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Abstract

Indoor visual localization is significant for various ap-
plications such as autonomous robots, augmented reality,
and mixed reality. Recent advances in visual localization
have demonstrated their feasibility in large-scale indoor
spaces through coarse-to-fine methods that typically em-
ploy three steps: image retrieval, pose estimation, and pose
selection. However, further research is needed to improve
the accuracy of large-scale indoor visual localization. We
demonstrate that the limitations in the previous methods
can be attributed to the sparsity of image positions in the
database, which causes view-differences between a query
and a retrieved image from the database. In this paper, to
address this problem, we propose a novel module, named
pose correction, that enables re-estimation of the pose with
local feature matching in a similar view by reorganizing the
local features. This module enhances the accuracy of the
initially estimated pose and assigns more reliable ranks.
Furthermore, the proposed method achieves a new state-
of-the-art performance with an accuracy of more than 90 %
within 1.0m in the challenging indoor benchmark dataset
InLoc for the first time. 1

1. Introduction
Indoor visual localization is a common solution for in-

door applications such as autonomous robots, augmented
reality, and mixed reality [8, 19, 32, 35]. However, even
though recent advances in visual localization have demon-
strated remarkable performances in urban environments and
small indoor spaces [4, 5, 6, 7, 22, 23, 28], long-term vi-
sual localization in large-scale indoor spaces remains chal-
lenging due to similar places, repetitive patterns, featureless
scenes, occluded scenes, and highly dynamic features [54].

Recently, it was reported that visual localization can

*Equally contributed to this work.
1Code available at http://github.com/JanghunHyeon/PCLoc
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Figure 1. The hierarchical model, including pose correction. The
pose correction step updates the initially estimated pose X− to
X+. The main information used in each step is shown below the
box.

be successfully scaled-up in indoor spaces using InLoc
[54] and HFNet [42]. These works employ a hierarchi-
cal (coarse-to-fine) structure in which the algorithm re-
trieves several candidates using the lightest feature and sub-
sequently estimates the poses of the selected few with more
intensive features. The black boxes in Figure 1 describe the
hierarchical model constituted by

- Image retrieval: retrieve many candidates with indirect
features such as NetVLAD [1], GeM [37], AP-GeM
[38], and i-GeM [19].

- Pose estimation: estimate candidates’ pose with direct
features such as SuperPoint [10] and D2Net [13].

- Pose selection: select the final pose with given 3D in-
formation such as pose verification (PV) [54, 55] and
covisibility clustering [42].

These frameworks are de facto standards because many
successful studies have inherited these structures [13, 14,
17, 19, 40, 41, 43, 50, 51, 55]. However, we argue that there
is further scope for improvement because the accuracy of re-
cent state-of-the-art methods [14, 17, 43] is approximately
80 % within 1.0m in large-scale indoor spaces [54], where
it often reaches over 90 % in outdoor benchmark datasets
[3, 45, 47]. We determine that the sparsity of image posi-
tions in the database is the reason for the performance gap
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because it is difficult to construct the database densely in
large-scale indoor spaces [54]. The sparsity causes view-
difference between a query image and a retrieved image.
For example, when a query pose is far from the database
image pose, the common view in both images tends to be
small. Thus, the pose estimation module in existing meth-
ods yields inaccurate output as the local features that appear
in both the query and the database image are not sufficient
for accurate estimation.

In this work, to circumvent the sparsity issue and im-
prove the accuracy, we propose a novel module called “Pose
Correction,” as shown in the yellow box in Figure 1, which
reorganizes local features that can be observed from the es-
timated pose (X−). Note that this approach has an effect
similar to that of estimating the query pose using an image
located near the query pose. Figure 2(a) depicts an exam-
ple where the query and database poses are far from each
other. Owing to the view-difference, only a few features
match between the query and database images, as shown in
Figure 2(b). However, if we reconstruct the local features
that can be observed in X− and associate the two sets of
features, more inliers appear, which circumvent the sparsity
problem and resolve the view-difference problem as in Fig-
ure 2(c). This yields an updated pose (X+) whose accuracy
is superior to X−. From the given candidates, once all X+

candidates have been re-estimated, it is natural to reset their
ranks in the order of the reliability of the matching. We
evaluate the reliability using the number of inliers between
the query and X+ and provide more reliable candidates to
the pose selection module.

