional vector for each
pair indicating whether they are from the same instance.

We discuss the embedding network in Section 3.2 and
primitive discriminator in Section 3.3. Section 3.4 describes
the details for training and generation of final segmentation
during inference time.

3.2. High-resolution Primitive Embedding

The role of the embedding network is to extract point
features reflecting local surface properties.

Y = fe(P, C; θe) (1)

The network is a function fe with parameters θe (Equa-
tion 1) that maps points P and their features C to higher-
dimensional features Y where yi reflects the local surface
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property for point pi. Specifically, yi is composed of ex-
plicit geometry feature (vi and ni) and implicit latent fea-
ture (Xi). We set the explicit geometry feature as the local
tangent space around pi. Specifically, we define the local
tangent space of pi as its nearest location vi at the ground
truth shape with its surface normal ni. The design purpose
of such explicit features is to regularize the network to pre-
dict local properties under noises. Accordingly, the explicit
feature is supervised by ground truth data v∗ and n∗ using
geometry loss (G-Loss in Figure 2(a)) in Equation 2, where
ε represents the scale of noise related to the data.

Li
g =

1

ε2
||vi − v∗i ||22 + ||ni − n∗i ||22 (2)

Implicit feature aims to encode rich and more complex local
surface properties as a high-dimensional vector. If primitive
types are provided in the training data, we optionally pass
implicit feature Xi to a linear layer fs (Equation 3)

si = fs(Xi; θs) (3)

to produce scores si for each of k primitive types. We treat
ground truth label s∗i as a one hot vector to supervise Xi

with a primitive type loss Li
s (P-Loss in Figure 2(b)) using

cross entropy. It can be further used by the primitive dis-
criminators (Section 3.3) to distinguish different instances.

One contribution in our network architecture design is
the high-resolution embedding network fe, which combines
PointNet [49] and sparse convolution [20] to provide high-
resolution point features. Similar ideas have been proposed
by [38, 58] where point features are acquired from trilin-
ear interpolation of voxel features followed by MLP layers.
However, we find such interpolation is insufficient to de-
scribe high-resolution features in our task. We pass points
with their local neighbors into a 2-Layer PointNet [49] (Fig-
ure 2(a)) to describe features at point resolution. Inside
each PointNet block, point features are passed through an
MLP layer and max-pooled with features of k = 16 nearest
neighbor points. The features are averaged into belonging
voxels and passed through UNet structure [34] using sparse
convolutions [20]. Voxel features are copied back to points
and concatenated with PointNet features. Finally, we pass
it through an MLP layer to describe yi =< vi,ni,Xi >.

3.3. Primitive Discriminator

The role of primitive discriminatorD(yi,yj ; θb) is to de-
cide whether two features yi and yj belong to the same
primitive instance. The network architecture is shown in
Figure 2(b). Pairs of features yi and yj are selected via edge
set E and aggregated by max-pooling. The fused features
are passed through MLP layers to generate two-dimensional
scores bi,j , denoting whether points i and j belong to dif-
ferent instances. This is supervised by the ground truth in-
stance labels {l∗i } using binary cross-entropy as shown in

(a) Global segmentation

(c) Global feature

(b) Local segmentation

(d) Local feature
Figure 3. (a) Segmentation with globally sampled pairs for super-
vision. (b) Segmentation with adjacent vertices in the mesh for
supervision. (c) Feature visualization of three most salient dimen-
sions for (a). (d) Feature visualization of three most salient dimen-
sions for (b).

Equation 4.

L(i,j)
bce = CrossEntropy(bi,j , l

∗
i 6= l∗j ) (4)

b∗i,j is a binary value depending on whether li equals lj .
During training, the discriminator evaluated each pair of

points inside an edge set E . The choice for edges is non-
trivial since it leads to different feature interpretations. For
example, we could randomly pick pairs of points to form
E , where discriminator and implicit feature are trained at
a global scale. An alternative choice is to define E as the
edges in the triangle mesh, where only closed points in lo-
cal neighborhoods are evaluated by the discriminator. Fig-
ure 3(a,b) shows the segmentation where the discriminator
is supervised with global or local pairs. As a result, local su-
pervision is clearly better. Figure 3(c,d) visualize three most
salient dimensions of implicit features. While global su-
pervision yields even colors inside the same primitive with
smooth change across different primitives, local supervision
encourages features to highlight local boundaries and are
more robust for segmentation. Therefore, we construct E to
sample from local neighborhoods, which is helpful to train
a primitive discriminator together with embedded features
to capture local surface properties. If the input is given as a
triangle mesh, we directly extract the edge set from triangle
edges. Otherwise we generate k = 16 nearest neighbors for
each point to form E .

