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Abstract

Attribute-based person search is the task of finding per-
son images that are best matched with a set of text attributes
given as query. The main challenge of this task is the large
modality gap between attributes and images. To reduce the
gap, we present a new loss for learning cross-modal embed-
dings in the context of attribute-based person search. We re-
gard a set of attributes as a category of people sharing the
same traits. In a joint embedding space of the two modal-
ities, our loss pulls images close to their person categories
for modality alignment. More importantly, it pushes apart
a pair of person categories by a margin determined adap-
tively by their semantic distance, where the distance metric
is learned end-to-end so that the loss considers importance
of each attribute when relating person categories. Our loss
guided by the adaptive semantic margin leads to more dis-
criminative and semantically well-arranged distributions of
person images. As a consequence, it enables a simple em-
bedding model to achieve state-of-the-art records on public
benchmarks without bells and whistles.

1. Introduction
Person search is the task of finding people from a large

set of images given a query describing their appearances.

It plays critical roles in applications for public safety such

as searching for criminals in videos and tracking people

using multiple surveillance cameras with non-overlapping

fields of view. Person search has been formulated as a fine-

grained image retrieval problem focusing only on person

images, where a solution should discriminate subtle appear-

ance variations of different people and at the same time gen-

eralize well to people unseen during training.

Most of existing person search techniques need an im-

age that exemplifies target person as query [3, 4, 5, 17, 18,

20, 24, 27, 30, 33, 38, 48, 50, 52]. However, image query

is not always accessible in real world scenarios, e.g., where

*Equal contribution

eyewitness memory is the only evidence for finding crimi-

nals. A solution to this issue is to utilize a verbal description

as query for person search [22, 23], but it suffers from the

inherent ambiguity of natural language and requires com-

plicated processes to understand the query.

To address the above issue, we study in this paper per-

son search using text attributes as query. Specifically, a

query is given as a set of predefined attributes indicating

traits of target person, e.g., gender, age, clothing, and ac-

cessory; we consider such a set as a person category, and

multiple people sharing the same traits belong to the same

person category. This approach is suitable for person search

in the wild since attributes are cheap to collect while being

less ambiguous and more tractable than natural language

descriptions. The use of attributes as query, however, intro-

duces additional challenges due to the limited descriptive

capability of attributes, which leads to a large modality gap

between images and person categories.

Previous work on attribute-based person search attempts

to reduce the modality gap by aligning each person cate-

gory and corresponding images in a joint embedding space

through modality-adversarial training [2, 51] or by enhanc-

ing the expressive power of embedding vectors of person

categories and images in a hierarchical manner [9]. Al-

though these pioneer studies shed light on the important

yet less explored approach to person search, there is still

large room for further improvement. First, they are unstable

and computationally heavy in training due to their adver-

sarial learning strategies [2, 51], or expensive in inference

due to the large dimensional embedding vectors demand-

ing an extra network to be matched [9]. More importantly,

these methods treat person categories as independent class

labels of person images and ignore their relations, e.g., how

many attributes are different between them, although such

relations can provide a rich supervisory signal for learning

better representations of person categories and images.

We develop a new attribute-based person search method

that overcomes these limitations. Our method learns a joint

embedding space of the two different modalities through a

pair of simple encoder networks, one for images and the
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other for person categories; a person category is represented

as a binary vector, each of whose dimensions indicates the

presence of the corresponding attribute. When conduct-

ing person search, a person category is given as query in

the form of binary vector and projected onto the joint em-

bedding space by the person category encoder, then images

whose embedding vectors are closest to that of the query in

the space are retrieved.

The main contribution of this work is a new loss func-

tion, which enables our model to achieve outstanding per-

formance with the simple architecture and retrieval pipeline.

