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Abstract

Point cloud completion is an interesting and challeng-
ing task in 3D vision, aiming to recover complete shapes
from sparse and incomplete point clouds. Existing learning-
based methods often require vast computation cost to
achieve excellent performance, which limits their practi-
cal applications. In this paper, we propose a novel Re-
current Forward Network (RFNet), which is composed of
three modules: Recurrent Feature Extraction (RFE), For-
ward Dense Completion (FDC) and Raw Shape Protection
(RSP). The RFE extracts multiple global features from the
incomplete point clouds for different recurrent levels, and
the FDC generates point clouds in a coarse-to-fine pipeline.
The RSP introduces details from the original incomplete
models to refine the completion results. Besides, we propose
a Sampling Chamfer Distance to better capture the shapes
of models and a new Balanced Expansion Constraint to re-
strict the expansion distances from coarse to fine. Accord-
ing to the experiments on ShapeNet and KITTI, our network
can achieve the state-of-the-art with lower memory cost and
faster convergence.

1. Introduction

With the rapid development of real-time 3D sensors like
LiDAR and depth camera, 3D data has attracted more and
more attention in computer vision and robotics. As a repre-
sentation which describes the scene better than 2D images,
3D point clouds have been widely used in applications such
as SLAM [1] and object detection [6, 18, 22]. However,
point clouds acquired from sensors are often incomplete
and sparse due to the limitation of resolution and occlusion.
As a consequence, recovering complete and high-resolution
models from incomplete inputs has been an important and
challenging task, known as the point cloud completion.

Since the work of PCN [32], many deep learning based
researches have been explored on the 3D point cloud com-
pletion work. Some of them are based on 3D grids and 3D
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Figure 1. Comparison of U-Net (left) and our framework (right).
Rectangles denote operations in networks, while same colors mean
same parameters. Our framework recurrently send the coarse com-
pleted results and incomplete input to next level, while parameters
are shared in some layers.

convolution neural networks(CNNs), such as GRNet [28].
The others are built on the structure of PointNet [19] and
PointNet++ [20], such as TopNet [24] and SANet [27].
These networks need high-dimensional global features or
multiple local features to acquire enough shape informa-
tion from the inputs. Most of them have plenty of pa-
rameters and suffer from great memory cost to reach good
performance. To address these problems, we propose a
novel well-performed recurrent forward point cloud com-
pletion framework with designed lightweight modules and
parameter-shared operations to reduce the parameters and
memory cost. Besides, most works above pay less attention
to details of incomplete point clouds, which will cause a dis-
tortion of the outputs. Large distortions will lead to mean-
ingless completion results. On this occasion, we merge
original shapes from incomplete models with outputs of dif-
ferent resolutions to prevent our completion results from
large distortions.

In this paper, we propose a novel approach named
RFNet. As shown in Fig. 1, it is organized in a “forward”
framework different from the “backward” framework like
U-Net [21], which has been proved working well on seg-
mentation [17, 3] and point cloud completion [27]. How-
ever, U-Net is computationally expensive to search and ag-
gregate local features of different resolutions, especially for
dense point clouds. In our framework, operations are or-
ganized in multiple recurrent levels, which can be divided
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into three modules: Recurrent Feature Extraction (RFE),
Forward Dense Completion (FDC) and Raw Shape Protec-
tion (RSP). In the RFE, we do not extract high-dimensional
global features or local features for completion, but lever-
age multiple short global features in different recurrent lev-
els to decrease the computational cost. We introduce the
FDC to generate completed point clouds of different reso-
lutions. The FDC generates the results by creating an initial
model and lifting it to high resolutions with a larger lifting
ratio than most previous methods. Therefore, our network
needs fewer lifting levels to generate dense point clouds.
Some layers in the RFE and FDC are parameter-shared to
further reduce the model size. We propose the RSP to pre-
serve details of the original incomplete model. Points from
the FDC are driven towards their nearest neighbors in orig-
inal point clouds in the RSP. The driving distances can be
controlled by a learnable parameter. In this way, we can
preserve more information of the original models. To better
capture the shapes and improve the uniformity of results,
we apply Chamfer Distance in randomly divided subsets
of dense point clouds, named Sampling Chamfer Distance.
Besides, we improve the generation continuity in the FDC
by constraining expansion distances balanced with their es-
timated expectation.

