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Abstract

We present RePOSE, a fast iterative refinement method
for 6D object pose estimation. Prior methods perform re-
finement by feeding zoomed-in input and rendered RGB
images into a CNN and directly regressing an update of
a refined pose. Their runtime is slow due to the com-
putational cost of CNN, which is especially prominent in
multiple-object pose refinement. To overcome this problem,
RePOSE leverages image rendering for fast feature extrac-
tion using a 3D model with a learnable texture. We call
this deep texture rendering, which uses a shallow multi-
layer perceptron to directly regress a view-invariant image
representation of an object. Furthermore, we utilize differ-
entiable Levenberg-Marquardt (LM) optimization to refine
a pose fast and accurately by minimizing the distance be-
tween the input and rendered image representations with-
out the need of zooming in. These image representations
are trained such that differentiable LM optimization con-
verges within few iterations. Consequently, RePOSE runs
at 92 FPS and achieves state-of-the-art accuracy of 51.6%
on the Occlusion LineMOD dataset - a 4.1% absolute im-
provement over the prior art, and comparable result on the
YCB-Video dataset with a much faster runtime. The code is
available at https://github.com/sh8/repose.

1. Introduction

In many applications of 6D object pose estimation like
robotic grasping and augmented reality (AR), fast runtime
is critical. State-of-the-art 6D object pose estimation meth-
ods [19, 40, 28] demonstrate that iterative 6D object pose re-
finement improves the accuracy largely. Nevertheless, since
recent 6D object pose refinement methods [21, 19] directly
regress an update of a pose to align a zoomed-in input image
of an object against a template image (e.g., 3D rendering of
that object) using a Convolutional Neural Network (CNN),
we presume that the CNN’s computational cost of zoomed-
in inputs can be a bottleneck toward the real-time 6D object
pose estimation.

We have mainly two choices of refinement strategies. As
described, the former one is CNN-based direct regression,
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Figure 1: RePOSE Framework: (a) 3D model with deep
texture is projected to obtain (b) the rendered image rep-
resentation with the deep texture renderer. (c) The pose is
refined iteratively by minimizing the projection error of the
rendered image representation and (e) the CNN feature ex-
tracted from (d) the input image via Levenberg-Marquardt
(LM) optimization.

which generally requires large computational cost. The lat-
ter one is a classical non-linear optimization [24] which iter-
atively updates a pose by minimizing the photometric error
between input and template images. Their runtime per itera-
tion is quite fast. Since the photometric error explicitly con-
siders each pixel, they can obtain enough details for accu-
rate optimization without the need of zooming in. However,
they can fail under diverse illumination or gross pose differ-
ences. Although non-linear least squares methods such as
inverse compositional image alignment [5, 22] or active ap-
pearance models [13, 23] are extremely efficient, straight-
forward implementations of such methods can be unstable
under significant illumination or pose changes. In addition,
their runtime can be slower if many iterations are performed
until convergence.

We leverage and improve the latter method to realize
both quick and accurate refinement. In this paper, we pro-
pose RePOSE, a new feature-based non-linear optimization
framework for 6D object pose refinement. The main tech-
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nical insight presented in this work is that one can learn
an image feature representation which is both robust for
alignment and fast to compute. As stated earlier, the main
impediment of CNN-based refinement methods is that the
deep feature must be extracted during the refinement pro-
cess iteratively. To remove this, we show that it is possi-
ble to directly render deep features using a simple graphics
render. The rendering process decouples the shape of the
object from the texture. At the time of rendering, texture is
mapped to the 3D shape and then projected as a 2D image.
Instead of mapping an RGB valued texture to the object, we
can alternatively render a deep feature texture. Then, the
rendered object can be directly aligned to the deep features
of the input image. By retaining the deep feature represen-
tation during rendering, the pose alignment is robust and the
refinement process becomes very efficient.