In the joint embedding space, the loss regards each person

category as a semantic prototype of associated images, and

encourages the images to be close to their prototype so that

the two modalities are aligned. The key feature of the loss is

that it determines the margin between person categories in

the embedding space adaptively by their distance in the bi-

nary attribute space. Moreover, the distance is measured by

weighted Hamming metric, in which weights multiplied to

individual bits (i.e., attributes) are optimized together with

parameters of the embedding networks so that the loss fo-

cuses on more important attributes when relating person

categories. This idea is implemented by Adaptive Semantic

Margin Regularizer (ASMR) as a part of our loss.

The proposed loss function with ASMR allows the distri-

butions of person images to be more discriminative and se-

mantically well-arranged in the learned embedding space.

Consequently, our method achieves the state of the art on

three public benchmark datasets [8, 25, 29] without bells

and whistles. Also, compared to the previous work [2, 9,

51], it is efficient since it works on an embedding space

of a small dimension with no extra network, and converges

very quickly in training since it does not require adversarial

training. The main contribution of our work is three-fold:

• We propose a novel cross-modal embedding loss, con-

sidering semantic relations between person categories so

that the embedding space becomes more discriminative

and better generalizes to unseen categories.

• The straightforward architecture and retrieval pipeline

of the proposed framework enable fast convergence in

training and efficient person search in testing.

• Our method achieves the state of the art on three public

benchmarks without bells and whistles.

2. Related Work
2.1. Attribute-Based Person Search

A naı̈ve approach to attribute-based person search is rec-

ognizing attributes of person images and finding images

whose predicted attributes are the same with the person cat-

egory given as query [21, 34, 40]. However, this approach is

unreliable due to imperfection of attribute recognition. Note

that attribute recognition itself is challenging since the ap-

pearance of an attribute could vary significantly and person

images captured by surveillance cameras are often limited

in terms of resolution and quality.

Recent methods instead learn and utilize a cross-modal

embedding space where person categories and associated

images are close to each other. The main issue in this direc-

tion is the large gap between the two modalities. Dong et
al. [9] tackle the problem by capturing rich information of

the two modalities through hierarchical embeddings. How-

ever, their model is computationally heavy since it com-

putes high dimensional embeddings and deploys an extra

network for matching them. Yin et al. [51] and Cao et al. [2]

learn a joint embedding space where person categories and

images are matched directly. To bridge the modality gap,

their embedding spaces are trained in modality-adversarial

manners, which however often result in unstable and tardy

convergence due to the nature of the minimax optimization.

Moreover, these methods share a limitation that person cat-

egories are considered as individual class labels and their

nontrivial relations are ignored.

Our method also learns a cross-modal embedding space,

but unlike the previous arts, it is efficient in both training

and testing, and lets the learned embedding space reflect

semantic relations between person categories.

2.2. Deep Metric Learning

The goal of deep metric learning is to learn an embed-

ding space where data of the same class are grouped to-

gether and those of different classes are pushed away. Loss

functions for metric learning are roughly categorized into

two classes, pair-based and proxy-based losses.

Pair-based losses basically pull a pair of embedding vec-

tors close to each other if they are of the same class and

push them apart otherwise. An early example following

this principle is contrastive loss [1, 6, 14], which is ex-

tended to consider higher order relations of embedding vec-

tors by associating multiple pairs [35, 36, 37, 44, 47]. On

the other hand, proxy-based losses relate embedding vec-

tors with prototypes, each of which is a virtual embedding

vector typifying each class of training data and learned as

a part of embedding network. Then the losses pull together

or push apart a pair of embedding vector and prototype ac-

cording to their class equivalence [7, 19, 31].

Unfortunately, these losses are not proper to be applied

directly to attribute-based person search for the following

reasons. First, most of them are developed for uni-modal

retrieval, except few examples [12, 26]. Second, they can-

not take semantic relations between person categories into

account since they regard the categories as independent la-

bels whose relations are binary (i.e., the same or not).