The contributions can be summarized as follows:
1. We propose a novel point cloud completion network

based on a new recurrent forward framework. In addition to
the improvement of the completion result, the memory cost
is greatly reduced benefit from this structure;

2. We propose a Raw Shape Protection module to pre-
serve original shapes in a learnable way;

3. We propose a Sampling Chamfer Distance to better
capture the shape differences between models and a new
Balanced Expansion Constraint to restrict the expansion
distances from coarse to fine;

4. The experiments on ShapeNet and KITTI demonstrate
that our network outperforms existing methods on the 3D
completion task.

2. Related Work
Point Cloud Learning. Early works [5, 9, 14] usually

apply 3D CNNs based on voxel representation of 3D point
clouds. However, 3D volumes can not be directly acquired.
Converting point clouds to 3D voxels is expensive, which
also leads to quantization errors caused by ignoring some
details of the original data. So Qi et al. first introduced
a point-based point cloud learning network named Point-
Net [19]. It processes point clouds with multilayer per-
ceptrons (MLPs) and aggregates features with symmetric
functions (e.g. max pooling). PointNet++ [20] captures lo-
cal features by recurrently applying PointNet in local re-
gions acquired by ball query around sampled points. Lots
of works have been proposed based on PointNet and Point-

Net++ such as the point cloud analysis [11, 13, 4, 23], re-
construction [10, 25, 29] or upsampling [31, 15].

Point Cloud Completion. PCN [32] is the first point-
based model for point cloud completion. It generates com-
plete model in a two-stage process which first generates a
coarse result by a fully-connected network and refines it to a
higher resolution with a folding-based network. PFNet [12]
completes models by generating missing parts with pro-
posed Point Pyramid Decoder (PPD), which is interesting
but may have difficulty generating missing regions with un-
known points numbers. TopNet [24] explores the hierar-
chical rooted tree structure as decoder to generate arbitrary
grouping of points in completion task. SANet [27] adopts
a commonly used U-Net structure with the skip-connection
and self-attention modules to complete missing features. It
performs well on the datasets with sparse points. Cascaded
refinement network (CANet) [26] adds a cascaded refine-
ment module to achieve transformation from coarse to fine
by multiple lifting with a small upsampling ratio. CANet
performs better than PCN and TopNet on ShapeNet [2],
while it requires for shape priors to complete models. Mor-
phing and sampling network (MSN) [16] improves com-
pletion performance by assembling the incomplete models
with outputs by minimum density sampling. It also pro-
poses an approximation for the Earth Mover Distance to
train the network. GRNet [28] and NSFA [33] achieve com-
pletion with quite different ideas. GRNet transforms the in-
complete models to 3D grids representation and adopts 3D
CNN to learn features and complete models. NSFA treats
point cloud completion as upsampling. The hierarchical
feature learning architecture in PU-Net [31] is adopted to
extract local features. Local features of different resolutions
are used to construct points of preserving or missing parts.

3. Methodology
Our RFNet aims to complete the incomplete point clouds

to dense shapes with fewer parameters and less cost. As
indicated in Fig. 2, the structure is organized in multiple
recurrent levels. The output model from the former level is
concatenated with the incomplete model and fed to the latter
level as a “new incomplete model”. The RFE extracts fea-
tures for completion in different recurrent levels. The FDC
creates models of different resolutions based on the output
features. Subsequently, shape details from the incomplete
model are added to the model by the RSP. The output of the
last recurrent level is taken as the final output.

3.1. Recurrent Feature Extraction

Recurrent Feature Extraction module (RFE) involves the
Encode Cells and Recover Cells. An Encode Cell extracts
output features for completion and state features for the En-
code Cell in the next recurrent level. Recover Cells recover
the output features by further aggregating the information
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Figure 2. Structure of the RFNet. It is organized in three recurrent levels, which can also be divided into three modules: RFE, FDC, RSP.
The output from the former level is concatenated with the incomplete model and fed to the latter level as a “new incomplete model”.

Figure 3. Structures of the Encode Cell and Recover Cell.

from incomplete models and return the final features for the
FDC. The structures of the Encode Cell and Recover Cell
are presented in Fig. 3.

Encode Cell. We design Encode Cell to extract a ini-
tial feature from the input points, which is parameter-shared
between different levels to reduce the parameters. State fea-
tures are extracted and adopted to help Encode Cell to focus
on different regions of input point clouds adaptively.

Recover Cell. The features directly extracted by the
Encode Cells are not enough for completion due to the lack
of information in the original model. In this condition, Re-
cover Cells are adopted to further aggregate the informa-
tion from the incomplete model to complete the features
extracted by the Encode Cells. In a Recover Cell, input fea-
tures from the Encode Cell are concatenated with the input
points again and fed to MLPs to get the recovered features.