In addition, we propose an extended pose correction that
utilizes the properties of the pose correction step and also
reduces redundant features that might be used during the
pose update. We also modify the PV proposed in [54] such
that the accuracy can be enhanced as far as possible.

Experiments were conducted on the most well-known in-
door benchmark dataset, InLoc [54]. We validated our pro-
posed method by comparing it with existing state-of-the-art
methods [13, 14, 17, 40, 42, 43, 54, 55]. Further, we eval-
uated our method on an M-site dataset [19] to confirm the
relevance of our results. Our proposed method performed
significantly better and achieved state-of-the-art results for
large-scale indoor visual localization. Moreover, we also
conducted ablation studies to demonstrate the superiority of
the extended pose correction and the effect of the iterating
pose correction.

The contributions of this work are as follows. 1) To the
best of our knowledge, it is the first work to address the
problem of the view-difference due to the sparsity in the
database and to propose a novel module, i.e., pose correc-
tion, to resolve the problem. 2) We extend pose correction
based on its natural properties and verify improvements in
accuracy. 3) Additionally, we propose modified PV (MPV),

LF (Query) LF (𝛸𝛸−)
(a)

LF (Query) LF (DB)
(b) Pose estimation

(c) Pose correction

𝛸𝛸−

DB

𝛸𝛸+

Query

Figure 2. (a) Query and database poses are far from each other.
The visible local features in the query image are represented with
a red x. (b) Owing to the sparsity that causes view-difference,
there are few feature matches between the query and the database
images. (c) Local feature matching with the query and the reorga-
nized features that can be observed in X− yields a greater number
of matches than the ones in (b) circumventing the sparsity prob-
lem. Here, the background image at X− is rendered for visualiza-
tion. LF denotes local feature.

which improves the performance further. 4) As a result,
the proposed method outperforms recent works by a no-
table margin and achieves a new state-of-the-art in the pub-
lic benchmark dataset.

2. Related Work

Many existing methods such as absolute or relative pose
regression-based methods [7, 11, 22, 23, 28] and structure-
based regression methods [4, 5, 6] have failed to estimate
accurate poses in large-scale spaces [54].

Different approaches such as map-less approaches and
structure-based approaches that use pre-defined 3D maps
also have been studied for visual localization. Sattler et
al. [46] proposed a map-less localization. The map-less
method may reduce database size with the cost of run-time
efficiency. In order to recover a camera pose, this method
requires a large number of retrieved images for Structure-
from-Motion (SfM) on the fly. However, SfM may fail in
datasets such as InLoc dataset due to many reasons, includ-
ing the small overlap between images [17].

Recent visual localization methods based on the coarse-
to-fine model show feasibility in large-scale indoor spaces
[17, 19, 42, 54]. These methods perform image retrieval
[1, 37, 38] to predict the coarse position and restrict the
search space for 2D-3D matching. Local feature match-
ing [10, 13, 39] is then performed for each retrieved image
(candidates) with the query image. These retrieved images
are correlated 3D models represented by Structure-from-
Motion point cloud [20, 29, 30, 47], LiDAR scans [34, 54]
or mesh surfaces [12, 18, 19]. Thus, local feature matching
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(2D-2D matching) enables 2D-3D matching through cor-
related 3D coordinates. The matched correspondences are
then used to estimate the camera pose using the Perspective-
n-Point (PnP) method [24, 25, 26] within a RANSAC loop
[9, 16, 27]. Subsequently, the best pose is selected as the
final pose.

Based on coarse-to-fine models, many techniques have
been proposed to enhance localization performance. Some
studies are focusing on retrieving better candidates [14, 17,
19] by adopting robust global descriptors [17, 19, 36, 38].
Additionally, several studies have attempted to increase the
accuracy by extracting more robust local features [10, 13,
39] or feature matching [40, 41, 43]. Further, some studies
use additional information such as semantic or depth infor-
mation to select more reliable matched inliers [14, 50, 51]
to conduct accurate pose estimation through accurate local
feature matching of query and database images. Some stud-
ies are focusing on selecting the best candidates [15, 54, 55].

In short, recent studies aim to improve modules of the
coarse-to-fine framework such as image retrieval [14, 17,
19], pose estimation [10, 13, 14, 39, 40, 41, 43, 50, 51],
and pose selection [15, 54, 55]. In contrast, to the best of
our knowledge, our study is the first work that proposes the
pose correction module in the coarse-to-fine framework to
address the limitation of the existing framework due to the
view-difference problem in the large-scale indoor visual lo-
calization.