Unlike the existing losses for metric learning, our loss

can handle the nontrivial inter-category relations as well as
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Figure 1. Overall pipeline of our method. Image is embedded by a conventional CNN followed by a MLP while the query set of attributes,

called person category, is converted to a binary vector and encoded through a separate embedding network. In their joint embedding

space, a positive pair of image embedding and semantic prototype are pulled together while a negative pair is pushed apart for cross-modal

alignment. Also, a pair of semantic prototypes pushes or pulls each other by a margin determined adaptively by their semantic affinity.

those between categories and images thanks to ASMR. We

believe that our loss can be applied to other tasks where

inter-label relations are beyond the binary.

2.3. Cross-Modal Retrieval

Attribute-based person search is a particular example of

cross-modal retrieval, which has been studied mainly for

image-text or image-sound retrieval [10, 32, 41, 42, 45, 46].

Most of existing methods for cross-modal retrieval aim to

learn a joint embedding space of different modalities so

that a simple nearest neighbor search can find samples of

the same content in the space regardless of their modalities.

This idea has been implemented in general by Canonical

Correlation Analysis (CCA) [15] or Generative Adversar-

ial Networks (GANs) [13]. Specifically, methods based on

CCA attempt to project samples of different modalities into

a common embedding space by maximizing their correla-

tion [10, 45, 46, 49], and those based on GANs align sam-

ples of different modalities by learning modality-adversarial

embeddings [41, 42, 51]. Unfortunately, these methods can-

not consider semantic relations between classes.

This paper shows that the prototype-based embedding

learning is fairly effective for cross-modal retrieval. Also,

unlike the previous work, our method can consider relations

between categories, improving performance substantially.

3. Our Method
In attribute-based person search, a set of attributes, called

person category, describes traits of people we want to find.

Given a person category as query, our method conducts per-

son search by finding images that are closest to the query in

a joint embedding space of person images and categories. It

learns the embedding space through two encoders, one for

images and the other for person categories; an overview of

the architecture is given in Fig. 1.

The key contribution of our work is the loss function

used for training the networks. In the embedding space,

the loss pulls a person category and its associated images

together, and at the same time, pushes apart a pair of per-

son categories by a margin determined adaptively by their

semantic dissimilarity. Our model achieves outstanding per-

formance and converges quickly thanks to the proposed

loss, and is computationally efficient due to the straightfor-

ward model architecture and retrieval pipeline.

The remainder of this section first describes details of

the model architecture and its pretraining, then elaborates

the proposed loss function and discusses its advantages.

3.1. Model Architecture and Its Pretraining

In the image encoder of our model, a conventional CNN

extracts a feature map of input person image, which is in

turn transformed to a single feature vector by Global Av-

erage Pooling (GAP) and fed to a Multi-Layer Perceptron

(MLP) that produces image embedding. Meanwhile, the

person category encoder is a MLP that takes person cat-

egory as input and produces person category embedding.

Outputs of the two encoders are all �2 normalized.

Since a person category is a set of text attributes, it has

to be converted in a numerical form to be fed to its en-

coder. To this end, it is given in a form of binary vector,

each of whose dimension indicates the presence of corre-

sponding attribute. Suppose that attributes are grouped ex-

clusively into a number of attribute groups; for example,

two attributes male and female belong to the same attribute

group gender. As a person can take only one attribute for

each attribute group, an attribute is represented by a one-

hot vector whose dimension is the same with the number

of attributes in its group. The binary vector representation

of a person category is then obtained by concatenating such

one-hot vectors of its all attributes.
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Figure 2. A conceptual illustration of the learning objective in Eq. (1). The modality alignment loss pulls images close to their person

categories within the margin γ. Meanwhile, ASMR controls margins between person categories according to their semantic affinities.

Parameters of our model are initialized randomly, except

those of the CNN for which we adopt ImageNet pretrained

parameters. Unfortunately, the weights for ImageNet clas-

sification are suboptimal for capturing subtle appearance

features of person images. We thus pretrain the image en-

coder for attribute classification, an auxiliary task for learn-

ing image representation more suitable to person search.1

Specifically, we append a classification head of four Fully

Connected (FC) layers on top of the GAP for each attribute

group. Then each classification head is trained together with

the backbone CNN for choosing the correct attribute among

those in its attribute group through a multi-class classifica-

tion loss; we adopt the softmax cross-entropy loss for this

purpose. After the pretraining, a randomly initialized MLP

replaces the attribute classification heads.