3.2. Forward Dense Completion

Forward Dense Completion module (FDC) including an
Initialize Cell and the Decode Cells, generates completed
point clouds based on the features from the RFE. The Ini-
tialize Cell generates an initial model in the first level, while
Decode Cells lift the model to higher resolutions.

Figure 4. Structure of the Initialize Cell. Generated and sampled
points make up the output.

Initialize Cell. We design the Initialize Cell to create a
basic structure of the completion result. We name the output
of the Initialize Cell as “seeds” of the completion result. Be-
cause more detailed models with high resolutions are grown
from them like trees. Generating seeds directly by a fully-
connected network or FoldingNet [30] is a commonly used
operation. It is flexible but greatly limited by the effective-
ness of a network, having difficulty in constructing com-
plex and non-manifold shapes which cannot be constructed
by bending 2D planes. To acquire more accurate seeds, we
introduce the contour of the original incomplete model by
adding sampled points from the incomplete model. As pre-
sented in Fig. 4, half of seeds are acquired through sampled
points with predicted offsets, and the others are through net-
work output directly. Though output of the network is lim-
ited, it is important because the sampled points are restricted
by the incomplete model. The fully-connected network out-
put has satisfactory performance generating missing parts
not covered by the incomplete model.

Decode Cell. A Decode Cell is designed to learn a
parameter-shared transformation from lower resolutions to
K times larger as shown in Fig. 5, which is achieved by pre-
dicting K offsets for each point from last level. So, we need
state features to record the state and level of current Decode
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Figure 5. Structure of the Decode Cell.
⊗

denotes element-wise
multiplication. Inputs points and state features are lifted to K times
larger with MLPs.

Cell. Input features extracted from Encode and Recover
Cell are adopted to introduce the information from original
point clouds. K parameter-separate MLPs are used for the
prediction of output state features, while a fully connected
network is adopted to predict offsets for output points.

3.3. Raw Shape Protection

Raw Shape Protection module (RSP) is consist of Merge
Layers and Refine Cells. A Merge Layer introduces details
from the original incomplete model to the completed out-
put from the FDC, while a Refine Cell further adjusts the
merged result to improve the completion performance.

Merge Layer. A Merge Layer is used to prevent the
completed results from going too far from the shapes of
the original incomplete models. It will introduce informa-
tion from the original models to outputs of different levels.
In a Merge Layer, points near the incomplete model will
be driven towards their nearest neighbors in the incomplete
point clouds. In this way, a network output will be merged
with details from the incomplete model. The operation of a
Merge Layer can be described as follows:

dis = min
x∈P0,∀y∈P

‖x− y‖2, (1)

idx = argmin
x∈P0,∀y∈P

‖x− y‖2, (2)

P̂ = e−
dis
σ P0(idx) + (1− e− disσ )P, (3)

where σ is a trainable parameter. It learns to acquire the
best radius to merge points with their nearest neighbors in
the original model. P0 is the incomplete point set and P is
the result of the FDC. P̂ is the output of a Merge Layer. The
visualization of the Merge Layer is indicated in Fig. 6.

Refine Cell. We add a Refine Cell behind the Merge
Layer to fine-tune the positions of points, as shown in Fig. 7.

Figure 6. Visualization of the Merge Layer.

Figure 7. Structure of the Refine Cell. Input points and state fea-
tures are adjusted based on input features.

Input points, state features and the input feature are concate-
nated together and combined into a global feature including
all information in current level, which will guide the tuning
of points and state features.

3.4. Loss function

Basic multilevel loss. To accelerate convergence, we
merge the losses of different outputs together to acquire
the basic multilevel loss. There are two commonly used
loss functions to measure the differences between two point
clouds: Chamfer Distance (CD) and Earth Mover Distance
(EMD) [7]. Their basic forms are shown as follows:

LCD(S1, S2) =
1

2
(

1

|S1|
∑
x∈S1

min
y∈S2

‖x− y‖2

+
1

|S2|
∑
x∈S2

min
y∈S1

‖x− y‖2),

(4)

LEMD(S1, S2) = min
φ:S1→S2

1

|S1|
∑
x∈S1

‖x− φ(x)‖2, (5)

where S1 and S2 are two point sets. CD works mainly on
the contours of models, which may lead to a non-uniform
result. We propose the Sampling Chamfer Distance (SCD)
to improve uniformity. It can be described as follows:

LSCD(S1, S2) =
1

N

∑
Si1∈D1,Si2∈D2

LCD(Si1, Si2), (6)

while D1 = RD(S1, N), D2 = RD(S2, N). RD(S,N)
means to randomly divide the point set S into N isometric
sets. l is defined as the number of recurrent levels with low
resolutions, while h is that with high resolutions of more
than 10000 points. In our work, we apply EMD to the out-
puts of low recurrent levels as the basic multilevel loss. Due
to the high calculation cost of EMD on dense point clouds,
we use SCD and CD for our high-resolution outputs. Fi-
nally, the basic multilevel loss can be described as follows:

LBM =

l∑
i=1

LEMDi +

h∑
j=l

(LSCDj + LCDj ). (7)
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Figure 8. Qualitative comparisons with state-of-the-art methods on ShapeNet. There is no result for CANet on novel category models
because there is no known shape prior feature for them.

Balanced Expansion Constraint. Balanced Expansion
Constraint is used to prevent points predicted by the De-
code Cells from going too far from centers. It will ensure
a Decode Cell to generate continuous local shapes instead
of discrete points in the 3D space. However, constraining
distance from centers directly is too ambiguous because the
gradient is zero only when generated points coincide with
the corresponding centers. It will inevitably impact the net-
work. On this occasion, we propose the Balanced Expan-
sion Constraint, which can be described as follows:

LEC =
1

|Ŝ|

∑
x∈Ŝ,f :S→Ŝ

‖x− f−1(x)‖2, (8)

E(LEC) ≈
1

|Ŝ0|

∑
x∈Ŝ0

min
y∈S0

‖x− y‖2, (9)

LBEC = ReLU(LEC − ε ∗ E(LEC)), (10)

where S and Ŝ are inputs and outputs of the Decode Cell,
respectively, S0 and Ŝ0 are the ground truths for them. We
consider that the expansion distances are related to the dif-
ferences between two different resolution models. We esti-
mate expectation of the expansion distances by Equation 9,
while using it as an additional item to balance the expan-
sion constraint. In this way, the gradient can be zero when
the expansion distances are small enough, eliminating the
disturbance to the network. The influence of the additional
item can be adjusted by ε.

Merge range constraint. Merge range constraint is used
to restrain the search radius of a Merge Layer. ξ is a param-
eter guided by the annealing strategy. It will decrease grad-
ually as iterations increase. In this way, the merge range is
small to pay more attention to generation result at the be-
ginning of the iterations, big to introduce more information
from the original incomplete model at the later period of

iterations. The merge range constraint can be formulated as

LMR = ξ ∗ ‖δ‖22. (11)

Overall loss. With a Balanced Expansion Constraint
and a merge range constraint for each recurrent level, over-
all loss is the weighted sum of mentioned losses as follows:

L = w1LBM + w2

n−1∑
i=1

LBECi + w3

n∑
j=1

LMRj , (12)

where n is defined as the number of recurrent levels, w1, w2

and w3 are weights for different constraints.

4. Experiments
4.1. Dataset and Implementation Details

ShapeNet. ShapeNet [2] for completion contains 30974
models from 8 categories, which is given by PCN [32]. The
ground truth models contain 16384 points uniform sampled
on the surfaces of mesh models. The partial point clouds are
generated by back-projecting 2.5D depth images into 3D.
For a fair comparison, we use the same splits as PCN [32].

KITTI. To further test our network, we evaluate it on the
real-world scans from KITTI [8]. Cars are acquired with the
ground truth object bounding boxes from each frame. The
test set includes 2401 partial point clouds labelled as cars.

Metrics. In our work, we adopt the Chamfer Distance
(CD) mentioned in Section 3.4 as a global metric for com-
pletion performance. However, models may be changed a
lot and lose details of the incomplete models during com-
pletion, while keeping a small global error. An example is
shown in Fig. 9. CD metric of the severely distorted Fold-
ingNet result is even smaller than our network, while its Fi-
delity error (FD) [32] is more than 6 times larger than ours.
In terms of this problem, we use FD as an supplementary
evaluation for the distortions. It is defined as the average
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Method FC [32] Folding [32] PCN [32] TopNet [24] MSN [16] CANet [26] GRNet [28] NSFA [33] Ours
Metric CD FD CD FD CD FD CD FD CD FD CD FD CD FD CD FD CD FD

airplane 5.69 5.49 5.96 6.60 5.50 5.14 5.85 7.97 5.60 3.22 4.79 2.80 6.44 3.70 5.22 3.37 4.91 1.98
cabinet 11.02 9.27 10.83 8.89 10.63 7.28 10.78 12.44 11.90 6.42 9.97 4.89 10.39 6.55 10.51 4.94 9.98 3.49