3. Visual Localization with Pose Correction

3.1. Baseline

InLoc [54] is a representative coarse-to-fine approach
that uses three steps: image retrieval, pose estimation,
and PV. We set the method as our baseline and build our
pipeline upon it. First, we retrieve the top-K1 closest
images to a given query image from the database using
NetVLAD [1], which converts an image into a global fea-
ture. Using NetVLAD, we predefine the global features
of database images efficiently and use the nearest neighbor
method to retrieve the K1 best matching images.

The K1 images are used for the next step, which is pose
estimation. In this step, we extract local features (i.e. Su-
perPoint [10]) from the query image and a candidate image.
Those features are matched using a robust feature matching
algorithm based on a graph neural network, which is named
SuperGlue [43]. With the given 3D information from the
database and the correspondences, the query pose is esti-
mated using a 2D-to-3D PnP algorithm [24] in a RANSAC
loop [16]. Subsequently, we sort the final top-K2 candi-
dates out of K1 candidates in the order of the number of
RANSAC inliers. The main difference between InLoc [54]
and our baseline is that InLoc uses dense features from cer-
tain layers of a convolutional neural network for matching,

# of Camera
Location

# of
DB Images

Area

7-Scenes [52] 26,000 26,000 31.5m3

12-Scenes [56] 240,002 240,002 521m3

M-Site [19] 720 25,920 12,557m2

InLoc [54] 277 9,972 25,287m2

Table 1. Sparsity difference between small-scale and large-scale
indoor datasets.

whereas we use sparse SuperPoint [10] features and the Su-
perGlue [43] matcher.

Finally, PV selects the best pose among the K2 candi-
date poses. A synthesized view is rendered from the RGBD
data scanned at the position of the retrieved image. Subse-
quently, the similarity between the synthesized image and
query image is evaluated by comparing pixel-wise local
patch descriptors, DenseRootSIFT [2, 33]. The similarity
score is defined as the median value of the pixel-wise dis-
tances between the descriptors disregarding the missing pix-
els in the synthesized image.

3.2. Key limitations in the baseline

In the large-scale indoor spaces, previous coarse-to-
fine methods [19, 42, 54, 55], including our baseline, ex-
hibit limitations due to the characteristics of the sparsity
in the image database. For example, while the spaces
of small-scale indoor datasets (e.g. [52, 56]) are typically
reconstructed by densely captured RGB-D data, those of
large-scale indoor datasets (e.g. [19, 54]) are reconstructed
by data scanned from sparsely located positions (c.f . Ta-
ble 1). The sparsity causes problems with respect to view-
difference and selection of reliable candidates.

As mentioned in InLoc [54] in detail, there is no practical
approach that constructs a densely captured image database
in a way that reduces the data acquisition time and man-
ual work. Therefore, the distance between two consecu-
tive database images is very large, considering the accu-
racy level of the visual localization. For example, in the
InLoc dataset [54], the scans at 277 distinct positions cover
25,287m2 indoor spaces, while its performance metric is
set to 0.25m. This sparsity induces a significant view-
difference between a query and a retrieved image, as shown
in Figure 2(b), which yields a poor performance in the pose
estimation.

The sparsity also makes it hard to select reliable candi-
dates. When the overlap between a query and a retrieved
database image is small, the number of inliers in the local
feature matches for the true positive candidates may be less
than that for the false positive candidates. Subsequently,
the true positive candidates may not be selected among the
top-K2 candidates in the pose estimation step.
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3.3. Pose correction

To circumvent the two limitations, we propose a com-
plementary step named pose correction in between the pose
estimation and the PV, as shown in Figure 1. This step con-
sists of two building blocks. One is a pose-update that con-
verts X− from the pose estimation into X+. The other is a
reranking that selects more reliable candidates.

While constructing the database, we group the local fea-
tures of the images from a scanned position pi to create a
local feature map, Fi = {piFj |j = 1, 2, ..., n}, where Fj

contains the scanned position pi, the local features (i.e. Su-
perPoint [10]) in an image Ij and their corresponding 3D
points in the global coordinate system, and n is the number
of images covering the scan-view as shown in Figure 3(a).