3.4. Implementation

During training, we accept the dataset with or without
primitive type labeling. If primitive type information is
given, we optimize the network parameters (θe,θs,θb) as
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shown in Equation 5.

L =

N∑
i=1

(Li
g + Li

s) +
∑

<i,j>∈E
L(i,j)
bce (5)

If primitive type is not labeled, the linear layer fs and loss
Li
s are omitted. For object datasets where points are nor-

malized and bounded in [−1, 1], we set ε = 0.1. For a real
scene dataset with units in meters, we set ε = 0.05.

During inference, we obtain predictions of the cleaned
point cloud V and N and optionally a per-point primitive
type for each point. We rely on the primitive discrimina-
tor network to decide whether each pair of points inside E
belongs to the same instance. Ideally, we can collect edges
belonging to the same instances in E to form a graph, where
each connected component is a primitive instance. How-
ever, any wrong prediction of bi,j across different instance
would lead to incorrect merge of li and lj . Therefore, we
use a region-growing method to conservatively grow the re-
gion for each instance. When growing the region, we en-
sure that newly-added points are not conflicting with any
points in the current region. Details of the implementation
are shown in Algorithm 1. If primitive types are trained, we
simply set the primitive type of an instance as the one with
maximum overlap with per-point prediction in this instance.

4. Experiments
We make comparisons with existing methods in Sec-

tion 4.1, where we show that our method handles extremely
large scenes. Ablation studies (Section 4.2) highlight con-
tributions of our novel designs. Finally, we demonstrate im-
provements of an important application that abstracts scans
as lightweight models using our method in Section 4.3.

4.1. Comparison

We select several state-of-the-arts methods that could
potentially be used for primitive instance segmentation.
While [35] firstly proposed a primitive fitting network,
ParseNet [57] is a recent method that outperforms it and
is the current state-of-the-art for primitive instance seg-
mentation and fitting. BoundaryNet [39] explicitly learns
the boundaries and uses them to segment part instances.
PointGroup [29] is one of the current state-of-the-art for
semantic instance segmentation, which can be directly ap-
plied to our task treating primitive types as semantic classes.
We adopt several evaluation metrics used in existing meth-
ods. Following ParseNet [57], segmentation mean IOU
(“seg mIOU”) computes averaged mean IOU of optimally
matched segments, which measures the overall similarity
of predicted segments with ground truth segments. Label-
ing IOU (“label mIOU”) measures the overall primitive type

Algorithm 1: Region growing-based primitive in-
stance segmentation.

Input: E = {< x, y >i},H = {hi,j} indicating
whether < i, j > is instance boundary.

Output: Per-point instance label {li}.
li ← 0 ∀i <= N .
id← 1.
for i← 1 to N do

if li ≤ 0 then
Q.push(i)
li ← id
while Q is not empty do

v ←Q.front()
for j ← Neighbors of v do

if hv,j = 0 then
lj ← -id
continue

end
if lj ≤ 0 and lj 6=-id then

lj ← id
Q.push(j)

end
end
Q.pop()

end
end

end

prediction accuracy of optimally matched segments. For in-
stance segmentation, another popularly used metric is mean
average precision treating segments as inliers above certain
mean IOU, including AP25, AP50 and AP [11, 29].

ABC dataset ABC dataset [31] is a big CAD model
dataset with annotations of per-point labeling of instance
IDs and primitive types. We randomly segment the dataset
into the training and test sets with a ratio of 3:1. We com-
pare our method with PointGroup [29], BoundaryNet [39]
and ParseNet [57]. During test time, we evaluate all
methods with the full resolution. Since BoundaryNet and
ParseNet accept a limited number of points as input, we
randomly select 10 thousand points that the networks can
afford, and map the predictions to the full resolution ac-
cording to nearest neighbors. Table 1 shows the scores of
different methods under different metrics in the test set.