car 8.77 10.10 9.27 11.42 8.69 9.47 8.84 10.76 10.70 6.19 8.31 7.20 9.45 7.77 9.00 7.42 8.66 6.96
chair 10.98 9.86 11.24 10.43 10.99 7.99 10.80 13.50 10.60 4.96 9.49 4.06 9.41 5.30 9.33 4.11 9.14 2.83
lamp 11.13 10.39 12.17 11.98 11.33 8.75 11.15 13.94 10.70 3.65 8.94 4.15 7.96 4.50 8.26 3.57 7.16 3.02
sofa 11.75 8.89 11.63 9.25 11.67 7.27 11.41 12.32 11.80 6.04 10.69 3.83 10.50 4.90 10.74 4.17 10.45 2.95
table 9.32 9.64 9.45 10.16 8.59 8.05 8.79 12.15 8.71 5.38 7.81 4.05 8.44 5.88 7.78 3.99 7.45 2.86
vessel 9.72 8.53 10.02 10.02 9.66 7.44 9.17 10.63 9.48 4.57 8.05 3.63 8.04 3.93 7.66 3.44 7.28 2.75

Average 9.79 9.02 10.07 9.85 9.63 7.67 9.60 11.71 9.96 5.05 8.51 4.33 8.83 5.32 8.55 4.38 8.13 3.35

Table 1. Quantitative Comparisons on known categories of ShapeNet with state-of-the-art methods with the metrics multiplied by 103. The
bold and underlined values are the best and the second best values, respectively.

Method FC Folding PCN TopNet MSN CANet GRNet NSFA Ours
airplane 5.75 6.08 5.46 7.33 5.59 4.71 6.42 5.21 5.01
cabinet 11.10 10.94 10.49 13.20 11.94 9.93 10.34 10.49 10.00

car 8.70 8.22 8.50 10.45 10.76 8.31 9.56 8.94 8.72
chair 10.98 11.24 10.99 10.80 10.60 9.38 9.38 9.32 9.31
lamp 11.77 12.66 11.49 14.17 10.73 8.86 7.77 8.06 7.34
sofa 11.94 11.59 11.58 13.69 11.89 10.65 10.62 10.92 10.63
table 9.65 9.64 8.59 11.43 8.71 7.87 8.44 7.74 7.53
vessel 9.84 9.83 9.64 11.19 8.48 7.95 8.05 7.66 7.46

Average 10.00 10.19 9.59 11.92 9.97 8.46 8.82 8.54 8.25

Table 2. Comparisons on missing parts with CD multiplied by 103.

Figure 9. Comparisons of CD and FD multiplied by 103.

distance from each point in the input to its nearest neighbor
in the output, which can be shown as follows:

FD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

‖x− y‖2. (13)

As there is no complete ground truth model for KITTI, FD
and Minimal Matching Distance (MMD) are used to eval-
uate the completion performance. MMD is defined as CD
between the output and the car point cloud from ShapeNet
which is closest to the output point cloud in terms of CD.
This measures how much the output resembles a typical car.

4.2. Comparison on Completion Result

Experiments on ShapeNet. We qualitatively and quan-
titatively compare our RFNet on ShapeNet with several
state-of-the-art point cloud completion methods. The test

data is divided into two parts: data containing 8 known cat-
egories models same as the train data, and data containing
8 novel categories models different from the train data.

The quantitative results conducted on known categories
are shown in Table 1, while that on novel categories in Ta-
ble 3. Our network achieves the best performance on both
known and novel categories models. Though CANet also
performs well on known categories of ShapeNet, it needs
a mean shape prior feature from a pre-trained network for
each category, which is a little tough because categories of
models cannot always be known before completion. Be-
sides, our network improves a lot on FD, which means our
RFNet can make fewer distortions during the completion
process and preserve the original shapes better than other
methods. However, our method actually introduces more
information from incomplete models than most other meth-
ods. To better evaluate the completion performances, we re-
move the nearest neighbors of points in incomplete models
from complete ones to compare the performances on miss-
ing parts. The result is presented in Table 2. We can see that
our method still has the best performance for the completion
of missing parts.

