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Abstract

We study a crucial problem in video analysis: human-
object relationship detection. The majority of previous ap-
proaches are developed only for the static image scenario,
without incorporating the temporal dynamics so vital to
contextualizing human-object relationships. We propose a
model with Intra- and Inter-Transformers, enabling joint
spatial and temporal reasoning on multiple visual concepts
of objects, relationships, and human poses. We find that
applying attention mechanisms among features distributed
spatio-temporally greatly improves our understanding of
human-object relationships. Our method is validated on
two datasets, Action Genome and CAD-120-EVAR, and
achieves state-of-the-art performance on both of them.

1. Introduction
As we develop intelligent agents to understand images

more comprehensively, the computer vision research prob-
lems we are solving have become more and more com-
plex. The computer vision community has moved from
classifying images and detecting objects, to detecting ob-
ject relationships and understanding object interactions. In
real-world applications, we often need to infer human be-
haviors from videos. In human-centered applications such
as human-robot interaction, senior care [36], and health-
care [19], understanding the interactions people have with
their environment is pivotal. One important problem at the
heart of action recognition is detecting human-object rela-
tionships in videos: given the frames of a video, we would
like to detect which objects a person is interacting with and
classify the relationships between the person and objects.

Rather than generating scene graphs on static images
[29, 53, 58, 45], human-object relationship (HOR) detection
in videos focuses on the human and the active objects, that
is the objects the person is actively interacting with. Unlike
human-object interaction (HOI) detection [18, 7, 39, 33],
HOR detection classifies not only the verbs that describe hu-
man actions, but also the prepositions between human and
objects, such as “behind”, “beneath” and “in”. While many
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Figure 1: We tackle the problem of detecting human-object re-
lationships in videos. Most prior approaches only model human-
object relationships in images and perform static image predic-
tions. We propose extra spatio-temporal reasoning on the top of
static image predictions by intra- and inter-transformers.

verbs are only associated with certain objects, prepositions
are often applicable to numerous object categories.

Compared to scene graph generation and HOI detection
on images, HOR detection in videos faces several chal-
lenges. First, the model needs to find out which objects are
the protagonists of the scene. For instance, the clip in Fig-
ure 1 contains plenty of background objects that are not of
our interest. How can we accurately focus on only the active
objects? Second, the object detector, a key component in the
detection model, will be confused during model training as
video datasets [24, 60] typically only provide annotations
on active objects. Without the knowledge of human-object
interactions, a simple object detector will mistakenly fire on
both the sat-on chair and those stacked chairs not relevant
to the action. Third, videos can often be blurred at some
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frames, and static image models have difficulty with per-
forming inference on blurred frames. Considering these key
issues, how can we leverage information from neighboring
frames to produce more accurate predictions?

To tackle these issues, we propose a Human-Object Re-
lationship Transformer (HORT) model for HOR detection
in videos. Our model has two-stages: i) static image pre-
diction and ii) using visual concepts from the first stage to
recognize active objects and their relationships. HORT first
performs static image prediction, where one can plug in an
existing model from various choices of scene graph gener-
ation or HOI detection. In the second stage, HORT gathers
the encoded visual concepts from the first stage (specifically
the object, relationship, and human pose embeddings) and
feeds them into transformers with intra- and inter-attention
mechanisms. The attention mechanisms allow the model
to integrate information from spatially and temporally scat-
tered visual cues to find out which interactions are happen-
ing. In the transformer modules, we also pass messages
from human pose and relationship features to object encod-
ing, enabling an object scorer to focus on active objects.

To validate our HORT model, we have benchmarked
its detection performance on two video datasets: Action
Genome [24] and CAD-120-EVAR [60]. Our model out-
performs state-of-the-art methods in scene graph generation
and HOI detection. We have also conducted ablation studies
to examine the contribution of each part of our model.

