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Abstract

In this work, we address the problem of unsupervised
domain adaptation for person re-ID where annotations are
available for the source domain but not for target. Previous
methods typically follow a two-stage optimization pipeline,
where the network is first pre-trained on source and then
fine-tuned on target with pseudo labels created by feature
clustering. Such methods sustain two main limitations. (1)
The label noise may hinder the learning of discriminative
features for recognizing target classes. (2) The domain gap
may hinder knowledge transferring from source to target.
We propose three types of technical schemes to alleviate
these issues. First, we propose a cluster-wise contrastive
learning algorithm (CCL) by iterative optimization of fea-
ture learning and cluster refinery to learn noise-tolerant
representations in the unsupervised manner. Second, we
adopt a progressive domain adaptation (PDA) strategy to
gradually mitigate the domain gap between source and tar-
get data. Third, we propose Fourier augmentation (FA) for
further maximizing the class separability of re-ID models by
imposing extra constraints in the Fourier space. We observe
that these proposed schemes are capable of facilitating the
learning of discriminative feature representations. Exper-
iments demonstrate that our method consistently achieves
notable improvements over the state-of-the-art unsupervised
re-ID methods on multiple benchmarks, e.g., surpassing
MMT largely by 8.1%, 9.9%, 11.4% and 11.1% mAP on
the Market-to-Duke, Duke-to-Market, Market-to-MSMT and
Duke-to-MSMT tasks, respectively.

*Corresponding author
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Figure 1. Given labeled source data and unlabeled target data, our
goal is to learn feature representations for recognizing target classes.
For this unsupervised domain adaptation task, we propose three
technical schemes to learn discriminative target features: (a) cluster-
wise contrastive learning, (b) progressive domain adaptation (c)
Fourier augmentation.

1. Introduction

Person re-identification (re-ID) is an important task in
intelligent surveillance, which aims at identifying the per-
son across different camera views. Recent person re-ID
methods have achieved impressive performance owing to the
advancement of deep convolutional neural networks (CNNs)
[52, 67, 51, 31, 6, 88, 27]. However, the success is mainly at-
tributed to supervised learning over massive human-labeled
data. The need of time-consuming manual annotations sub-
stantially limits the scalability of re-ID models. Besides,
directly applying a pre-trained re-ID model to other new
domains may cause significant performance drop due to the
inherent data distribution shift across different surveillance
cameras. Recently, unsupervised domain adaptation (UDA)
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has thus attracted much attention to adapt the model learned
on a labeled source domain to an unlabeled target domain.
Prior unsupervised re-ID methods typically rely on iterative
training with pseudo labels generated by clustering algo-
rithms on the target domain [79, 70, 17, 35]. These existing
methods have shown promising results but still sustain two
main limitations. (1) The label noise may mislead an unex-
pected optimization direction for network training with the
unlabeled target data. (2) The knowledge (i.e. the model abil-
ity of distinguishing person identities) learned on source can
not be sufficiently transferred to target by simply fine-tuning
the source model.

To alleviate these problems, we investigate three aspects
to facilitating the learning of discriminative feature represen-
tations for better recognizing target classes by (1) reducing
the label noise on the unlabeled target data, (2) better trans-
ferring knowledge learned from source to target, and (3)
adding extra training constraints. Accordingly, we propose
a unified framework to achieve these goals. First, inspired
by the recent contrastive learning algorithm for unsuper-
vised visual representation learning [21, 8, 66], we propose
a cluster-wise contrastive learning algorithm to learn noise-
tolerant representations on the unlabeled target data (Figure 1
(a)). Specifically, we construct a momentum-based moving-
average (MMA) feature encoder and build a dynamic queue
to provide sufficient negative samples across multiple mini-
batches for training. Unlike the instance-wise supervision
[21, 8, 66], we incorporate cluster-wise supervision gen-
erated by clustering, which is amenable for the high-level
re-ID task. Our contrastive learning and feature clustering is
performed in an alternating way so that the noise of pseudo
labels can be largely reduced. Second, most of existing
methods apply a two-stage training process in which the
network is first pre-trained on source and then fine-tuned on
target. Instead of directly fine-tuning, we adopt a collabo-
rative learning mechanism on both domains with a shared
feature encoder (Figure 1 (b)). By gradually decreasing the
training weights on source and increasing weights on target,
we can better transfer the model ability of distinguishing
person identities from source to target. Third, we propose to
impose extra constraints in the Fourier space for maximizing
the class separability of re-ID models (Figure 1 (c)). We
view the amplitude spectrum feature as a kind of nonlinear
transformations and compute additional loss functions (e.g,
cross-entropy loss) to augment training. In summary, with
the proposed method, we can learn better discriminative fea-
ture representations and further improve the state-of-the-art
performance of unsupervised re-ID.