To intuitively compare the completion results, we choose
a few models from the test data to make the qualitative com-
parison. As shown in Fig. 8, FC, Folding, PCN and Top-
Net create a good global shape, while losing most details
from the incomplete model. MSN, GRNet and CANet can
preserve details to some extent, while they still suffer from
obvious distortions. Though NSFA can keep details much
better than the other methods, its local feature aggregation
operations increase computational cost greatly. Besides, it
may mistake some discontinuous regions as details and have
difficulty completing models with large and concentrated
missing parts. Our RFNet can preserve details with fewer
distortions and clearer textures, which is also capable of low
computational cost as illustrated in Sec. 4.6.

Experiments on KITTI. We evaluate our network with
the car category of real-world scans from KITTI. Our net-
work is trained on ShapeNet for only about 0.8M iterations
(10 epochs) in this section, without any fine-tuning on other
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Method FC [32] Folding [32] PCN [32] TopNet [24] MSN [16] GRNet [28] NSFA [33] Ours
Metric CD FD CD FD CD FD CD FD CD FD CD FD CD FD CD FD

Si
m

ili
ar

bus 9.82 7.87 10.58 8.14 9.46 6.41 9.31 9.93 11.60 5.40 11.50 4.92 9.24 3.86 8.98 2.42
bed 21.23 13.54 19.08 13.32 21.63 10.63 20.38 15.37 24.10 6.27 22.42 5.97 17.30 4.84 19.20 4.35

bookshelf 15.12 10.53 14.88 10.39 14.79 8.52 14.12 12.69 16.20 6.45 14.91 6.22 12.63 4.78 12.91 3.79
bench 10.81 8.88 10.55 9.43 11.02 7.58 10.16 11.08 10.80 5.00 11.47 5.38 9.76 3.82 9.79 2.84

Average 14.20 10.20 13.80 10.32 14.20 8.28 13.40 12.27 15.67 5.78 15.08 5.62 12.23 4.33 12.72 3.35

D
is

si
m

ili
ar guitar 9.92 9.26 9.06 9.30 10.40 8.61 9.88 10.11 10.40 2.40 8.88 4.04 8.72 3.30 7.59 1.89

motor 14.56 11.97 15.56 14.49 14.75 11.48 14.30 14.52 15.50 4.39 11.83 4.51 10.56 3.80 10.88 4.99
skateboard 12.00 7.77 11.91 7.49 12.04 6.56 9.26 9.63 11.70 4.00 11.30 3.73 8.68 2.88 8.66 1.48

pistol 14.97 13.86 13.13 12.96 14.23 10.70 12.86 15.42 14.20 2.87 13.27 3.55 11.03 3.54 9.74 2.90
Average 12.90 10.72 12.40 11.06 12.90 9.34 11.50 12.42 13.95 3.42 11.32 6.79 9.75 3.38 9.22 2.82

Table 3. Quantitative Comparisons on novel categories of ShapeNet with state-of-the-art methods with the metrics multiplied by 103.

Figure 10. Qualitative comparisons on car category of KITTI. Our work can better capture and recover basic shapes of cars than the others.

Method FC Folding PCN TopNet GRNet Ours
FD 0.0331 0.0361 0.0308 0.0335 0.0192 0.0258

MMD 0.0148 0.0146 0.0158 0.0151 0.0374 0.0146
FD+MMD 0.0479 0.0507 0.0466 0.0486 0.0557 0.0404

Table 4. Quantitative comparisons on car category of KITTI.

datasets. The quantitative and qualitative results are shown
in Table 4 and Fig. 10. The mean MMD of our RFNet is the
smallest, which means our method has the best performance
capturing the basic shape of cars and resembling typical
cars. However, GRNet gets a small FD with a large MMD,
which means GRNet does too much reconstruction, instead
of completing input models. In order to make a trade-off
between FD and MMD, we add them together to make an
overall evaluation. Our network gets comparable results on
FD but performs best on MMD and the overall evaluation.

4.3. What Does the Network Learn in the RFE?

Max pooling operation used in an Encode Cell or Re-
cover Cell is actually a selection of key points which

Figure 11. Key points captured by the Encode Cells and Recover
Cells in the RFE. The black points denote key points selected.

achieve the maximum value in feature dimensions. As
shown in Fig. 11, we visualize key points selected by the
Encode Cells and Recover Cell in the RFE. Points selected
by the Encode Cells gradually move to the missing parts
as the recurrent level increases, which proves that our net-
work is capable of extracting features to complete the miss-
ing parts adaptively. Besides, key points selected by the Re-
cover Cells are around those generated by the Encode Cells.
It indicates the Recover Cell learns to aggregate information
from inputs based on the output of Encode Cells.