RePOSE refines an object pose by minimizing the dis-
tance between the deep features of the input and rendered
images. Since the input image is fixed during iterative re-
finement, its feature is only computed once using a CNN.
In contrast, the deep feature of the template image are di-
rectly generated using a simple computer graphics renderer.
The rendering process takes less than a millisecond which
greatly increases the speed of the iterative refinement pro-
cess. The deep feature representation is learned such that
nonlinear optimization can be easily performed through a
differentiable LM optimization network [24]. We experi-
mentally found 5 iterations are enough to converge, which
contributes to fast 6D object pose refinement.

RePOSE has several practical advantages over recent
CNN-based regression methods: 1) RePOSE can be excep-
tionally fast. — In the case of 1 iteration, RePOSE runs at
181 FPS for 5 objects and 244 FPS for 1 object, 2) RePOSE
is data efficient. — Since RePOSE considers projective ge-
ometry explicitly, there is no need to learn the mapping of
the deep feature into an object’s pose from training data. In
our experiments, we show that RePOSE achieves better or
comparable performance with much fewer number of train-
ing images than prior methods, and 3) RePOSE does not
request RGB textures of a 3D model. — It has been known
that RGB texture scanning has troubles with metalic, dark-
colored, or transparent objects even with the latest 3D scan-
ner [1]. We believe that the requirement of RGB textures
by recent CNN-based regression methods [21, 19] makes
the implementation in the real world more challenging.

We evaluate RePOSE on three popular 6D object esti-
mation datasets - LineMOD [15], the challenging Occlu-
sion LineMOD [6], and YCB-Video [39]. RePOSE sets a
new state of the art on the Occlusion LineMOD (51.6%) [6]
dataset and achieves comparable performance on the other
datasets with much faster speed (80 to 92 FPS with 5 iter-
ations). Additionally, we perform ablations to validate the
effectiveness of our proposed methods.

2. Related Work

Two-stage pose estimation methods Recently, Ober-
weger [26], PVNet [27], DPOD [40], and HybridPose [33]
have shown excellent performance on 6D object pose es-
timation using a two-stage pipeline to estimate a pose: (i)
estimating a 2D representation (e.g. keypoints, dense corre-
spondences, edge vectors, symmetry correspondences), (ii)
PnP algorithm [20, 11] for pose estimation. DOPE [36] and
BB8 [28] estimate the corners of the 3D bounding box and
run a PnP algorithm. Instead of regarding the corners as
keypoints, PVNet [27] places the keypoints on the object
surface via the farthest point sampling algorithm. PVNet
also shows that their proposed voting-based keypoint detec-
tion algorithm is effective especially for occluded objects.
HybridPose [33] uses multiple 2D representations includ-
ing keypoints, edge vectors, and symmetry correspondences
and demonstrates superior performance through constraint
optimization. DPOD [40] takes advantage of the dense cor-
respondences using a UV map as a 2D representation. How-
ever, since the PnP algorithm is sensitive to small errors
in the 2D representation, it is still challenging to estimate
the object pose especially under occlusion. RePOSE adopts
PVNet [27] as the initial pose estimator using the official
implementation.

Pose refinement networks Recent works [39, 34, 40, 33,
21] have demonstrated that using a pose refinement network
after the initial pose estimator is effective for 6D object
pose estimation. For practical applications, the runtime of
the pose refinement network is crucial. PoseCNN [39] and
AAE [34] incorporates an ICP algorithm [41] using depth
information to refine the pose with a runtime of around
200 ms. SSD6D [17] and HybridPose [33] proposed to re-
fine the pose by optimizing a modification of reprojection
error. DeepIM [21], DPOD [40], and CosyPose [19] in-
troduce a CNN-based refinement regression network using
the zoomed-in input image and a rendered object image.
Their methods require a high-quality texture map of a 3D
model to compare the images. However, it is still chal-
lenging to obtain accurate texture scans of metalic, dark-
colored, or transparent objects. NeMO [38] proposes a pose
refinement method using the standard differentiable render-
ing and learning the texture of a 3D model via contrastive
loss. However, gradient descent is used for optimization,
hence, it takes more than 8s for inference and is not fast
enough for real-time applications.