We outperform existing methods under the overall met-
rics including seg mIOU and label mIOU. Notably, we
significantly outperform existing methods under the AP-
related metrics, indicating we are better at handling small
instances. The contribution mainly comes from our high-
resolution network with local surface property learning.
Specifically, our joint learning of primitive embedding net-
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(a) ParseNet (b) BoundaryNet (c) PointGroup (d) Ours (e) Ground Truth
Figure 4. Visualization of primitive instance segmentation on ABC dataset [31]. Our method correctly recover small instances with various
primitive types and outperform existing state-of-the-arts.

seg mIOU label mIOU AP25 AP50 AP
ParseNet 71.1% 89.9% 25.7% 15.3% 11.4%

BoundaryNet 63.5% 90.6% 21.5% 13.6% 10.4%
PointGroup 61.4% 90.8% 19.9% 12.4% 10.2%

Ours 85.7% 91.3% 74.3% 63.0% 57.7%
Table 1. Evaluation for primitive instance segmentation on ABC
dataset. Our method outperform existing state-of-the-arts espe-
cially according to AP-related metrics.

work and discriminator shows higher robustness comparing
to methods with boundary predictions [39], instance centers
as explicit supervision [29], or global descriptive features
using triplet loss [57]. Figure 4 visualizes several examples
where we accurately recover small primitive instances with
various primitive types.

Real scene dataset Our method can be directly applied to
real data in large scenes. Since there are no available real-
world scene-level scans with primitive-level annotations,
we prepare a self-collected dataset and use it for compar-
ison. We collect 154 scene point clouds (Figure 5(a)) mixed
with indoor and outdoor scans captured with Navvis3 or re-
constructed from multi-view stereo. For each scan, we ask
an experienced artist to draw a CAD model (Figure 5(b)) to
highlight the structure that is aligned with the scanned point
clouds, where the median distance between points and the
CAD model is below 2cm. For each CAD model, we con-
sider adjacent triangles as from the same instance if their

3https://www.navvis.com/m6

(a) Point cloud (b) CAD model (c) Ground truth instance

(d) Scene prediction (e) Zoom-in prediction

Figure 5. Real scene dataset. We capture (a) real scans and draw
(b) CAD models with accurate alignment. (c) Instance labels are
propagated from CAD models to scans for training. (d,e) We pro-
duce instance segmentation for scenes with extremely large scale.

normal angles are below 15◦. We map instance labels to
the original point clouds via nearest neighbors (Figure 5(c)).
In this experiment, we assume that no primitive-type infor-
mation is given. Points are labeled as “primitive” or ”non-
primitive” depending on whether their nearest neighbor dis-
tances to CAD models are smaller than 0.1m, where ”non-
primitive” indicates that the point should not be considered
as primitive and can be removed.

Since collected scenes are huge, we further split them
into chunks of 25m3. We split the dataset into training and
test sets with a ratio of 3:1. We train different approaches
and make comparisons with existing state-of-the-arts in the
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(a) ParseNet (b) BoundaryNet (c) PointGroup (d) Ours (e) Ground Truth
Figure 6. Primitive instance segmentation for real scenes. We produce the most reasonable segmentation compared with other methods.

seg mIOU AP25 AP50 AP
ParseNet 45.4% 6.4% 2.9% 1.5%

BoundaryNet 53.3% 47.8% 32.4% 24.5%
PointGroup 60.3% 12.9% 6.8% 5.0%

Ours 66.9% 60.0% 46.9% 39.1%
Table 2. Evaluation for primitive instance segmentation on a self-
collected real scene dataset.

test set. Table 2 shows the scores under different metrics,
where label mIOU is not reported since primitive types are
not available. Similar to the results on the ABC dataset, we
outperform existing methods under the overall metrics and
show significant improvements under the AP-related met-
rics. According to Figure 6, we produce the most reason-
able segmentation at the scene level.

Large scale Our method can seamlessly merge chunks by
aggregating discriminator predictions and run Algorithm 1
at the entire scene. Figure 5(d,e) visualizes our primitive
segmentation of a large scene covering 0.1km2 with more
than 500M points.

4.2. Ablation Study

High resolution We experiment with different choices of
networks as our backbone for the primitive embedding net-
work on the ABC dataset. Alternative choices for the back-
bone include PointNet++ [50], DGCNN [64], SpConv [20]

seg mIOU label mIOU AP25 AP50 AP
PointNet++ 71.8% 87.9% 28.4% 16.5% 12.7%

DGCNN 72.0% 89.1% 30.1% 17.4% 13.0%
SpConv 85.3% 91.8% 73.6% 59.1% 53.1%

SPVCNN 85.1% 91.1% 72.9% 56.7% 50.5%
Ours 85.7% 91.3% 74.3% 63.0% 57.7%

Table 3. Primitive instance segmentation evaluation using our
method with different backbones on ABC dataset.

or SPVCNN [58]. We replace our high-resolution back-
bone with these methods and train the networks on the ABC
dataset. We evaluate different backbones in Table 3. Re-
sults show that backbones with sparse convolutions (Sp-
Conv [20] or SPVCNN [58]) outperform other two net-
works. Our high-resolution backbone achieves the best per-
formance combining PointNet [49] and SpConv [20].