4.4. Points Grown From Seeds in the FDC

In the FDC, the Initialize Cell generates an initial sparse
model by the combination of the fully-connected network
output and refined sampled points. We visualize the dis-
tributions of the points in output models grown from these
two parts, respectively. As demonstrated in Fig. 12, points
grown from sampled seeds form a contour for the original
incomplete parts. Besides, points grown from the fully-
connected network output fill up missing parts of models.
These two parts are combined to make up the final output.

Figure 12. Points grown from seeds. The upper branch and lower
branch denote points grown from generated seeds and sampled
seeds, respectively.
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Figure 13. Quantitative comparison for occluded point clouds un-
der the different occlusion ratios.

Method Inference Training requirements
Time(ms) Memory(MB) Batch Iter (M) Memory(GB)

PCN 6.68 973 32 0.3 11
TopNet 5.09 732 32 0.23 11
MSN 20.16 1417 160 0.23 8x11

GRNet 5.92 1719 32 1.09 2x11
CANet 9.22 973 32 0.27 11
NSFA 104.80 973 8 0.67 11
Ours 9.00 710 32 0.23 11

Table 5. Model efficiency comparison. Time and memory cost are
evaluated on a Nvidia 2080ti GPU with a 2.9Ghz i5-9400 CPU.

4.5. Robustness for Occlusion

In real-world applications, point missing, as a common
problem, can introduce extra noise to data and harm to com-
pletion. To further study the robustness of our method, we
conduct experiments by occluding inputs with %p occlu-
sion following the procedure in PCN [32] and CANet [26],
demonstrated in Fig. 13. Our method performs best both in
CD and FD, which confirms that our network is more robust
against occlusion than former methods.

4.6. Comparison on Network Efficiency

In this section, we make a comparison on memory cost,
time cost and training requirements. As presented in Ta-
ble 5, our network also has comparable time cost and the
lowest memory cost. Though GRNet is faster, it needs more
than 2 times larger memory than ours. Besides, our work
has a relatively low training requirement. Comparison on
training requirements with several completion networks is
also reported in Table 5. Note that our network only needs
11 GB to train. It will take about only about 0.08 M iter-
ations to converge to a result better than former networks,
0.23 M iterations to the best result in 1 day, which is much
faster than other methods.

4.7. Ablation Study

In this section, we evaluate the effect of different mod-
ules in our network, including the Encode Cells and the
Recover Cells in the RFE, the Merge Layers and the Re-
fine Cells in the RSP, the proposed Sampling Chamfer
Distance(SCD) and Balanced Expansion Constraint (BEC).
The experiments are conducted on known categories mod-
els of ShapeNet by removing the modules and retraining
the network. We use CD and FD to evaluate the completion
results, as illustrated in Table 6. Full network with all mod-
ules works the best. Removing any component decreases
the performance, which indicates that each component con-
tributes. Merge Layer and Refine Cell in the RSP contribute
the most to reduce the completion error. Though other mod-
ules help relatively slighter, they can improve the final per-
formance and accelerate convergence.

Enc SCD BEC Rec Ref Mer CD FD CD*
X - - - - - 9.35 6.86 9.69
X X - - - - 9.27 6.58 9.81
X X - - X X 8.44 3.58 8.94
X X X - - - 9.26 6.59 9.72
X X X X - - 8.96 6.44 9.45
X X X X X - 8.80 6.34 9.29
X X X X X X 8.13 3.35 8.46

Table 6. Quantitative comparison for the ablation study. Enc, SCD,
BEC, Rec, Ref and Mer denote the Encode Cell, Sampling Cham-
fer Distance, Balanced Expansion Constraint, Recover Cell, Re-
fine Cell and Merge Layer, respectively. CD* means CD measured
at about 0.08M iterations to compare the convergence efficiency.

5. Conclusion
In this paper, we propose a novel point cloud completion

network named RFNet, which is organized in multiple re-
current levels. Output model from the former level will be
concatenated with the incomplete model and fed to the lat-
ter level as a “new incomplete model”. RFNet is consist of
three modules: RFE, FDC and RSP. The RFE extracts mul-
tiple global features for completion in different resolutions,
and the FDC generates completed point clouds from coarse
to fine. The RSP is used to introduce details from the origi-
nal incomplete models to the outputs. Besides, we also pro-
pose a Sampling Chamfer Distance and a Balanced Expan-
sion Constraint to better capture the shape differences and
improve completion performances in the multilevel struc-
ture. Exhaustive experiments on ShapeNet and KITTI in-
dicate that our RFNet can achieve state-of-the-art perfor-
mances with less cost than former methods.
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Davide Scaramuzza, José Neira, Ian Reid, and John J
Leonard. Past, present, and future of simultaneous localiza-
tion and mapping: Toward the robust-perception age. IEEE
Transactions on robotics, 32(6):1309–1332, 2016.