3.2. Learning Objective

The loss for our model consists of two parts. One of

them is a modality alignment loss designed to group em-

bedding vectors of images together around that of their per-

son category for cross-modal alignment. The other is Adap-

tive Semantic Margin Regularizer (ASMR) that controls the

margin between a pair of embedding vectors of person cat-

egories according to their semantic dissimilarity. The roles

of the two components are illustrated in Fig. 2.

Let f and g be the encoders for images and person cate-

gories, respectively. Training data for learning the encoders

are provided by a set of images paired with binary vectors

indicating their person categories, D = {Ii, pi}mi=1, where

m is the number of training images. In addition, let G de-

note the set of embedding vectors of unique person cate-

gories in the training set. Given embedding vectors of im-

ages fi := f(Ii) and those of person categories gi := g(pi),
the learning objective for our model is a linear combination

of the two terms as follows:

L({fi, gi}mi=1

)
= LMA

({fi, gi}mi=1

)
+ λ R(G), (1)

where LMA indicates the modality alignment loss, R means

1For the same reason, existing methods also take advantage of the at-

tribute classification by adopting it as an auxiliary task [9] or using it for

pretraining their models [2].

the ASMR, and λ is a weight hyper-parameter. Details of

the two components are described below.

3.2.1 Modality Alignment Loss

The role of the modality alignment part is to align the two

different modalities in a common embedding space. Con-

sidering each person category embedding as a semantic pro-

totype of associated image embeddings, the cross-modal

alignment is done by pulling image embeddings close to

their semantic prototypes and pushing them apart from ir-

relevant prototypes. This idea is formulated as

LMA

({fi, gi}mi=1

)
=

− 1

m

m∑
i=1

log

⎛
⎜⎜⎜⎝

eσ cos(a(fi,gi)+γ)

eσ cos(a(fi,gi)+γ) +
∑

gk∈G\gi

eσ cos a(fi,gk)

⎞
⎟⎟⎟⎠ ,

(2)

where a(·, ·) means the angle between its two input vectors,

σ > 0 is a scale factor, and γ > 0 is a margin between

image and person category embeddings. The above form

resembles ArcFace loss [7], yet different in that the person

category embeddings used as prototypes are not parameters

but outputs of another encoder g in our loss. We empir-

ically found that the simple joint embedding architecture

trained solely with this loss is as competitive as previous

arts; it can be considered as a simple yet solid baseline for

attribute-based person search, and ASMR further improves

the performance substantially.

3.2.2 ASMR

For accurate person search and generalization to unseen

person categories, we expect from the learned embedding

space that different person categories lie apart from each

other clearly and their distances are larger if they are more

dissimilar, i.e., sharing less attributes. However, the modal-

ity alignment loss in Eq. (2) alone does not guarantee this

quality of embedding space since it ignores semantic rela-

tions between them; the loss considers person categories
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simply as independent class labels. One of failure cases

regarding this issue is that different person categories are

often located overly close to each other in the learned em-

bedding space when images of these categories exhibit sub-

tle appearance variations; an example is given in Fig. 6.