The main contributions of this paper are summarized as
follows. (1) We propose a cluster-wise contrastive learning
algorithm to learn noise-tolerant feature representations on
the unlabeled target data. The label noise can be largely
reduced in the iterative optimization procedure of feature

clustering and learning. (2) We propose a progressive do-
main adaptation strategy to gradually transfer the knowledge
learned by the labeled source domain into the unlabeled tar-
get domain for unsupervised re-ID. (3) We propose to impose
Fourier constraints to further maximize the class separability
of the model. We observe the frequency spectrum features
can be complementary to the spatial features and benefi-
cial for improving the re-ID performance. (4) Empirical
evaluations demonstrate that our method consistently outper-
forms prior state-of-the-art methods on multiple benchmarks
by a large margin. Particularly, using the same ResNet-50
backbone, we surpass MMT [17] by 8.1%, 9.9%, 11.4%
and 11.1% mAP on the Market-to-Duke, Duke-to-Market,
Market-to-MSMT and Duke-to-MSMT tasks, respectively.

2. Related Work

Unsupervised Visual Representation Learning. Unsu-
pervised visual representation learning aims to learn rich
feature representations from large-scale unlabeled images,
which is also related to our work. The key idea to perform
unsupervised learning is constructing pretext tasks with free
supervision. Typical methods include recovering the in-
put image by auto-encoders [57, 43, 77], predicting spatial
context [13, 40], clustering features [4, 3], tracking [61] or
segmenting objects [42] in videos and discriminating the
instance-wise samples [66, 21, 8]. Similar to [21], we also
build a contrastive self-supervised learning framework to
learn representations on the unlabeled target domain. How-
ever, in contrast to relying on the instance-wise supervision
by maximizing agreement between differently augmented
views of the same instance, we incorporate cluster-wise su-
pervision generated by iterative clustering into contrastive
learning. We observe that the class information is more suit-
able to learn discriminative representations for the re-ID task.
Moreover, rather than collecting all the samples from the
queue [21], we filter out those having the same pseudo-class
with the anchor to ensure the quality of negative samples.
Contrastive learning is also widely used in many supervised
learning methods where training samples are off-the-shelf
with labels. In this work, we focus on how to collect mean-
ingful pairs and reduce the label noise in the unsupervised
case.

Unsupervised Domain Adaptation. Generic unsuper-
vised domain adaptation (UDA) methods address the closed-
set problem where the target domain shares the same se-
mantic classes with the source domain. Typical UDA meth-
ods focus on reducing the domain discrepancy by align-
ing data distribution between source and target domains
[69, 47, 74, 46, 48], training adversarial domain-classifiers
to encourage features of source and target domains to be
indistinguishable [78, 55, 28], or learning domain-specific
properties [2, 19, 38, 78, 5]. In this work, we tackle the more

8527



challenging open-set problem of UDA for re-ID, where the
classes between the source and target domains are not shared.
In fact, our method does not rely on any assumption on the
classes. The classes between source and target can be exactly
the same, totally different or partially shared.

Unsupervised Cross-Domain Person Re-ID. Although
supervised person re-ID methods have achieved great per-
formance on the trained data domain [23, 52, 67, 41,
51, 31, 6, 88, 24, 25, 80], the accuracy often drops sig-
nificantly when directly testing on a different domain.
Recently, unsupervised cross-domain person re-ID meth-
ods [7, 12, 49, 34, 60, 83] have attracted much attention to
address the problem. Typical approaches [79, 70, 44, 17, 71]
take a pre-trained model on the labeled source domain as
the initialized feature encoder, and further optimize it on the
unlabeled target domain by metric learning or unsupervised
clustering. Instead of directly fine-tuning the source model,
we progressively transfer the knowledge from source to tar-
get. Some approaches [17, 86, 73] apply soft labels for train-
ing on target, which can reduce the effect of noise to some
extent in the optimization process. NRMT [81] introduces
a collaborative clustering to fit to noisy instances. Another
line of recent work [75] attempts to learn domain-invariant
features from style-transferred images. DG-Net++ [89] dis-
entangles feature space from each domain into id-related
and id-unrelated components However, the model perfor-
mance heavily counts on the image generation quality and
how to optimize the class separability of learned represen-
tations is often neglected. Recent work of [18, 82] jointly
optimizes both source and target domains to produce reliable
pseudo labels. Our work is related to [18] in the aspect of
contrastive learning. The main differences are three-fold.
(1) For the contrastive loss, [18] integrates instance-level,
cluster-level and class-level supervision on both domains
while we only employ cluster-level supervision on the target
data. Besides, we do not rely on additional tricks to select
clusters (e.g., independence or compactness used in [18]).
(2) [18] also performs joint learning of source and target
domains. Differently, we focus on progressive training by
gradually decreasing the source weights and increasing the
target weights. (3) [18] only relies on conventional spatial
features while we propose to add Fourier constraints for
improving the class separability of re-ID models.