Non-linear least squares optimization Non-linear least
squares optimization is widely used in machine learning. In
computer vision, it is often utilized to find an optimal pose
which minimizes the reprojection error or photometric error
[4, 25, 32]. Recently some works [35, 37, 12] incorporate
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Figure 2: Overview of the RePOSE refinement network. Given an input image I and the template 3D model M with
deep textures, U-Net and deep texture renderer output features Finp and Frend respectively. We use Levenberg-Marquardt
optimization [24] to obtain the refined pose Pref . The refined pose Pref after N iterations is used to compute the loss
LADD(−S). The pre-trained encoder of the initial pose estimator is used. The decoder of U-Net and deep textures (seed
parameters, and fc layers) are trained to minimize LADD(-S) and Ldiff.

non-linear least squares algorithms like Gauss-Newton and
Levenberg-Marquardt [24] into a deep learning network for
efficient feature optimization in VisualSLAM. RePOSE is
inspired by similar formulation as in [35].

3. RePOSE: Fast 6D Object Pose Refinement
Given an input image I with a ground-truth object pose

Pgt and the template 3D model M, RePOSE predicts pose
P̂ of model M which matches Pgt in I. We extract a fea-
ture Finp from image I using a CNN Φ i.e. Finp = Φ(I).
RePOSE then refines the initial pose estimate Pini = Ω(I)
where Ω is any pose estimation method like PVNet [27]
and PoseCNN [39] in real time using differentiable Leven-
berg–Marquardt (LM) optimization [24]. RePOSE renders
the template 3D model with learnable deep textures in pose
P to extract feature Frend. The pose refinement is performed
by minimizing the distance between Finp and Frend. We now
describe in detail (1) Finp extraction, (2) Frend extraction
and finally (3) the pose refinement using LM optimization.

3.1. Feature Extraction of an Input Image Finp

We adopt a U-Net [29] architecture for the CNN Φ. The
decoder outputs a deep feature map for every pixel in I. The

per-pixel feature Finp ∈ Rw×h×d is extracted by the de-
coder. Figure 1 (b) provides a visual illustration of Finp ex-
tracted from the input image I. Note that the channel depth
d is a flexible parameter but we found d = 3 to be optimal.
The pre-trained weights of PVNet [27] or PoseCNN [39] are
used for the encoder and only the decoder is trained while
training RePOSE.

3.2. Template 3D Model Rendering Frend

The template 3D model M with pose P = {R, t} where
R is 3D rotation and t is 3D translation, is projected to
2D to render the feature Frend. Let the template 3D model
M = {V, C,F} be represented by a triangular watertight
mesh consisting of N vertices V = {Vn}Nn=1 where Vn ∈
R3, faces F and deep textures C. Vn is the 3D coordinate of
the vertex in the coordinate system centered on the object.
Each vertex Vn has a corresponding vertex learnable texture
Cn ∈ Rd, C = {Cn}Nn=1, which is learned. Note that
the dimensions of the vertex learnable texture d must match
depth dimension of input image feature Finp so that they can
be compared during alignment.

RePOSE projects the 3D mesh onto to the image plane
using a pinhole camera projection function π (homogeneous
to inhomogeneous coordinate conversion). Specifically, we

3305



𝐶!"

𝐶!#

𝐶!$

𝑝!𝑤!# 𝑤!"

𝑤!$

𝑉!#
𝑉!"

𝑉!$

Figure 3: Rasterization of deep textures into a pixel pn
as the weighted sum of Ci

n using wi
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∑3

i w
i
n = 1.

map the vertex Vn to v ∈ R2 using eq 1.

vn = π
(
VnR

⊤ + t⊤
)

∀ n (1)

The vertex deep textures Cn ∈ R3 are learnable and
computed using a 2-layer fully-connected network. The
deep texture at each pixel is calculated by rasterization us-
ing the deep textures Cn in barycentric coordinates w as
shown in Figure 3. This operation can be parallelized using
a GPU. Our custom implementation of the [16]’s renderer
takes less than 1 ms to render Frend. Frend(x, y) at a pixel
location (x, y) is computed as follows:

Frend(x, y) =

3∑

i=1

wi
nC

i
n (2)

where the triangular face index n corresponding to the pixel
pn at (x, y) is found by ray tracing and wi is the normalized
barycentric weight corresponding to the coordinates (x, y)
inside the triangle (Figure 3). Simply put, the rendered deep
feature Frend(x, y) is a linear combination of deep textures
of the three projected vertices.