To address this issue, we introduce ASMR that explic-

itly controls the margin between a pair of person categories

according to their semantic dissimilarity. The regularizer is

given by

R(G) = 1
|G|C2

|G|−1∑
i=1

|G|∑
j=i+1

{
s(gi,gj)− μ− δ(pi,pj)

}2
,

(3)
where s(·, ·) denotes the cosine similarity between the two

input vectors and μ is the mean similarity over all pairs of

person categories in the embedding space:

μ =
1

|G|C2

|G|−1∑
i=1

|G|∑
j=i+1

s(gi,gj). (4)

Also, δ(pi,pj) quantifies the semantic similarity of a pair

of person categories represented as binary vectors pi and

pj , and is formulated as an inverse of weighted Hamming

distance:

δ(pi,pj) = Sigmoid

(
1−

∑
k

wk|pi(k)− pj(k)|
)
. (5)

Regarding its shape, the sigmoid function lets this similar-

ity margin respond more sensitively to pairs of more simi-

lar person categories, which in general have to be handled

more carefully for accurate person search.2 Moreover, the

weight parameters wk are trained together with those of the

embedding networks, which enables ASMR to estimate im-

portance of individual attributes and relate person categories

in consideration of the importance.

ASMR enforces s(gi,gj) to approximate μ + δ(pi,pj)
so that the degree of similarity between person categories

in the binary vector space is reflected by their similarity

in the learned embedding space. This behavior of ASMR

makes distributions of embedding vectors more discrimi-

native by enlarging the margin between person categories.

Also, we believe that it helps our model avoid being biased

to image information and generalize better to unseen person

categories by reflecting semantic relations between person

categories explicitly in the embedding space.

4. Experiments
Our method is evaluated and compared to previous

work on three public benchmarks for attribute-based per-

son search [8, 25, 29]. We also demonstrate the effect of

ASMR by ablation studies and qualitative analysis.

2Person categories sharing more attributes are more likely to be close

in the embedding space due to their similar appearances, and to affect ac-

curacy of person search whose goal is to find samples closest to query.

Datasets PETA Market-1501 PA100K

# Attributes 65 27 26

# Attributes groups 17 10 15

# Train person category 1,890 508 500

# Train image 12,140 12,936 80,000

# Test person category 200 484 814

# Unseen 200 315 168

# Test image 1,181 16,483 10,000
Table 1. Statistics of three benchmarks.

4.1. Datasets

We evaluate our method and previous arts on three pub-

lic datasets, PETA [8], Market-1501 Attribute [25] and

PA100K [29], which are representative benchmarks for

attribute-based person search. The dataset statistics are

summarized in Table 1. Note that the PETA dataset fol-

lows the ordinary image retrieval setting where categories

of test images are all unseen, while the other two datasets

assume a more general search scenario in which both seen

and unseen person categories appear in testing.

4.2. Implementation Details

Network architecture. In the image encoder, the backbone

CNN is ResNet-50 [16] and the MLP consists of three FC

layers. On the other hand, the person category encoder is

implemented only by a MLP with three FC layers. Both

of the two encoders produce 128-dimensional embedding

vectors that are �2 normalized. More details of the encoders

are presented in the supplementary material.

Hyper-parameters. In every experiment, our model is op-

timized by SGD with a momentum of 0.9 and a weight de-

cay of 5e−4 for 10 epochs; each mini-batch consists of

128 images and their person categories. The initial learn-

ing rate is set to 1e−3 for the image encoder, and 1e−2
for the person category encoder and the parameters of the

weighted Hamming distance. Then both learning rates are

decayed by a factor of 0.1 at every 5 epochs. The other

hyper-parameters, λ in Eq. (1), and σ and γ in Eq. (2) are

set to (4, 32, 0.1) on PETA, (6, 12, 0.2) on Market-1501

Attribute, and (5, 48, 0.1) on PA100K, respectively.

4.3. Quantitative Comparison to Previous Work

Our model is compared to the three existing methods for

attribute-based person search, AAIPR [51], AIHM [9], and

SAL [2]. We also report performance of related models that

are not originally proposed for attribute-based person search

but have been reproduced for the purpose in literature. Per-

formance of these methods including ours is summarized in

Table 2, where Cumulative Matching Characteristic (CMC)

and mean Average Precision (mAP) are adopted as perfor-

mance metrics following the convention.