In the pose correction step, each candidate has informa-
tion regarding the index i of the scanned position pi. The
local features in Fi are projected onto the image plane of
X−, making it a synthetic local feature image, I′, as shown
in Figure 3(b). The projected local features are used for
feature matching with those of the query image using Su-
perGlue. With the 2D-to-3D correspondences, the PnP al-
gorithm in the RANSAC loop follows to update the pose
to X+. The inliers from the 2D-to-3D correspondences are
used in reranking which reorders the K2 candidate set con-
veyed from the pose estimation into a new K3 set.

The pose correction step has two properties that are su-
perior to the pose estimation step: proximity and abundance
of features. It resolves the view-difference problem of the
pose estimation step using features that are visible from
X−, which is a pose that shares a similar view to the query’s
view. As a result, true positive features for feature matching
can be located near the query’s local features in the image
coordinate system. In addition, pose correction extends the
local features extracted from a database image to the local
features that are extracted from the multiple images, result-
ing in an abundance of features. Consequently, they con-
tribute to the improvement in localization accuracy.

3.4. Extended pose correction

In this section, we propose an extended pose correction
that utilizes the properties of the pose correction step and
reduces redundant features to further improve localization
accuracy.

Divided matching Employing the property of proxim-
ity of pose correction, we propose divided matching, which
segments an image into sub-regions such as the top, bottom,
left, and right halves of an image to find feature matchings
in each area. It helps in finding inliers that are spatially
distributed in larger areas of the image without fine-tuning
the pre-trained SuperGlue model [43]. As the spatial dis-
tribution of the inliers is vital for an accurate pose estima-
tion [15, 48, 58], divided matching leads to performance
improvement of pose correction.

𝑝𝑝𝑖𝑖

𝐼𝐼1 𝐼𝐼𝑟𝑟 𝐼𝐼𝑛𝑛
…

Back-
projection

…

Local feature map 𝔽𝔽𝑖𝑖

(a)

𝑋𝑋−

𝐼𝐼′

Local feature map 𝔽𝔽𝑖𝑖

Projection

(b)

Figure 3. (a) While constructing the database, local features Fj

that are extracted from database images captured at pi are back-
projected to the 3D space to create the local feature map Fi. (b) In
the pose correction step, visible local features are projected onto
the X− image plane to create a synthetic local feature image I′.

Divided matching is useful when the views between two
images are sufficiently similar. Therefore, it can be used
when the database poses are ideally dense such that there
always exists a database image that is similar to an arbitrary
query’s view, or for the pose correction that updates X−

from a view similar to that of the query.
Inter-pose matching Extending the property of abun-

dance of pose correction, we propose inter-pose match-
ing, which utilizes multiple Fi to find even more feature
matchings in the pose correction step. For this, we uti-
lize Scangraph [55] that contains connectivity information,
of which a node is a scanned position pi, and an edge is
the connectivity information indicating that adjacent nodes
share adequate view. This enables to consider co-visibility
[29, 30, 42, 44] when the database is not constructed with
structure-from-motion techniques. Inter-pose matching is
applied in the pose correction step to use one or more Fi

according to the connectivity information to create one or
more synthetic local feature images. The found matches
are concatenated for use in the PnP algorithm inside the
RANSAC loop.

In indoor spaces, the distance to the scene geometry
tends to be short, and concave structures or clutters often
cause significant occlusions. In these cases, the inter-pose
matching helps in finding correct local features that are cap-
tured from different scanned positions.

Filtering process As the projection of the local feature
map in the pose correction step does not consider occlu-
sions, reducing redundant local features projected onto the
synthetic local feature image I′ is beneficial for better fea-
ture matching. For this, we employ two approaches: pre-
processing with virtual local feature (VLF) map and point
normal filtering on the fly.

Similar to [20], which is conducted in the context of
image retrieval via bag-of-words models, the VLF map
adds virtual positions to the database and finds features that
are visible from the virtual positions. Specifically, a VLF
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map (F′) extends F by adding virtual positions, p′l, to the
database and by removing local features that are invisible
from p′l ahead of inference time (i.e. database construction
time). The VLF map increases the density of the database
and reduces the chances of invisible local features being
projected on I′ during the inference time.

A virtual position, p′l, is set for each edge in the Scan-
graph under the following conditions: p′l should be located
inside the map, and the local features extracted from the
two adjacent positions observed from p′l should be as many
and as even as possible. To detect visible local features at
p′l, we employed the hidden point removal algorithm [21],
which is a robust and efficient algorithm to remove occluded
points and select only the visible points in the point cloud
map. The newly extended feature F′

l at p′l is defined as
F′
l = {f |f ∈ F, and visible at p′l}, where f is a local fea-

ture and its associated 3D point.
In the pose correction step, Fi and F′

l are used in a similar
way to inter-pose matching, where p′l that is closest to X−

is selected.
Meanwhile, the point normal filtering removes the in-

visible features in the inference time based on the cosine
distance between a point normal of the local feature and di-
rection vector from X− to the point. For this, we add point
normal information in Fi to create F̂i based on the surface
normal of local features in the database images when con-
structing the database.