Frend is end-to-end learnable by backpropagation. The
gradient of Frend with respect to the three deep textures of
the triangle {Ci

n}3i=1 is as follows:

∂Frend(x, y)

∂Ci
n

= wi
n. (3)

Note that Frend is the output of a non-linear function Ψ
of the template 3D model M and its pose P, i.e., Frend =
Ψ(P,M) where Ψ is the deep texture renderer (Figure 2).

3.3. Levenberg-Marquardt (LM) Optimization

After computing Finp (Section 3.1) and Frend (Sec-
tion 3.2), the optimal pose P̂ is calculated by minimizing
the following objective function:

e = vec(Finp)− vec(Frend), (4)

P̂ = argmin
P

∑

k

||ek||22, (5)

where ek denotes the kth element of the error e ∈ Rwhd and
is the element-wise difference between the flattened values
of Finp and Frend. To perform optimization efficiently, we
only use the error e in the pixel where the mask of Frend
exists.

We solve this non-linear least squares problem using the
iterative Levenberg-Marquardt (LM) algorithm. The update
rule for the pose P is as follows:

∆P = (JT (e)J+ λI)−1JT (e) e, (6)
Pi+1 = Pi +∆P, (7)

where J is the Jacobian of the objective with respect to the
pose P, and λ is a learnable step size.

The Jacobian J can be decomposed as:

J =
∂Frend

∂P
=

∂Frend

∂x

∂x

∂P
(8)

where x is a vector of all 2D image coordinate. We com-
pute ∂Frend

∂x using a finite difference approximation and ∂x
∂P

is computed analytically. Please refer supplemental for the
details.

We minimize a loss function LADD(-S) based on the
ADD(-S) score:

LADD(-S) = SADD(-S)(P,Pgt) (9)

where S is the function used to calculate the distance used
in the ADD(-S) score. Additionally, we also minimize a
loss function Ldiff which ensures the value of the objective
function is minimized when the pose P is equal to Pgt:

d = vec(Finp)− vec(Ψ(Pgt,M)), (10)

Ldiff =
∑

k

||dk||22. (11)

The minimization of these two loss functions through
LM optimization allows our refinement network to learn
representations of the input image as well as the rendered
object image, which helps in predicting the optimal pose.

L = LADD(-S) + αLdiff (12)

where α is a hyperparameter.
We show the RePOSE framework in Algorithm 1. Note,

all the operations inside the LM optimization (Equations (6)
and (7)) are differentiable allowing us to learn deep textures
C and Φ using backpropagation.

4. Experiments
4.1. Implementation Details

We train our model using Adam optimizer [18] with a
learning rate of 1×10−3, decayed by 0.5 every 100 epochs.
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Figure 4: Example results on the Occlusion LineMOD dataset [6]. We show an input RGB image, refined poses, and ground-
truth pose from the top to bottom. The color of 3D bounding boxes are changed from purple to lightgreen as optimization
progresses.

Algorithm 1: RePOSE Training
V = VERTICESOF3DMODEL();
F = FACESOF3DMODEL();
C = INITIALIZETEXTUREPARAMETERS();
# Iterate over Training Data
for Pini,Pgt, I do

Finp = UNET (I);
P = Pini;
for t times do

Frend = DEEPTEXTURERENDER (P,V,F , C);
e = vec(Finp)− vec(Frend);
J = JACOBIAN (Frend,P,V);
∆P = POSEUPDATE (e,J,P);
P = P+∆P; # Update Pose

Pref = P;
L = LOSS (Pref,Pgt,V);
UPDATEPARAMETERS(L, C, UNET);

The number of channels d in Finp and Frend is set to 3 us-
ing grid search, and iterations t in LM optimization is set
to 5. We used pretrained PVNet [27] on the LineMOD
and Occlusion LineMOD datasets, and PoseCNN [39] on
the YCB-Video [39] dataset as the initial pose estimator Ω.
The encoder of U-Net [29] consisting of ResNet-18 [14]
shares its weights with the PVNet, and PoseCNN and only
the weights of the decoder are trained. Therefore, RePOSE
simply can reuse the deep features extracted from the ini-
tial pose estimator, which reduces the computational cost.