The table shows that our model outperforms all the other

methods in terms of Rank1 and mAP metrics. It clearly
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Method Dim
PETA Market-1501 Attribute PA100K

Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10 mAP

DeepMAR [21] - 17.8 25.6 31.1 12.7 13.2 24.9 32.9 8.9 - - - -

DCCAE [46] - 14.2 22.1 30.0 14.5 8.1 24.0 34.6 9.7 21.2 39.7 48.0 15.6

2WayNet [10] - 23.7 38.5 41.9 15.4 11.3 24.4 31.5 7.8 19.5 26.6 34.5 10.6

CMCE [22] - 31.7 39.2 48.4 26.2 35.0 51.0 56.5 22.8 25.8 34.9 45.4 13.1

AAIPR [51] 128 39.0 53.6 62.2 27.9 40.3 49.2 58.6 20.7 - - - -

AIHM [9] 3K - - - - 43.3 56.7 64.5 24.3 31.3 45.1 51.0 17.0

SAL [2] 128 47.0 66.5 74.0 41.2 49.0 68.6 77.5 29.8 - - - -

SAL [2]† 128 39.0 61.5 70.0 37.2 44.4 65.7 72.5 29.4 22.7 36.5 41.6 15.0

Ours 128 56.5 80.0 83.5 50.2 49.6 64.9 72.5 31.0 31.9 49.1 58.2 20.6

Table 2. Quantitative comparison to previous arts. Dim indicates embedding dimensions of the methods based on cross-modal embeddings.

Bold and underline denote the best and the second-best, respectively. † indicates results reproduced by the official implementation.

Method PETA Market-1501 PA100K

SAL [2] 202 211 957

Ours 27 18 110

Table 3. Comparison of training time (min)

surpasses AIHM [9], the state of the art in PA100K, for

all available settings. This achievement is remarkable since

our method is more efficient than AIHM; it works with em-

bedding vectors of a substantially smaller dimension, and

unlike AIHM, it does not require any extra network for re-

trieval. Moreover, our method outpaces SAL [2], the state

of the art in PETA and Market-1501 Attribute, for almost

all settings. Especially, it outperforms SAL on the PETA

dataset by a large margin, 9.5% in Rank1 and 9.0% in mAP.

On the Market-1501 Attribute dataset, it is more accurate

than SAL in terms of Rank1 and mAP, although its records

in Rank5 and Rank10 are slightly below those of SAL.

The key to this success of our method is two-fold. The

first is MA loss. Since the loss compares each image em-

bedding with those of all person categories in the dataset, it

enables to learn more discriminative embedding space more

efficiently. Meanwhile, the loss of AIHM considers images

and person categories within a mini-batch only. Another

cause is the person category encoder, which encodes person

categories in an attribute-aware manner so that the embed-

ding space reflects their semantic relations. On the other

hand, SAL represents person categories as independent net-

work parameters. The last yet most vital cause is ASMR,

whose efficacy is validated in Sec. 4.6.

The reasons for the small improvement on the Market-

1501 Attribute and PA100K datasets are as follows. Com-

pared to the PETA dataset, these datasets assume a more

challenging search scenario in which both seen and un-

seen person categories appear in testing. Further, in the

Market-1501 dataset, incorrect attribute labels bind the per-

formance; this happens because the labels are annotated not

per image but per video, e.g., a man labeled with “jacket”

may take off his jacket in the middle of video.

In addition, compared to SAL, our model is significantly

more efficient in training. SAL requires a large training time

for convergence due to its adversarial learning strategy. In

(a) (b)

Age<45 male backpack hat

- up black down blue -

Age<30 female - -

trousersup pink down grayboots

Age
18-60 male short

sleeve backpack

glasses front upper
logo trousers

Age
18-60 female long

sleeve backpack

- back - trousers

(c) (d)
Figure 3. Top 5 retrieval results of our method on (a, b) the PETA

and (c, d) PA100K datasets. Images are sorted from left to right

according to their ranks. Green and red boxes indicate true and

false matches, respectively. Queries are given as tables, where

blanks indicate attributes that do not exist in the query.

contrast, our method is trained simply by supervised learn-

ing with the loss function in Eq. (1). In consequence, ours

using a single GPU converges more than 7.5 times faster

than SAL using two GPUs as shown in Table 3.