These two filtering methods are optional, but we found
them to be effective when used along with other proposed
matching methods. More details are provided in the supple-
mentary material.

3.5. Modified pose verification

PV is the final step that determines the most appropriate
pose among candidates, and thus has a direct effect on the
overall pipeline performance.

To improve overall performance and leverage the effect
of our proposed pose correction module, we propose MPV.
It is a simple and effective modification of PV, which re-
moves outlier pixels in the rendered image that are not ap-
propriate to compare with the query image. Figure 4 illus-
trates an example wherein MPV successfully finds a correct
pose by removing outliers in the rendered image.

First, we remove lower outlier pixels in score distribution
using opening [49], which is a simple morphological image
processing that removes isolated small pixels in an image.
Owing to the implementation of the DenseRootSIFT, the
pixel with many invalid pixels in the neighbor shows sig-
nificantly low value in the Euclidean distance of descriptors
(e.g. Figure 4(b)). We remove such pixels and preserve the
valid area using opening in error maps (e.g. Figure 4(c)).
For the opening process, the pixels are binarized according
to whether they are valid or missing.

Query

(a) PV’s Top 1 (b) PV error map

(d) MPV’s Top 1 (e) PV error map

(c) MPV error map

(f) MPV error map

score : 0.0414 score : 0.2303

score : 0.0402score : 0.0555

Figure 4. From the same candidate poses given, PV and MPV se-
lect different final poses, (a) and (d), respectively. The error maps
with final scores are shown in (b), (c), (e), and (f), where a lower
score means better candidate. The blue pixels represent lower val-
ues in Euclidean distance between descriptors, whereas red pixels
represent higher values. MPV removes sparse pixels, as it assumes
them to be lower outliers as in (c). In addition, MPV neglects
the upper outlier pixels caused by changes in illumination or open
doors as in (f). Invalid or removed pixels are colored in black.

Second, we remove upper outlier pixels by modifying
the method of evaluating similarity from the median value
to the average value below the median. The value repre-
sents an overall score of similar area between the query and
the rendered image and reduces the effect of changes in the
scene due to dynamic features and illumination changes by
ignoring such pixels (e.g. Figure 4(f)).

4. Experimental Setup

4.1. Evaluation dataset

The best-known indoor visual localization benchmark
datasets are 7-scenes [52], 12-scenes [56], and InLoc [54].
Many regression-based methods [22, 23, 28] and 3D scene
coordinate regression-based methods [4, 5] employ the 7-
scenes and 12-scene datasets. However, these datasets con-
sist of non-dynamic small spaces that are not appropriate
for our study. Hence, we evaluated our method using the
InLoc and M-site [19] datasets.

The InLoc dataset provides 10k images and correspond-
ing depth data using a camera mounted on a laser scanner.
It covers very large indoor spaces (25, 287m2), which com-
prise multiple floors in multiple university buildings with
different properties [57]. In addition, it contains large tex-
tureless places, many repetitive areas, illumination changes,
highly occluded places, and numerous dynamic features,
which make localization difficult. The 329 query images
were recorded by an iPhone7 approximately a year after the
database was generated, allowing evaluation of long-term
localization. In addition, the query images are distributed
across two places (DUC1 and DUC2) and captured from
significantly distant positions from the database scans.
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DUC1 DUC2
Error [m, 10°] 0.25 0.5 1.0 0.25 0.5 1.0

InLoc [54] 40.9 58.1 70.2 35.9 54.2 69.5
HfNet [42] 39.9 55.6 67.2 37.4 57.3 70.2

KAPTURE [17] 41.4 60.1 73.7 47.3 67.2 73.3
D2Net [13] 43.9 61.6 73.7 42.0 60.3 74.8
Oracle [55] 43.9 66.2 78.3 43.5 63.4 76.3

Sparse NCNet [40] 47.0 67.2 79.8 43.5 64.9 80.2
RLOCS [14] 47.0 71.2 84.8 58.8 77.9 80.9

SuperGlue [43] 46.5 65.7 77.8 51.9 72.5 79.4

Baseline (3,000) 53.0 76.8 85.9 61.8 80.9 87.0
Ours (3,000) 59.6 78.3 89.4 71.0 93.1 93.9
Ours (4,096) 60.6 79.8 90.4 70.2 92.4 93.1

Table 2. Evaluation results for the InLoc dataset.