Following [27], we also add 500 synthetic and fused im-
ages for LineMOD and 20K synthetic images for YCB-
Video to avoid overfitting during training. In accordance
with the convention, to evaluate the scores on the Occlusion
LineMOD dataset, we use the model trained by using only
the LineMOD dataset.

4.2. Datasets

All experiments are performed on the LineMOD [15],
Occlusion LineMOD [6], and YCB-Video [39] datasets.
The LineMOD dataset contains images of small texture-
less objects in a cluttered scene under different illumination.
High-quality template 3D models of the objects in the im-
ages are also provided for render and compare based pose
estimation. The Occlusion LineMOD dataset is a subset of
the LineMOD dataset focused mainly on the occluded ob-
jects. YCB-Video [39] dataset contains images of objects
from the YCB-object set [10]. We use ADD (-S) [15] and
AUC of ADD(-S) scores as our evaluation metrics.

4.3. Evaluation Metrics

ADD(-S) score. ADD(-S) score [15, 39] is a standard
metric which calculates the average distance between ob-
jects transformed by the predicted pose P̂ = {R̂, t̂}, and
the ground-truth pose Pgt = {Rgt, tgt} using vertices Vi

of the template 3D model M. The distance is calculated as
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Table 1: Results on the YCB-Video dataset using RGB only. The results for DeepIM [21] are computed using the official
pre-trained model, and the score inside the parentheses are the reported results from the paper. Refinement FPS denotes
FPS of running only a pose refinement network. RePOSE w/ track includes the runtime for CNN feature extraction of a real
image. FPS is reported with refinement of 5 objects.

Metric PoseCNN [39] DeepIM [21] PVNet [27] CosyPose [19] RePOSE RePOSE w/ track
AUC, ADD(-S) 61.3 74.0 75.5 (81.9) 73.4 84.1 84.5 70.5 79.4 80.8 70.1 80.6 82.0
AUC, ADD-S 75.2 83.1 83.1 (88.1) - 89.8 89.8 80.4 85.9 86.7 79.9 87.2 88.5

ADD(-S) 21.3 43.2 53.6 - 74.3 75.6 41.7 58.9 60.3 40.2 61.6 62.1
Refinement FPS - 22 6 - 26 13 181 111 80 125 90 71

#Iterations - 1 4 - 1 2 1 3 5 1 3 5

Table 2: Comparison of RePOSE on Linemod dataset with
recent methods including PVNet [27], DPOD [40], Hybrid-
Pose [33], and EfficientPose [9] using the ADD(-S) score.
# of wins denotes in how many objects the method achieves
the best score.

Object PVNet DPOD HybridPose EfficientPose RePOSE
Ape 43.6 87.7 63.1 89.4 79.5

Benchvise 99.9 98.5 99.9 99.7 100
Camera 86.9 96.1 90.4 98.5 99.2

Can 95.5 99.7 98.5 99.7 99.8
Cat 79.3 94.7 89.4 96.2 97.9

Driller 96.4 98.8 98.5 99.5 99.0
Duck 52.6 86.3 65.0 89.2 80.3

Eggbox 99.2 99.9 100 100 100
Glue 95.7 98.7 98.8 100 98.3

Holepuncher 81.9 86.9 89.7 95.7 96.9
Iron 98.9 100 100 99.1 100

Lamp 99.3 96.8 99.5 100 99.8
Phone 92.4 94.7 94.9 98.5 98.9

Average 86.3 95.2 91.3 97.4 96.1
# of wins 0 1 2 6 8

follows;