4.4. Qualitative Analysis

Qualitative results of the proposed method are given in

Fig. 3 and Fig. 4. All the presented results demonstrate

that our method is insensitive to severe variations in human

and camera poses. Moreover, individual examples show

that our method is robust against changes in image resolu-

tion (Fig. 3(b,c,d), Fig. 4(a,b,c)), illumination (Fig. 3(c,d),

Fig. 4(a,b,c)), and partial occlusions (Fig. 3(a,c,d)). It is

also demonstrated that the proposed method is able to cap-

ture fine details of images for precise retrieval; examples

include backpack in Fig. 3(a,c,d) and in Fig. 4(a,b), hat in

Fig. 3(a) and Fig. 4(c) and glasses and clothing pattern in

Fig. 3(c). More qualitative results can be found in the sup-

plementary material.
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(a)

(b)

Teenager backpack pants short short sleeve

long hair female up gray down black -

Adult - pants long lower body clothing short sleeve

short hair male up white down black hat

Teenager backpack dress short short sleeve

long hair female up yellow down black -

(c)
Figure 4. Top 10 retrieval results of our method on the Market-

1501 Attribute dataset. Images are sorted from left to right ac-

cording to their ranks. Green and red boxes indicate true and false

matches, respectively. Queries are presented above their retrieved

images; blanks indicate attributes that do not exist in the query.

Method PETA Market PA100K

(a)
Baseline 46.5 30.4 26.0

Baseline + pretraining 48.5 44.8 28.9

(b)

LMA → Proxy Anchor [19] 48.0 41.1 27.4

LMA → Proxy NCA [31] 52.0 43.8 29.7

LMA → CosFace [43] 50.5 45.3 24.9

LMA → SphereFace [28] 52.5 45.0 23.8

Ours 56.5 49.6 31.9

Table 4. Performance in Rank@1 of ours and its variants on the

PETA, Market-1501 Attribute, and PA100K datasets.

4.5. Ablation Studies

Effects of pretraining and ASMR. We quantify the ef-

fects of our pretraining strategy and ASMR by evaluating

two reduced versions of our method with and without them.

To this end, we first define a baseline as the model with

the same architecture as ours yet trained only with LMA in

Eq. (2); the other variant is obtained by adding the pretrain-

ing to the baseline. The results in Table 4(a) suggest that the

contribution of ASMR is significant and the pretraining also

helps to some extent. In detail, ASMR contributes to the

performance, enhancing Rank1 by 8.0% on PETA, 4.8% on

Market-1501 Attribute, and 3.0% on PA100K, respectively.

These results suggest that ASMR makes the learned em-

bedding space more discriminative and better generalized to

unseen categories. Also, the pretraining improves Rank1 by

Method PETA Market-1501 PA100K

w/o δ(pi,pj) 52.0 46.1 30.3

Uniform wk 52.5 46.5 29.8

�2 normalized wk 52.0 46.3 30.1

Ours 56.5 49.6 31.9
Table 5. Comparison of ASMR and its variants in Rank@1 of the

search resutls on the three datasets.

PETA Market-1501 PA100K

Figure 5. Visualization of wk learned in our method on the three

datasets, where each value corresponds each attribute.

2.0% on PETA, 14.4% on Market-1501 Attribute, and 2.9%

on PA100K, respectively, which clearly validates its effec-

tiveness. Further, the table shows that the simple baseline

is already comparable to the state of the art; we believe that

it is a solid and unexplored baseline that future work has to

consider. Finally, we again emphasize that state-of-the-art

methods [2, 9] also take advantage of attribute classifica-

tion, thus the comparison in Table 2 is equitable.