Learning in Fourier Space. The discrete Fourier trans-
form (DFT) converts a finite sequence of values into compo-
nents of different frequencies, which is a classical mathemat-
ical transform method and has many practical applications
such as digital signal processing and image processing. Its
fast computation algorithm of fast Fourier transform (FFT)
and the variant of discrete cosine transform (DCT) have
been widely used in data compression. Recently, Fourier
transform has also been explored for compressing CNNs
by grouping the frequency coefficients of kernel weights

                         

           

           

                      

     
 

 

      

    
 

       

               

                                

   

       

          
      

 

   
        

   

 

             

   
      

 

    

      

          

    

                      

     
 

      

 

Figure 2. Illustration of the proposed unified framework for unsu-
pervised cross-domain person re-ID.

into hash buckets [9], discarding the low-energy frequency
coefficients [63] or training with band-limited frequency
spectra [14]. Another line of recent work attempts to learn
straight from the compressed representations in the Fourier
space [54, 20, 15, 68] for efficient training and inference.
To reduce the discrepancy between the source and target
distributions, FDA [72] adopts style transfer in Fourier space
by swapping the low-frequency spectrum of source with the
target, which shows promising results on semantic segmen-
tation. However, image-level perceptual changes can cause
significant deterioration of the performance of person re-ID
since it relies heavily on the appearance characteristics of
persons. Different from prior methods, we apply 1D FFT
for converting the output of network from spatial space to
Fourier space, and then combine the losses that computed
on the FFT features for network optimization.

3. Methodology
We denote the source domain data as Ds =

{(xsi , ysi )}
Ns
i=1, where xsi and ysi indicate the i-th training

samples and its corresponding class label. The target domain
is denoted as Dt = {xti}

Nt
i=1, where class labels are not avail-

able. The goal of unsupervised cross-domain person re-ID is
to learn a mapping function fθ(·) to identify the class label
(i.e., person identity) for each target image, where θ is the
parameters to be learned. The general optimization target
can be formulated as:

L(θ) = λs(e) · Ls(θ) + λt(e) · Lt(θ), (1)

where Ls and Lt indicate the optimization targets on the
source and target domains, respectively. λs(e) and λt(e) are
variables that change over time (e means epoch) to control
training on the source and target domains, respectively.
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Figure 3. For a fair comparison, we first pre-train the networks
on the labeled source data, and then fine-tune these networks with
different contrastive learning methods on target. "B", "M" and "C"
represents "Baseline", "MoCo" and "CCL", respectively.

Most of existing methods adopt a two-stage optimization
pipeline to address this task. That is, the model is first pre-
trained on source using the ground-truth labels and then fine-
tuned on target using pseudo labels generated by clustering.
We formulate the two-stage baseline method as:

L(θ) = λs(e) · (Lce(θ; y
s) + Ltri(θ; y

s))

+ λt(e) · (Lce(θ; ŷ
t) + Ltri(θ; ŷ

t)),
(2)

λs(e) =

{
1 e ∈ (0, e1]

0 e ∈ (e1, e2]
, λt(e) =

{
0 e ∈ (0, e1]

1 e ∈ (e1, e2]
(3)

where Lce and Ltri represents the cross-entropy classi-
fication and triplet loss [26], respectively. ys and ŷt means
the ground-truth class labels on source and pseudo labels on
target, respectively.

However, the pseudo labels generated by clustering in-
evitably contain noise (i.e., wrong labels), which may cause
wrong optimization directions during network training.