The M-site database provides 25k images and the
corresponding depth data using a robot system (Li-
DARs and 360° camera). It covers a large-scale indoor
space (12, 557m2). Most places in the M-site are feature-
less and similar spaces, which makes feature matching diffi-
cult. The 472 query images were recorded using an RGB-D
camera (RealSense) on different dates and times.

Overall, InLoc and M-site are the most appropriate
datasets for evaluating pose correction and large-scale in-
door visual localization. Although the ground truth of
the InLoc dataset is not publicly available, we choose the
dataset to evaluate our pipeline as it is the most suitable and
widely used benchmark.

4.2. Implementation details

We used NetVLAD pre-trained on the Pitts30K [1]
dataset with the VGG-16 [53] model for image retrieval.
For local feature extraction, we used Superpoint [10] with
3,000 local features in the InLoc, and 4,096 in the M-
site dataset. We used SuperGlue [43] pre-trained on the
MegaDepth dataset [31] for local feature matching. The
query image used as input was resized to the longest length
of 1200 pixels.

We retrieved 100 candidate images (K1 = 100) and used
10 candidates for PV (K3 = 10), the same as in InLoc [54].
In the pose correction step, we used 20 candidate poses in
our experiments (K2 = 20).

5. Experimental Evaluation
5.1. Comparison with the state-of-the-art methods

To evaluate the proposed method, we compare it with the
state-of-the-art methods on the InLoc and M-site datasets.
The results for the InLoc and M-site are presented in Ta-
bles 2 and 3, respectively.

For the InLoc dataset, we compared our results to the re-
cent state-of-the-art methods. As listed in Table 2, our pro-
posed method outperforms every existing state-of-the-art

M-site
Error [m] 0.25 0.5 1.0 3.0 5.0

InLoc [54] 40.7 56.8 68.6 75.6 76.1
KR-Net [19] 47.0 58.9 66.1 72.3 73.1

Baseline 46.0 65.9 75.0 79.0 79.7
Ours 50.6 68.9 76.3 80.1 81.1

Table 3. Evaluation results for the M-site dataset.

DUC1 DUC2
Error [m, 10°] 0.25 0.5 1.0 0.25 0.5 1.0

(a) Baseline+PV 53.0 76.8 85.9 61.8 80.9 87.0
(b) Baseline+MPV 56.1 76.8 88.4 65.6 82.4 85.5
(c) Proposed+PV 56.1 76.3 86.4 63.4 84.7 90.8
(d) Proposed+MPV 59.1 77.8 89.9 68.7 92.4 93.9

(e) Baseline+SGPV 56.1 73.7 83.8 58.0 77.1 83.2
(f) Baseline+SGMPV 57.1 74.7 87.4 63.4 79.4 84.0
(g) Proposed+SGPV 59.1 77.8 89.9 68.7 92.4 93.9
(h) Proposed+SGMPV 59.6 78.3 89.4 71.0 93.1 93.9

Table 4. Evaluations of modified pose verification. The best ac-
curacy in each column is in red and the second best in blue. In
(e-h), SG represents the usage of Scangraph [55], applied in the
pose verification step.

method by a large margin. In addition, we evaluated the pro-
posed method using 3,000 and 4,096 SuperPoint [10] local
features to verify that the number of local features used does
not affect the performance. Every evaluation was conducted
with the online visual localization benchmark server2.

Further, we evaluated pose correction on the M-site
dataset to confirm the relevance of our results. We com-
pared our proposed method to the InLoc and KR-Net [19].
The results reveal that the proposed method shows better
performance within every threshold, as summarized in Ta-
ble 3. In addition, we compared our method to our baseline
that does not use pose correction. The result shows that
using pose correction improves accuracy, especially within
0.5m, compared to the baseline. This indicates that pose
correction updates X− more accurately as intended.

Overall, our proposed method achieves a new state-of-
the-art performance in both the InLoc and M-site datasets.