Local surface property One of our insights is to learn
local surface property by encouraging the embedding net-
work and discriminator to focus on discriminative features
in local neighborhoods. According to Section 3.3, the key
difference is the choice of edge set E for the discriminator to
train. Our method selects only closed point pairs according
to E . We experiment with two alternative methods, where
the global one randomly picks pairs of points in the whole
point cloud and the semi-local one randomly picks point
pairs whose distance is smaller than 3ε. Table 4 lists the
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ABC Data seg mIOU label mIOU AP25 AP50 AP
Global 73.6% 87.9% 52.6% 35.3% 25.9%

Semi-local 76.1% 91.1% 59.8% 44.9% 38.7%
Local (Ours) 85.7% 91.3% 74.3% 63.0% 57.7%

Real Data seg mIOU AP25 AP50 AP
Global 37.0% 34.0% 17.1% 19.7%

Semi-local 49.3% 48.1% 32.5% 33.9%
Local (Ours) 68.3% 61.4% 50.7% 40.8%

Table 4. Evaluation on ABC and real dataset supervised point pairs
at different scales of distances.

Euclidean Mahanalobis Ours
Difference IOU 71.1% 69.8% 88.8%

Table 5. Evaluation on ABC dataset where primitive embedding
network is trained with different metrics.

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010
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Segmentation Quality under Different Scales of Noises
With Tangent
Without Tangent

Figure 7. With tangent space prediction, our method is more robust
to different levels of noises.

scores on both ABC and real datasets by selecting edges at
different scales. As a result, local supervision is the best
choice for primitive instance segmentation.

Choice of metrics Alternatives to our adversarial metric
include euclidean or Mahanalobis distance (E-dis or M-dis)
trained with triplet loss, where we set the distance margin
as one to decide whether two features belong to the same
instance. We report the IOU of edges connecting differ-
ent instances according to network prediction and ground
truth. As shown in Table 5, our adversarial metric achieves
the best score comparing with these alternatives, probably
because that the adversarial metric has more capacity to dis-
tinguish implicit local surface properties.

Noise levels To understand the behavior of our method
under different noise levels, we simulate noises on the ABC
dataset by perturbing each point by a random Gaussian
noise at different scales. Figure 7 shows the prediction qual-
ity under different noise scales. Our tangent space predic-
tion improves our method and makes it more robust to seg-
ment primitive instances at different noise scales.

(a) Scan for A

(c) Scan for B

(b) Abstraction for A

(d) Abstraction for B
Figure 8. Our approach can be integrated into [43] to abstract scans
(a,c) as lightweight models (b,d).

Scenes Input [43] + [51] [43] + Ours CAD
A 18M 163k 52k 7k
B 12M 94k 39K 12k

Table 6. Number of triangles in the scans, results from different
abstraction solutions, and human-created CAD models.

4.3. Application

Results produced by our approach can be further pro-
cessed by geometry processing algorithms [5, 32, 23, 4, 2,
43] to abstract point clouds as light-weight models. We
first triangulate the scanned pointcloud using [3]. We pre-
dict instance segmentation and implement [43] to derive the
abstracted shape. Figure 8 shows two scenes (A and B)
where scans are converted to lightweight models, where ge-
ometry structures are well-preserved. In Table 6, we ad-
ditionally report numbers of triangles from original scans,
[51] combined with traditional primitive segmentation [51],
our results and human-created CAD models. While the
abstracted results preserve geometry, it is not as clean or
lightweight as human-created CAD models. This is the lim-
itation of [43], where properly assembling primitives is an-
other open research problem. However, we find our method
yields fewer triangles than [51] combined with [43], indi-
cating that our method is better than traditional primitive
detection for such a pipeline. We provide more results and
comparisons in the supplemental material.

5. Conclusion
We present a novel primitive instance segmentation ap-

proach by jointly training an embedding network and a
discriminator to learn local surface properties. It signifi-
cantly outperforms existing works and handles large scenes.
Our approach benefits traditional algorithms for abstracting
point clouds as lightweight 3D models.
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