[2] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[3] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2017.

[4] Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast
point r-cnn. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 9775–9784, 2019.

[5] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.
Shape completion using 3d-encoder-predictor cnns and
shape synthesis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5868–
5877, 2017.

[6] N Dinesh Reddy, Minh Vo, and Srinivasa G Narasimhan.
Carfusion: Combining point tracking and part detection for
dynamic 3d reconstruction of vehicles. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1906–1915, 2018.

[7] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 605–613, 2017.

[8] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013.

[9] Xiaoguang Han, Zhen Li, Haibin Huang, Evangelos
Kalogerakis, and Yizhou Yu. High-resolution shape com-
pletion using deep neural networks for global structure and
local geometry inference. In Proceedings of the IEEE inter-
national conference on computer vision, pages 85–93, 2017.

[10] Zhizhong Han, Xiyang Wang, Yu-Shen Liu, and Matthias
Zwicker. Multi-angle point cloud-vae: unsupervised fea-
ture learning for 3d point clouds from multiple angles by
joint self-reconstruction and half-to-half prediction. In 2019
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 10441–10450. IEEE, 2019.

[11] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-
wise convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 984–993, 2018.

[12] Zitian Huang, Yikuan Yu, Jiawen Xu, Feng Ni, and Xinyi Le.
Pf-net: Point fractal network for 3d point cloud completion.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7662–7670, 2020.

[13] Truc Le and Ye Duan. Pointgrid: A deep network for 3d
shape understanding. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 9204–
9214, 2018.

[14] Dongping Li, Tianjia Shao, Hongzhi Wu, and Kun Zhou.
Shape completion from a single rgbd image. IEEE transac-
tions on visualization and computer graphics, 23(7):1809–
1822, 2016.

[15] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-gan: a point cloud upsampling ad-
versarial network. In Proceedings of the IEEE International
Conference on Computer Vision, pages 7203–7212, 2019.

[16] Minghua Liu, Lu Sheng, Sheng Yang, Jing Shao, and Shi-
Min Hu. Morphing and sampling network for dense point
cloud completion. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 11596–11603,
2020.

[17] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015.

[18] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J
Guibas. Frustum pointnets for 3d object detection from rgb-
d data. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 918–927, 2018.

[19] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017.

[20] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural informa-
tion processing systems, pages 5099–5108, 2017.

[21] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015.

[22] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–779, 2019.

[23] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,
Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.
Splatnet: Sparse lattice networks for point cloud processing.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2530–2539, 2018.

[24] Lyne P Tchapmi, Vineet Kosaraju, Hamid Rezatofighi, Ian
Reid, and Silvio Savarese. Topnet: Structural point cloud
decoder. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 383–392, 2019.

[25] Chu Wang, Babak Samari, and Kaleem Siddiqi. Local spec-
tral graph convolution for point set feature learning. In Pro-
ceedings of the European conference on computer vision
(ECCV), pages 52–66, 2018.

[26] Xiaogang Wang, Marcelo H Ang Jr, and Gim Hee Lee. Cas-
caded refinement network for point cloud completion. In

12516



Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 790–799, 2020.

[27] Xin Wen, Tianyang Li, Zhizhong Han, and Yu-Shen Liu.
Point cloud completion by skip-attention network with hi-
erarchical folding. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1939–1948, 2020.

[28] Haozhe Xie, Hongxun Yao, Shangchen Zhou, Jiageng Mao,
Shengping Zhang, and Wenxiu Sun. Grnet: Gridding resid-
ual network for dense point cloud completion. arXiv preprint
arXiv:2006.03761, 2020.

[29] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge
Belongie, and Bharath Hariharan. Pointflow: 3d point cloud
generation with continuous normalizing flows. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 4541–4550, 2019.

[30] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingnet: Point cloud auto-encoder via deep grid deformation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 206–215, 2018.

[31] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-net: Point cloud upsampling network.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2790–2799, 2018.

[32] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and
Martial Hebert. Pcn: Point completion network. In 2018
International Conference on 3D Vision (3DV), pages 728–
737. IEEE, 2018.

[33] Wenxiao Zhang, Qingan Yan, and Chunxia Xiao. Detail pre-
served point cloud completion via separated feature aggrega-
tion. arXiv preprint arXiv:2007.02374, 2020.

12517