3.1. Cluster-wise Contrastive Learning

In order to reduce label noise on the unlabeled target
data, we propose a cluster-wise contrastive learning algo-
rithm, which is inspired by the recent success of unsuper-
vised feature learning [21, 62]. In detail, we perform feature
clustering and contrastive learning in an alternating man-
ner, towards refining the noisy pseudo labels and updating
network weights iteratively. In each round of alternating
training, we first employ unsupervised feature clustering
(e.g., DBSCAN) to generate pseudo labels and design a
cluster-wise contrastive loss to train the network:

Ltccl(θ) = − log
exp (fθ(x

t)fθ(x
t
p)/τ)∑

xn∈Npast
exp (fθ(xt)fθ̂(x

t
n)/τ)

, (4)

where xtp and xtn indicate the positive (i.e., same pseudo
class) and negative (i.e., different pseudo classes) samples
to xt, respectively. θ̂ represents a momentum-based moving-
averaging (MMA) feature encoder to maintain consistency

(a) Person re-ID Performance (b) Clustering Performance

Figure 4. Illustration of the proposed progressive domain adaptation
(PDA) in term of the re-ID and clustering performance. (a) the
re-ID performance (mAP and rank-1 accuracy) on the test set. (b)
the clustering performance (NMI [64] and F-measure [1]) on the
training set.

between past and current features, which is updated as θ̂ ←
mθ̂ + (1 −m)θ during training. Here, m is a momentum
coefficient which is set to 0.99 in our method. We only
update the parameters of the regular encoder θ by back-
propagation and constrain no gradient back-propagating for
the MMA encoder θ̂. For the anchor xt, we select its positive
sample within the current batch and collect past negative
samples from previous batches. To implement cross-batch
sampling, we build a dynamic queue to memorize the past
features Npast. However, it is unreasonable to simply take
all the past features as negative samples because previous
batches may contain positive samples of the anchor. Hence,
based on pseudo labels generated in the current round, we
drop the instances which have the same class with the anchor
from the queue to ensure the quality of negative samples. By
collecting sufficient negative samples across multiple batches
for training, the network can be better optimized compared
to a naive contrastive loss with very limited training samples
within a single batch.

We summarize the main differences between CCL with
MoCo [21] as follows. First, MoCo relies on the instance-
wise supervision by maximizing agreement between dif-
ferently augmented views of the same instance, while we
extend it to a cluster-wise version by exploiting the pseudo
labels generated by clustering to construct pairs for learning.
We observe that such class information is more suitable for
the re-ID task. Second, in contrast to keep updating the
queue throughout the training process, we refresh the queue
when pseudo labels are updated by a new round of feature
clustering, owing to the fact of the class label of a specific
training sample is not consistent across different clustering
procedures.

Figure 3 reinforces our intuition that cluster-wise super-
vision is crucial for the re-ID performance. MoCo almost
fails on both benchmarks. By combining with the baseline
(Eq. 2), MoCo still yields inferior results. One can reason
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that instance-level supervision and its optimization target
of MoCo is different from the re-ID task. Training with
instance-wise pairs may hinder the learning of feature repre-
sentations to distinguish different classes. We also find that
CCL can boost the baseline by a large margin on both bench-
marks, validating the non-trivial design and effectiveness of
our method.

3.2. Progressive Domain Adaptation

Individually training each domain (Eq. 3) is not optimal
for knowledge transfer, especially when there is a large dis-
crepancy between source and target domains. Moreover,
when the number of labeled source images is limited, it can
easily induce an overfitting trap and hamper the knowledge
transfer from source to target.

To alleviate this problem, we propose a progressive do-
main adaptation strategy to gradually optimize L(θ) from
source to target. Specifically, we decrease the source train-
ing weights and increase the target training weights over
time. Unlike the two-stage training baseline (Eq. 3), we can
formulate λs and λt as:

λs(e) =


1, e ∈ (0, e1]

w(e), e ∈ (e1, e2]

0, e ∈ (e2, e3]

, λt(e) =


0, e ∈ (0, e1]

1− w(e), e ∈ (e1, e2]

1, e ∈ (e2, e3]

(5)

where w(e) defines a decay policy. For example, a multi-
step policy can be illustrated in Figure 2. The training pro-
cess is divided into three phases according to Eq. 5. First,
we follow common practice in supervised re-ID to pre-train
the model on source (L(θ) = Ls(θ)) as an initialization for
the subsequent optimization. Second, we jointly train the
network on both source and target domains. For the labeled
source data, the optimization objective remains the same as
the pre-training phase. For the unlabeled target data, the
optimization objective is combination of CCL, cross-entropy
and triplet losses based on pseudo labels. Third, since our
goal is to accurately predict the target classes as possible, we
continue to train the network with the target data only in the
final phase (L(θ) = Lt(θ)). Figure 4 shows the clustering
and re-ID performance throughout training. According to
the clustering performance, the results imply that our method
can gradually reduce label noise and yield cleaner clusters
compared to the two-stage baseline. According to the re-ID
performance, the results imply that our method can learn
better features gradually and achieve higher recognition per-
formance than the baseline.