1

N

N∑

i

||
(
R̂Vi + t̂

)
− (RgtVi + tgt) || (13)

For symmetric objects such as eggbox and glue, we use
the following distance metric,

1

N

N∑

i

min
0≤j≤N

||
(
R̂Vi + t̂

)
− (RgtVj + tgt) || (14)

The predicted pose is considered correct if this distance is
smaller than 10% of the target object’s diameter. AUC of
ADD(-S) computes the area under the curve of the distance
used in ADD(-S). The pose predictions with distance larger
than 0.1m are not included in computing the AUC. We use
AUC of ADD(-S) to evaluate the performance on the YCB-
Video dataset [39].

4.4. Quantitative Evaluations

Results on the LineMOD and Occlusion LineMOD
datasets. As shown in Tables 2 and 3, RePOSE achieves

Table 3: Comparison of RePOSE on Occlusion LineMOD
dataset with recent methods including PVNet [27],
DPOD [40], and HybridPose [33] using the ADD(-S) score.
Note, we exclude EfficientPose [9] as it is trained on the Oc-
clusion LineMOD dataset. # of wins denotes in how many
objects the method achieves the best score.

Object PVNet DPOD HybridPose RePOSE
Ape 15.8 - 20.9 31.1
Can 63.3 - 75.3 80.0
Cat 16.7 - 24.9 25.6

Driller 65.7 - 70.2 73.1
Duck 25.2 - 27.9 43.0

Eggbox 50.2 - 52.4 51.7
Glue 49.6 - 53.8 54.3

Holepuncher 39.7 - 54.2 53.6
Average 40.8 47.3 47.5 51.6
# of wins 0 - 2 6

the state of the art ADD(-S) scores on the Occlusion
LineMOD dataset. In comparison to PVNet [27], RePOSE
successfully refines the initial pose estimate in all the ob-
jects, achieving an improvement of 9.8% and 10.8% on the
LineMOD and Occlusion LineMOD dataset respectively.
On the LineMOD dataset, our score is comparable to the
state-of-the art EfficientPose [9]. The key difference is
mainly on ape and duck where our initial pose estimator
PVNet [27] performs poorly. Interestingly, for small objects
like ape and duck in the Occlusion LineMOD dataset, we
show a significant improvement of 10.2 and 15.1 respec-
tively over the prior art HybridPose [33].

Results on the YCB-Video dataset. Table 1 shows the
result on the YCB-Video dataset [39]. We also performed
experiments using RePOSE as a 6D object tracker using
the tracking algorithm proposed in [21]. RePOSE achieves
comparable performance with other methods with a 4 times
faster runtime of 80 FPS for refinement of 5 objects. Fur-
ther, the result with tracking demonstrates that RePOSE is
useful as a real-time 6D object tracker. Note, the scores
are heavily affected by the use and amount of synthetic data
and various data augmentation [19]. For instance, Cosy-

3308



Table 4: Ablation study of feature representation, fea-
ture warping, and a refinement network on the LineMOD
dataset. RGB denotes pose refinement using photomet-
ric error. FW denotes feature warping after extraction
from a CNN or deep texture rendering following first it-
eration. DPOD denotes using DPOD’s refinement network
and PVNet as an initial pose estimator. FW, DPOD, and
RePOSE are trained with the same dataset, we report the
ADD(-S) scores.

Object PVNet [27] RGB CNN w/ FW DPOD Ours w/ FW Ours
Ape 43.6 5.81 65.4 51.2 75.9 79.5

Benchvise 99.9 75.6 99.8 99.5 100 100
Camera 86.9 7.06 96.3 91.1 98.2 99.2

Can 95.5 3.05 99.1 95.7 99.4 99.8
Cat 79.3 3.00 88.6 92.4 92.7 97.9

Driller 96.4 80.9 7.6 98.2 98.7 99
Duck 52.6 0.00 76.2 71.3 84.6 80.3

Eggbox 99.2 8.64 96.4 99.9 100 100
Glue 95.7 5.40 97.2 97.6 98.2 98.3

Holepuncher 81.9 18.7 77.2 89.7 95.1 96.9
Iron 98.9 40.7 98.7 97.9 99.7 100

Lamp 99.3 34.9 91.8 95.5 100 99.8
Phone 92.4 14.6 94.9 97.2 98.7 98.9

Average 86.3 23.0 90.7 90.5 95.5 96.1

Table 5: Ablation study of feature representation, fea-
ture warping, and a refinement network on the Occlusion
LineMOD dataset. We report the ADD(-S) scores, all other
details are same as in Table 4.