5.2. Evaluation of each component

Modified pose verification Before evaluating the com-
ponents in the pose correction, we first evaluate the MPV.
With a better pose selection module (i.e. MPV), it is eas-
ier to find better components in an earlier stage of entire
pipeline when they change.

Table 4 presents the comparisons between PV and MPV.
As can be seen in (a) and (b) in Table 4, MPV outper-
forms PV on almost every error criterion when the base-
line method is used without using Scangraph in PV. If we

2https://www.visuallocalization.net
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Figure 5. Qualitative comparisons between our baseline and the pose correction. Green dots are inlier features used for estimating X− and
X+. (a) Local features in the baseline image are clustered in a smaller area in the query image than those in the pose correction. (b) A
noticeable transitional error appears in the rendered view of the baseline because of the repetitive patterns in the indoor structures. (c) A
noticeable rotational error appears in the baseline owing to the moved furniture. (a–c) Thus, pose correction circumvents the issues that the
baseline confronts frequently by reorganizing local features and enhancing the localization accuracy.

change the baseline method to the proposed method, MPV
outperforms PV on all criteria (c.f . (c) and (d) in Table 4).
Here, the proposed method refers to the use of methods like
divided matching, inter-pose matching, and filtering pro-
cesses. Similarly, when Scangraph is used in the baseline
(c.f . (e) and (f) in Table 4) and in the proposed method (c.f .
(g) and (h) in Table 4), MPV still outperforms PV on almost
every metric.

In short, MPV selects better poses than PV when the
same top-K3 candidates are provided from the same front
pipeline with or without Scangraph. Therefore, we use
MPV instead of PV for all of the following experiments.

Pose correction To verify the effect of using the pose-
update, we use 10 candidates from the pose estimation step.
Row (b) in Table 5 updates their poses, whereas (a) does
not. Experiments in (a) and (b) in Table 5 show that pose-
update improves the localization accuracy, as intended.

Next, we verify the effect of using reranking by com-
paring the results between (b) and (c) in Table 5. The re-
sults show that using reranking in (c) enables the selection
of more reliable candidates to be used in the PV than with-
out using reranking in (b).

The results of (a) and (c) in Table 5 indicate that even ba-
sic pose correction improves the localization performance.
Qualitative comparisons between the two are shown in Fig-
ure 5.

Extended pose correction The following experiments
focused on extended pose correction: divided matching,
inter-pose matching, and filtering process. For some exper-
iments, Scangraph [54] in the PV is applied to assist each
method.

First, divided matching is compared with the ones that do
not use divided matching. For fair comparison, we choose
three pairs for comparisons in Table 6, including (a-1, a-

DUC1 DUC2
Error [m, 10°] 0.25 0.5 1.0 0.25 0.5 1.0

(a) Baseline (10) 56.1 76.8 88.4 65.6 82.4 85.5
(b) PC (10, 10) 58.1 76.8 89.4 67.2 90.1 92.4
(c) PC (20, 10) 58.6 76.8 89.4 67.9 90.1 92.4

Table 5. Evaluation of the pose correction. (a) Baseline introduced
in Section 3.1 using K2 = 10. (b) Pose correction introduced
in Section 3.3 using both K2 = 10 and K3 = 10. It updates
the poses while excluding the effect of using reranking in pose
correction. (c) Pose correction using K2 = 20 and K3 = 10.

2) the basic pose correction, (b-1, b-2) pose correction us-
ing inter-pose matching, and (c-1, c-2) pose correction us-
ing a VLF map. The results indicate overall improvements
in the performance for all criteria except for one for each
pair, thereby indicating that divided matching is promising
or even better than the original matching for pose correc-
tion.

Second, to determine the effect of inter-pose matching,
result pairs (a) and (b) in Table 6 are compared. While other
performances do not seem to change considerably, a perfor-
mance gain is achieved in DUC2 at the fine estimation, i.e.
at 0.25m, by up to 3.8 %p in the comparison between (a-3,
b-3). We believe that the additional matches obtained from
sub-scans make the pose refinement more precise.

The best performances can be obtained when filtering
processes are used, i.e. the VLF map and point normal fil-
tering, as shown with (c-4) and (c-5) in Table 6. In addition,
experiments (c-1) and (c-2) achieve an accuracy above 90 %
within 1.0m in both spaces, DUC1 and DUC2. The results
indicate that performance improvements can be achieved
using the VLF map.