3.3. Fourier Augmentation

Inspired by [53], we consider to impose extra optimiza-
tion constraints in Fourier space. Specifically, we first apply
Fast Fourier Transform (FFT) to compute the real and imagi-
nary components of the 1D CNN output features. We then
exploit the amplitude spectrum M(x) = ||F(fθ(x))|| to

(a) w/o FA (a) w/ FA
Figure 5. Analysis of the proposed Fourier augmentation (FA) in
feature space using t-SNE [56] visualization. (Zoom-in for best
view)

compute the cross-entropy loss for the target data. In or-
der to better understand the proposed Fourier augmentation
scheme, we provide analysis in the following aspects. (1)
M(·) can be viewed as a kind of nonlinear mappings. Thus,
joint training on the spatial and Fourier features implies that
loss functions are computed for different nonlinear features
of a training image. We empirically find that such amplitude
spectrum features performs better than an extra single MLP
layer. (2) Figure 5 visualizes the CNN feature distribution
with and without our Fourier augmentation. he qualitative
results show that by imposing these extra constrains for train-
ing, different classes can be better distinguished. The quali-
tative results show that by imposing these extra constrains
for training, different classes can be better distinguished.
(3) In mathematics, Parseval’s Theorem (a special case of
Plancherel Theorem) states the relation between a signal and
its Fourier transform. In our case, the relation becomes:

‖fθ(x)‖2 =
1

D
‖M(fθ(x))‖2 (6)

where D means the feature length. According to this nature,
the triplet losses based on Euclidean distance will be equiva-
lent for the spatial and Fourier features. Hence, we only add
the cross entropy loss in the Fourier space.

3.4. Overall Optimization

The overall optimization objective of our method can be
defined as:

L(θ) = λs(e)·Ls+λt(e)·(δLtccl+γLtspa+(1−γ)Ltfre), (7)

where γ is a loss weight that balances the spatial and Fourier
losses. δ controls the effect of cluster-wise contrastive learn-
ing. We compute both of the cross-entropy and triplet losses
for Ls and Ltspa and only compute the cross-entropy loss for
Ltfre.
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Table 1. Performance comparisons on multiple benchmarks for unsupervised cross-domain person re-ID. The supervised baseline is obtained
by training with cross-entropy and triplet losses using the ground-truth labels of target data. More stronger supervised baseline is obtained
by combining the loss in Fourier space. † means our re-implementation of [17] with the DBSCAN clustering algorithm for fair comparisons.
The results of "Ours*" are obtained by combining the proposed method with soft cross-entropy loss, soft triplet loss and mutual learning
strategy introduced by [17].

Method Market-to-Duke Duke-to-Market Market-to-MSMT Duke-to-MSMT

mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

PUL [16] TOMM’18 16.4 30.0 20.5 45.5 - - - -
HHL [85] ECCV’18 27.2 46.9 31.4 62.2 - - - -
PTGAN [65] CVPR’18 - 27.4 - 38.6 2.9 10.2 3.3 11.8
TJ-AIDL [59] CVPR’18 23.0 44.3 26.5 58.2 - - - -
ARN [33] CVPRW’18 33.4 60.2 39.4 70.3 - - - -
MMFA [34] BMVC’19 24.7 45.3 27.4 56.7
PDA-Net [32] ICCV’19 45.1 63.2 47.6 75.2 - - - -
PCB-PAST [79] ICCV’19 54.3 72.4 54.6 78.4 - - - -
SSG [70] ICCV’19 53.4 73.0 58.3 80.0 13.2 31.6 13.3 32.2
CR-GAN [10] ICCV’19 48.6 84.7 54.0 77.7 - - - -
ECN++ [87] TPAMI’20 54.4 74.0 63.8 84.1 15.2 40.4 16.0 42.5
MMCL [58] CVPR’20 51.4 72.4 60.4 84.4 15.1 40.8 16.2 43.6
SNR [29] CVPR’20 58.1 76.3 61.7 82.8 - - - -
DG-Net++ [89] ECCV’20 63.8 78.9 61.7 82.1 - - - -
NRMT [81] ECCV’20 62.2 77.8 71.7 87.8 19.8 43.7 20.6 45.2
MEB-Net [76] ECCV’20 66.1 79.6 76.0 89.9 - - - -
MMT (k-means) [17] ICLR’20 65.1 78.0 71.2 87.7 22.9 49.2 23.5 50.1
MMT(DBSCAN)† [17] ICLR’20 62.7 76.8 73.5 89.7 24.4 50.7 25.2 53.2
SpCL [18] NeurIPS’20 - - - - 26.8 53.7 - -
Baseline Ours 53.7 69.9 63.6 82.5 14.5 33.3 17.1 38.4
Baseline + CCL Ours 59.6 75.0 71.1 87.8 20.1 42.7 22.9 48.4
Baseline + CCL + PDA Ours 67.3 80.9 80.3 92.5 30.7 59.0 30.1 59.5
Baseline + CCL + PDA + FA Ours 69.4 82.7 82.2 93.6 32.9 61.8 32.7 62.7
Baseline + CCL + PDA + FA Ours* 70.8 83.5 83.4 94.2 35.8 65.8 36.3 66.6