Object PVNet [27] RGB CNN w/ FW DPOD Our w/ FW Ours
Ape 15.8 4.96 22.7 22.0 25.8 31.1
Can 63.3 5.22 66.4 71.1 61.3 80.0
Cat 16.7 0.17 11.7 21.9 19.4 25.6

Driller 65.7 61.7 72.1 68.3 71.1 73.1
Duck 25.2 1.80 36.5 30.8 40.8 43.0

Eggbox 50.2 7.75 45.4 42.4 47.7 51.7
Glue 49.6 1.88 45.6 41.3 49.4 54.3

Holepuncher 39.7 21.5 40.8 43.3 40.2 53.6
Average 40.8 13.1 42.9 42.6 44.5 51.6

Pose [19] used one million synthetic images during train-
ing, making it hard to compare against fairly. However, our
method achieves comparable performance using 500 times
less training images.

4.5. Ablation Study

All ablations for RePOSE are conducted on the
LineMOD and Occlusion LineMOD datasets using
PVNet [27] as an initial pose estimator. We report the
results in Tables 4 and 5.

RGB vs Deep Texture. Instead of using learnable deep
textures C, we perform experiments using an original RGB
image and rendered image with scanned colors. The infer-
ence is all the same except we are using photometric error
between two images. The experimental result reported in
Tables 4 and 5 show that the ADD(-S) score drops signifi-
cantly after optimization in all the objects using RGB repre-
sentation. As illustrated in Figure 5, the LineMOD dataset

(a) Ape (b) Can (c) Duck

Figure 5: Comparison of object’s appearance between an
input RGB image and rendered image. Difference of illu-
mination makes pose refinement in RGB space challenging.
Furthermore, RGB images may have the region with the
same color as the object. This background noise becomes
an obstacle in terms of convergence properties. These
texture-less objects make it challenging to compute the im-
age gradient which is essential to optimize a pose.

has three main challenges which makes the pose refine-
ment using the photometric error difficult — 1) Illumination
changes between the input RGB image and synthetic ren-
dering, 2) Poor image gradients due to texture-less objects,
3) Background confusion i.e. the background color is sim-
ilar to the object’s color. The ADD(-S) scores drop largely
due to these key reasons. On the contrary, RePOSE with
learnable deep textures is able to converge within few itera-
tions because of the robustness of deep textures to the above
challenges. Tables 4 and 5 clearly demonstrate the effec-
tiveness of our learnable deep textures over using scanned
colors for the template 3D model.

CNN with Feature Warping vs Feature Rendering.
Feature warping (FW) is commonly used to minimize pho-
tometric or feature-metric error through a non-linear least
squares such as Gauss-Newton or Levenberg-Marquardt
method [3, 2]. We conduct an experiment to compare a
CNN with feature warping and our proposed feature ren-
dering using the deep texture renderer. In a CNN with fea-
ture warping, Frend is extracted in the same fashion as the
Finp using a CNN on a normalized synthetic rendering of
the template 3D model. This is done just once, following
which the feature is warped based on the updated pose at
each iteration. The result is shown in Tables 4 and 5. On the
LineMOD dataset, we observed on average small improv-
ments by the feature warping. The ADD(-S) score only al-
lows the pose estimator to have an mean vertex distance er-
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ror of 10% of the object’s diameter. In this task, this means
only 2 to 3 pixel displacement error in 2D image space is
allowed especially for small objects. However, it is chal-
lenging to train a CNN to extract features with accurate im-
age gradients required for fine-grained pose refinement. On
the contrary, our deep texture renderer can compute accu-
rate gradients as the neighborhood vertices on the template
3D model are not strongly correlated. This local constraint
is critical for fast and accurate pose refinement.