Intriguingly, although adding each component step-by-
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idx DUC1 DUC2
Error [m, 10°] 0.25 0.5 1.0 0.25 0.5 1.0

w/o
inter-pose

(a-1) F 58.6 76.8 89.4 67.9 90.1 92.4
(a-2) Div 60.1 75.8 89.4 69.5 91.6 92.4
(a-3) Div-N 59.6 80.8 89.4 67.2 90.8 91.6
(a-4) Div-SG 59.6 77.8 88.9 66.4 90.8 91.6
(a-5) Div-N-SG 59.6 80.8 89.4 67.2 90.8 91.6

w/ inter-pose

(b-1) F 57.1 79.8 88.9 66.4 87.8 91.6
(b-2) Div 59.6 80.3 89.9 71.0 90.1 90.8
(b-3) Div-N 59.1 79.3 89.9 71.0 91.6 91.6
(b-4) Div-SG 59.6 79.8 88.9 69.5 90.1 90.1
(b-5) Div-N-SG 60.6 79.3 89.4 70.2 90.1 90.1

w/
VLF map

(c-1) F 58.1 78.3 90.4 69.5 89.3 92.4
(c-2) Div 60.1 79.3 90.9 68.7 91.6 92.4
(c-3) Div-N 59.1 77.8 89.9 68.7 92.4 93.9
(c-4) Div-SG 60.6 77.8 89.9 70.2 92.4 93.9
(c-5) Div-N-SG 59.6 78.3 89.4 71.0 93.1 93.9

Table 6. Ablation studies for each module used in extended pose correction. Experiments are conducted (a) without using inter-pose
matching, (b) using inter-pose matching, and (c) using the VLF map. Character F denotes full matching, which is the original matching
method using SuperGlue, whereas Div represents the divided matching. N represents the usage of point normal filtering. The best accuracy
in each column is in red and the second best in blue.

(a) (b)

Figure 6. (a) and (b) depict the results of iterating basic pose cor-
rection and extended pose correction, respectively. The accuracy
results are depicted with dotted lines (left y-axis). The computa-
tional times are depicted with box plots (right y-axis). 0-iteration
denotes our baseline method, and the computational time of each
iteration is expressed proportionally to it.

step did not consistently lead to performance gain, the best
performance was achieved when most proposed methods
were used, such as the divided matching, point normal fil-
tering, and VLF map (i.e. (c-2, c-4, or c-5)). We believe
that the VLF map is beneficial because it uses the local fea-
tures from the other scan positions, and the invisible local
features are filtered out at the time of database construction.

5.3. Iteration of pose correction

Although we used a single iteration of pose correction,
but the iterations can be more. We further evaluate the trade-
off between the run-time efficiency and the performance
gain for more iterations of pose correction.

The results in Figure 6 show that more iterations slow
down the run-time speed. However, the performance gains
over the iterations are not very noteworthy. This might oc-
cur because the performance of iterations relies on Super-

Glue [43] in our settings. In practice, the initial pose cor-
rection already yields accurate poses and SuperGlue does
not yield strictly better matches as the pose correction is
iterated. As a result, iterations do not guarantee a better re-
sult than the initially corrected pose (i.e. the first iteration in
Figure 6(a) and (b)), which is the approach that we propose.

6. Conclusion
We present a method for pose correction that exhibits ro-

bust and accurate localization when the sparsity of image
positions inheres in the database, which has been the main
limitation of previous coarse-to-fine methods for large-scale
indoor localization. Pose correction reorganizes local fea-
tures visible from the estimated pose, and the properties
of pose correction are further extended by introducing di-
vided matching, inter-pose matching, and filtering process.
We demonstrate the superiority of pose correction and each
component in extended pose correction through ablation
studies. According to the experimental results, the first iter-
ation of pose correction can improve performance, but sub-
sequent iterations do not exhibit significant improvements.
As a result, the proposed method sets a new state of the art
in public benchmark datasets, InLoc, with an accuracy of
more than 90 % within 1.0m for the first time.

Pose correction can be beneficial for large-scale indoor
visual localization where the database images need to be
captured sparsely. This means that using the pose correction
module may allow visual localization applications to reduce
database size and enhance database efficiency.

Acknowledgement. This research was supported by the
Technology Innovation Program (10073166) funded By the
Ministry of Trade, Industry and Energy (MOTIE, Korea).

15981



References
[1] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pa-

jdla, and Josef Sivic. NetVLAD: CNN architecture for
weakly supervised place recognition. In CVPR, 2016. 1,
2, 3, 6
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