Supervised baseline 72.3 84.4 82.8 93.6 44.7 72.4 44.7 72.4
Supervised baseline + FA 74.4 86.0 84.5 94.8 47.1 75.2 47.1 75.2

Table 2. Comparison with the state-of-the-art unsupervised re-ID
methods under the synthetic-to-real setting.

Method PersonX-to-Market PersonX-to-MSMT

mAP rank-1 mAP rank-1

MMT [17] 70.7 86.2 18.2 39.5
SpCL [18] 73.8 88.0 22.7 47.7

Ours 78.4 91.3 26.2 50.1
Ours* 79.6 92.5 28.9 53.2

Table 3. Comparison with other unsupervised domain adaptation
methods for Vehicle re-ID tasks. The results of MMT are taken
from [18].

Method VehicleID-to-VeRi VehicleX-to-VeRi

mAP rank-1 mAP rank-1

MMT [17] 35.3 74.6 35.6 76.0
SpCL [18] 38.4 79.9 38.3 82.1

Ours 41.2 83.6 41.4 85.3
Ours* 42.7 84.7 42.5 86.5

4. Experiments

4.1. Datasets

We evaluate the proposed PDA algorithm on three real-
world person re-ID datasets: DukeMTMC-reID [45], Market-
1501 [84] and MSMT17 [65]. The DukeMTMC-reID dataset

Table 4. Performance comparisons with other contrastive learning
methods and our method. "†" means our implementation based on
the official code. The cross-entropy and triplet losses are not used
for all the experiments here.

Method Market-to-Duke Duke-to-Market

mAP rank-1 mAP rank-1

SupCon† [30] 66.0 79 .4 75.4 88.1

InstDisc† [66] 1.9 4.1 2.4 5.9
MoCo† [21] 10.3 17.7 11.7 26.2

CCL (Ours) 56.8 71.9 67.5 84.2

contains 1,812 identities with 36,411 images captured by
eight cameras, which splits 702 identities with 16,522 im-
ages for training and the remaining images for testing. The
Market-1501 dataset consists of 32,688 images of 1,501 iden-
tities captured by six cameras, where the training set contains
12,936 images of 751 identities, and the test set contains
19,732 images of 750 identities. The MSMT17 dataset is a
large-scale person re-ID dataset, which consists of 126,441
bounding boxes of 4,101 identities captured by fifteen cam-
eras, for which 32,621 images of 1,041 identities are used
for training. We report performance on four real-world unsu-
pervised domain adaptation tasks: Duke-to-Market, Market-
to-Duke, Duke-to-MSMT and Market-to-MSMT, where the
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ground-truth labels are provided on source only. We also
conduct domain adaptation experiments under the synthetic-
to-real setting, where PersonX [50] is used as the synthetic
source domain. We use the standard mean average precision
(mAP) and cumulative matching characteristics (CMC) at
rank-1 accuracy as evaluation metrics.

4.2. Implementation Details

We use the network (e.g., ResNet-50 [22]) pre-trained on
ImageNet [11] as the initial feature encoder. We first train
the network for e1 = 20 epochs on source. For progressive
training on both source and target domains, we adopt a k-
step policy where the loss weights of source and target are
decreased and increased by k times, respectively. We train 30
epochs (i.e., e2 = 50) in this phase. To learn discriminative
features as possible to distinguish target classes, we continue
to optimize the model with the target data only in another
30 epochs (i.e., e3 = 80). The output of MMA encoder
is used for inference. For hyper-parameters δ and γ, we
conduct parameter analysis to obtain the best choices (δ =
0.1, γ = 0.7) on the Market-to-Duke benchmark and fix
them on the other benchmarks. For cluster-wise contrastive
learning, we set the temperature parameter τ as 0.07 [21]
and set the maximum length of the queue as 1024. The
training data are cropped to 256 × 128 and augmented by
flipping and rotating with a probability of 0.5. The network
is optimized by Adam optimizer with β1 = 0.9, β2 = 0.999
and weight decay of 5 × 10−4. We set a constant learning
rate of 3.5× 10−3 for the entire training process. All of our
experiments are conducted on PyTorch 1.1 with 4 TITAN XP
GPUs. It costs 8, 10, 15, 15 hours for training our models on
Duke-to-Market, Market-to-Duke, Market-to-MSMT, Duke-
to-MSMT, respectively.