Furthermore, we perform additional experiments to ver-
ify the effect of feature warping. To this end, we warp
the feature extracted by deep texture renderer based on the
updated pose (Ours w/ FW). The result in Table 4 shows
that Ours w/ FW achieves 9.2% absolute improvement from
PVNet [27] on the LineMOD dataset [15]. However, Ta-
ble 5 demonstrates the limited ability on the Occlusion
LineMOD dataset [6]. From this result, we figure out that
warping has an inferior influence on refinement of occluded
objects. We conjecture that this difference comes from the
fact that warping can not deal with large pose error be-
cause unlike our proposed RePOSE, feature warping can
only consider the visible surface at the first step. Being dif-
ferent from the methods using feature warping, our iterative
deep texture rendering method can generate a feature with
a complete shape. We believe this characteristics of feature
rendering leads to successful pose refinement.

Comparison with the latest refinement network on the
LineMOD dataset. We compare our refinement network
with the latest fully CNN-based refinement network pro-
posed in the paper of DPOD [40]. In this experiment, we
use the same initial pose estimator [27]. Since DPOD is
fully CNN-based, we increased the amount of the dataset
by twice. The refinement network of DPOD outputs a re-
fined pose based on a cropped input RGB image and a syn-
thetic rendering with an initial pose estimate. The experi-
mental result in Tables 4 and 5 shows DPOD fails to refine
pose well when trained with the small amount of the dataset.
The refinement network of DPOD estimates a refined pose
directly and do not consider projective geometry explicitly.
This means their network needs to learn not only deep fea-
tures but also mapping of the deep feature into an object’s
pose from training data. Several papers [7, 31, 8, 30] report
that learning a less complex task can achieve better accuracy
and generalization in a 6D camera localization task. Also,
we assume the low ADD(-S) score on Occlusion LineMOD
dataset implies its low generalization performance to oc-
cluded objects. Our network only trains deep features and
a refined object’s pose is acquired by solving minimization
problem based on projective geometry. From this experi-
mental result, we believe the same principle proposed in the
field of 6D camera localization is still valid in 6D object
pose estimation.

Table 6: Comparison of number of iterations and refinement
runtime. ADD(-S) on the Occlusion LineMOD dataset is
reported in this table. Our proposed network is trained by
using a pose loss for 5 iterations.

Method Iteration ADD(-S) Score Runtime
AAE [40] - - 200 ms

SSD6D [40] - - 24 ms
DPOD [40] - 47.3 5 ms

Ours

0 40.8 0 ms
1 45.7 4.1 ms
2 48.6 5.8 ms
3 50.1 7.5 ms
4 51.0 9.2 ms
5 51.6 10.9 ms

Number of iteration and run time analysis. Our pro-
posed refinement network, RePOSE can adjust the trade-
off between the accuracy and run time by changing the
number of iterations. We show the ADD(-S) score and
the run time on the Occlusion LineMOD dataset with each
iteration count in Table 6. On a machine equipped with
Nvidia RTX2080 Super GPU and Ryzen 7 3700X CPU,
our method takes 1.7 ms per iteration (deep texture ren-
dering + pose update through LM optimization [24]). This
result shows our method achieves higher performance with
the faster or comparable runtime than prior art.

5. Conclusion

Real-time pose estimation needs accurate and fast pose
refinement. Our proposed method, RePOSE uses efficient
deep texture renderer to perform pose refinement at 92
FPS and has practical applications as a real-time 6D object
tracker. Our experiments show that learnable deep textures
coupled with the efficient non-linear optimization results in
accurate 6D object poses. Further, our ablations highlight
the fundamental limitations of a convolutional neural net-
work to extract critical information useful for pose refine-
ment. We believe that the concept of using efficient render-
ers with learnable deep textures instead of a CNN for pose
refinement is an important conceptual change and will in-
spire a new research direction for real-time 6D object pose
estimation.
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