Comparison to other embedding losses. To demon-

strate superiority of our modality alignment loss LMA, we

evaluate variants of our method that replace LMA with

Proxy Anchor [19], Proxy NCA [31], CosFace [43] and

SphereFace [28], representative embedding losses using

prototypes. Table 4(b) shows that our method using LMA

largely outperformed the two variants, which indicates the

advantage of LMA.

4.6. In-depth Analysis on ASMR

The effect of each design points of ASMR are verified by

experiments, whose results are summarized in Table 5. First

of all, the large gap between ours and its variant without δ
demonstrates the significant contribution of δ to the perfor-

mance. Note that ASMR without δ becomes analogous to

the diversity regularizer in [11], and forces person category

embeddings to be uniformly distributed. This suggests that

ASMR does not blindly enlarge between-category margins

but controls them with consideration to semantic affinities

between categories, which is vital for the outstanding per-

formance of our work.

The role of learnable weights wk in δ is also investi-

gated. We observed that the performance drops when the

weights are fixed by a single value (i.e., uniform wk), which

suggests that the learned weights well capture the unequal

importance of attributes. We also found that imposing �2
normalization to the weights does not useful, rather dam-

ages performance; Fig. 5 shows that our method learns non-

uniform and positive weights with no such a constraint.
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(a) w/o ASMR (b) Ours

Images of person category 2

Person category 2

Images of person category 1

Person category 1

Person category 1 Teenager handbag pants long lower body clothing short sleeve short hair female up white down blue
Person category 2 Teenager bag pants short short sleeve long hair female up white down blue
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Figure 6. t-SNE visualization of a part of the joint embedding space learned for the Market-1501 Attribute dataset. Stars and circles

indicate embedding vectors of person categories and their associated images, respectively, and their colors mean their person categories.

The person categories are elaborated below, where attributes that are different between the two categories are colored in red.
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Teenager handbag pants long lower body clothing short sleeve

short hair female up white down blue -
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Adult handbag dress long lower body clothing short sleeve

short hair female up red down black -

Figure 7. Top 5 retrieval results of our method and its variant

without ASMR on the Market-1501 Attribute dataset. Images are

sorted from left to right according to their ranks. Green and red

boxes indicate true and false matches, respectively.

Finally, we present more detailed qualitative analysis on

the effect of ASMR to explain how it works and to val-

idate its contribution. Fig. 6 compares joint embedding

spaces learned by our model and its reduced version with-

out ASMR. We adopt t-SNE [39] to visualize their embed-

ding spaces, and focus only on two particular person cate-

gories sharing many of their attributes for a clear analysis.

As shown in Fig. 6(a), some images of person category 2,

whose appearances are quite similar to those of person cat-

egory 1, are located overly close to person category 1 in

the embedding space learned without the regularizer; such

images will lead to failures in person search. This hap-

pens since the model is biased towards the image modality

immoderately if no constraint is imposed for person cate-

gory embeddings. In contrast, Fig. 6(b) shows that our final

model with the regularizer enlarges the margin between the

two categories according to their semantic dissimilarity so

that they are well discriminated in the embedding space.

The effectiveness of ASMR is further validated by com-

paring retrieval results of the models with and without the

regularizer in Fig. 7. The results suggest that the model

without the regularizer often fails when images of different

person categories are overly similar as in Fig. 7(a) and/or

some attributes of query are about fine details of images

like hat and age in Fig. 7(b). Our method with ASMR han-

dles these issues effectively thanks to the improved discrim-

inability by ASMR.

5. Conclusion
We have presented an efficient and effective framework

for attribute-based person search. The main contribution of

our work is a novel loss function based on ASMR for learn-

ing cross-modal embeddings: It aligns a person category

and associated images in a common embedding space, and

at the same time, arranges person categories according to

their semantic affinities in the space. We demonstrated by

experiments that the proposed loss allows a simple embed-

ding model to achieve state-of-the-art performance. Con-

sidering its brevity and outstanding performance, our work

will be a solid baseline for attribute-based person search.
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