4.3. Comparisons to the State-of-the-Arts

We compare the proposed algorithm with the state-of-the-
art methods on multiple real-world benchmarks for unsuper-
vised cross-domain person re-ID in Table 1. Our method
consistently outperforms the existing methods by a large mar-
gin and achieves the best mAP performance on all the four
benchmarks. Specifically, with the same backbone (ResNet-
50) and clustering algorithm (DBSCAN), our method sur-
passes MMT [17] by 8.1%, 9.9%, 11.4% and 11.1% mAP
on the Market-to-Duke, Duke-to-Market, Market-to-MSMT
and Duke-to-MSMT benchmarks, respectively. Compared
to the other recent unsupervised re-ID methods (e.g., by
alternatively training and clustering [70, 75, 81] or generat-
ing synthetic training data by GAN [10]), our PDA method
can also obtain superior performance in terms of both mAP
and rank-1 accuracy. Compared to the [18] which also uses
contrastive learning, our method achieves notable gains on
the Market-to-MSMT benchmark, e.g., +9.0% of mAP and
+12.1% of rank-1 accuracy. We implement two supervised

Table 5. Ablation studies of the proposed cluster-wise contrastive
learning (CCL) algorithm on Market-to-Duke and Duke-to-Market
benchmarks. The cross-entropy and triplet losses are used for all
the experiments here.

Method Market-to-Duke Duke-to-Market

mAP rank-1 mAP rank-1

(i). w/o cluster-wise pairs 37.3 50.7 46.1 66.5
(ii). w/o past negatives 66.8 80.0 78.6 92.7
(iii). w/o instance drop 68.1 81.4 81.0 93.0
(iv). |Npast| = 512 68.5 82.0 81.6 93.4
(v). |Npast| = 1024 69.4 82.7 82.2 93.6
(vi). |Npast| = 2048 67.6 80.8 80.7 92.9

baselines with the standard cross-entropy and triplet losses
using the ground-truth labels of target data. Our method
can achieve similar or comparable results in the challenging
unsupervised learning scenario. We also compare with exist-
ing unsupervised re-ID methods under the synthetic-to-real
setting in Table 2. Our method consistently surpasses prior
state-of-the-art methods on both benchmarks with a large
margin, e.g., outperforming [18] by 5.8% of mAP and 6.2%
rank-1 accuracy on PersonX-to-Market. We also evaluate
our method on other object re-ID benchmarks [37, 36, 39]
in Table 3. Our method achieves superior performance than
MMT and SpCL by a large margin, e.g., +4.3% and +4.2%
mAP over SpCL on VehicleID-to-VeRi and VehicleX-to-
VeRi, repectively.

4.4. Ablation Study

Contributions from Algorithmic Components. Table
1 also shows the relative contributions from each algorithmic
component. Our cluster-wise contrastive learning algorithm
brings significant improvement over the baseline, e.g., 53.7%
vs. 59.6% mAP on Market-to-Duke. With the proposed
progressive domain adaptation strategy, we obtain another
remarkable performance gains, e.g., 59.6% vs. 67.3%. By
adding the extra loss for training in Fourier space, we can ob-
tain consistent improvements by around 2% mAP for all the
four benchmarks. By combining our method with other train-
ing strategies proposed by MMT (e.g., soft losses and mutual
learning), we can further obtain improved performance.

Ablation studies on contrastive learning. First, we
compare the proposed CCL algorithm with three contrastive
learning methods in Table 4. For a fair comparison, we first
pre-train the networks on the labeled source data, and then
fine-tune these networks with different contrastive losses on
target. For the supervised baseline [30], we use the GT labels
of target data to generate the training pairs. For other unsu-
pervised contrastive learning methods [66, 21], we find they
almost fail on these benchmarks. This is because instance-
level supervision is often used to learn general feature rep-
resentations and its optimization target is different from the
re-ID task. Directly applying such instance-wise pairs for
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Table 6. Ablation studies of the proposed progressive domain adap-
tation (PDA) strategy on Market-to-Duke and Duke-to-Market
benchmarks.

Method Market-to-Duke Duke-to-Market

mAP rank-1 mAP rank-1

(i). source only 31.1 48.8 33.7 62.3
(ii). two-stage training 62.1 77.7 74.0 89.2
(iii). static weights (0.8;0.2) 51.9 67.2 62.7 79.1
(iv). static weights (0.5;0.5) 56.2 73.8 66.8 84.2
(v). static weights (0.2;0.8) 58.8 74.9 68.8 85.5
(vi). 2-step policy 67.8 81.2 80.8 92.4
(vii). 3-step policy 69.4 82.7 82.2 93.6
(viii). 4-step policy 68.2 81.6 81.1 92.9
(ix). linear policy 67.6 81.0 80.7 92.5

training may hinder the discriminability of model to dis-
tinguish different high-level classes (i.e., person identities).
Second, we conduct detailed ablation experiments on our
cluster-wise contrastive learning algorithm in Table 5. With-
out cluster-wise pairs (i.e., using instance-wise pairs as in
[21]), the performance drops significantly on both bench-
marks (e.g, only 37.3% mAP on Market-to-Duke and 46.1%
mAP on Duke-to-Market). Without collecting negative sam-
ples in the past iterations (i.e., collecting them from the
current batch only) or without dropping positive instances
from past features, both experiments obtain degraded perfor-
mance. We also test different sizes of the queue to store the
past features for training and find |(N)past| = 1024 performs
best in our setting.

Effect of progressive weights. We conduct ablation
experiments to show the effectiveness of our progressive
domain adaptation strategy in Table 6. The results of (i)
show that the performance is poor by directly testing the pre-
trained source model on target without training. This is not
surprising since no knowledge is transferred to the unlabeled
target domain. Two-stage training (i.e., first pre-training on
source and then fine-tuning on target) obtain inferior results
compared to our progressive training strategy. We test dif-
ferent combinations of static loss weights for joint training
source and target. The best choice (λs = 0.2, λt = 0.8) is
still worse than our progressive weights. We also investigate
different multi-step policies as well as the linear policy1 and
find that 3-step policy performs best in our experiments.

Fourier space vs. Spatial space. The motivation of
our Fourier augmentation to exploit extra feature space to
facilitate the network training. We compare the proposed FA
with other alternative nonlinear mappings in Table 7. The
proposed FA outperforms a single MLP layer (FC + ReLU)
on both Market-to-Duke and Duke-to-Market benchmarks,
which validates the superiority of the proposed method. With
the spatial features or the Fourier features only for training,
we achieve similar results on both benchmarks (e.g., 67.3%
vs. 67.6% mAP on Market-to-Duke). By joint training in

1linear policy: w(e) = 1
e1−e2

· e+ e2
e2−e1

Table 7. Comparisons with different nonlinear mappings.

Method Market-to-Duke Duke-to-Market

mAP rank-1 mAP rank-1

MLP 68.2 81.5 81.3 93.2

Spatial 67.3 80.9 80.3 92.5
Fourier 67.6 81.3 80.8 92.6

Spatial + Fourier 69.4 82.7 82.2 93.6

Table 8. Ablation studies on loss weights δ and γ.

Loss weights Market-to-Duke Duke-to-Market

δ γ mAP rank-1 mAP rank-1

0.01

0 66.7 80.9 79.4 91.2
0.5 67.7 81.7 80.1 92.1
0.7 68.2 82.4 80.9 92.8
1 66.1 80.2 78.5 90.6

0.1

0 67.6 81.3 80.8 92.6
0.5 69.2 82.4 81.8 93.6
0.7 69.4 82.7 82.2 93.6
1 67.3 80.9 80.3 92.5

1

0 66.0 79.8 77.3 91.3
0.5 66.8 80.5 78.1 91.9
0.7 67.2 80.9 78.7 92.5
1 65.4 79.1 76.5 90.8

the spatial and Fourier space, we can further improve the
performance.

Hyper-parameter analysis. To investigate the impor-
tance of loss weights δ and γ, we conduct experiments by
changing γ from 0 to 1 under a fixed δ. Table 8 shows that
δ = 0.1 and γ = 0.7 perform best on both Market-to-Duke
and Duke-to-Market benchmarks.

5. Conclusion
In this work, we propose a unified framework by incor-

porating three technical schemes to address the challening
unsupervised cross-domain re-ID problem. To learn noise-
tolerant feature representations, we propose a cluster-wise
contrastive learning algorithm by iterative optimization of
feature learning and clustering. Instead of simply fine-tuning
the pre-trained source model, we adopt a progressive train-
ing mechanism to gradually transfer the knowledge from
source to target. Furthermore, We impose extra training
constraints on the Fourier space for further maximizing the
class separability of re-ID models. Our method consistently
outperforms prior unsupervised re-ID methods on multiple
benchmarks by a large margin. We believe that an extension
of this work is to address large variations (e.g., large poses,
partial occlusion) in the unsupervised setting.
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