2. Related Work
Scene graph generation. Scene graphs are a symbolic
representation of images, where objects are encoded as
nodes and their relationships are encoded as connecting
edges [26, 29]. This structured representation has bol-
stered many down-stream image tasks such as image re-
trieval [26, 41], visual question answering [25], visual rea-
soning [42], and image captioning [1]. A large body of work
has focused on improving scene graph generation from sin-
gle images. Lu et al. [35] propose to use both visual and
language modules to generate scene graphs. Xu et al. [52]
utilize RNNs to iteratively leverage node and edge infor-
mation. Zellers et al. [57] highlight the regularly occurring
graph structures existing in commonly used databases [29].
Li et al. [30] showcase the importance of context in hier-
archical regions. Yang et al. [53] propose a relationship
proposal network to prune edges in scene graphs and use
attentional graph convolutional networks (GCNs) to inte-
grate node information. Zhang et al. [58] introduce graph-
ical contrastive losses. Guo et al. [16] apply a transformer
on object features to explore contextual information among
objects. Inspired by causal inference, Tang et al. [45] tackle
the issue of biased representations. Zareian et al. [56]
bridge commonsense knowledge graphs with scene graphs.

However, all these methods are limited to static im-

ages without modeling the spatio-temporal dynamics of
relationships in videos. Moreover, most of the exist-
ing scene graph generation models implicitly assume a
single-class relationship between each pair of objects [29],
while this does not always hold, especially for human-
object relationships [24] (e.g. <person - looking
at, holding, eating - food> has three concur-
rent relationships).
Human-object interaction detection. Human-object in-
teraction (HOI) detection [18, 7] aims to understand how
a person is interacting with objects in an image. Our task,
HOR detection, is similar to HOI detection but considers
a broader class of edges. Relationships in HOI detection
are verbs, such as “riding”, “typing on”, and “hugging”,
which often exclusively relate to certain object classes.
Relationships in HOR detection can be verbs or preposi-
tions [29, 24], such as “in”, “behind”, and “on the side of”,
which are more general and object-class-agnostic.

The task of HOI detection has resulted in a series of re-
search [17, 39, 38, 48, 27, 33, 34, 23, 11]. Our model design
shares the spirit of the multi-stream approach [7, 12, 50, 32],
benefits from the knowledge of human poses [51, 31, 59],
and leverages an attention mechanism among visual con-
cepts. We further model the temporal dependencies be-
tween instances in our intra- and inter-transformer model,
leading to better understanding of human-object interac-
tions.
Transformer models in video analysis. Transformers [49]
have emerged as one of the most powerful building blocks
in natural language processing [9, 3]. Recent studies also
showcase the capability of transformers on 2-D image
tasks [37, 5, 2] and graph-structured data [55, 4]. Trans-
formers have also been utilized in video analysis. Sun et
al. [44] propose VideoBERT for action classification and
video captioning on instructional videos. Girdhar et al. [15]
introduce an action transformer network for action localiza-
tion. Gavrilyuk et al. [14] tackle group activity recognition
with actor transformers. Garcia et al. [13] include trans-
formers in their model for video question answering. In
our Human-Object Relationship Transformers, we leverage
knowledge with both intra- and inter-attention from three
visual concepts – human pose, object, and relationship –
scattered in the 3-D spatio-temporal space.

3. Human-Object Relationship Transformers
The video HOR detection problem is defined as follows:

we wish to build a model that takes a video clip as input,
and on each frame outputs the location of the human, the lo-
cations of the active objects, and the multiple relationships
between each human-object pair. Most recent scene graph
generation [53, 58, 45] and HOI detection models [39, 32]
for static images consist of three modules: a backbone im-
age feature extractor, an object detection head, and another
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Figure 2: Our Human-Object Relationship Transformer (HORT) model. Our model extracts object, relationship and human pose features
from the static image modules. Then these features are fed into an object branch and a relationship branch of intra- and inter-transformers.
Finally the model generates human-object relationship detection by combining the object detection and relationship classification outputs.

head to predict the interactions or relationships between the
detected objects. Our HORT model (Figure 2) adds an ob-
ject branch and a relationship branch of intra- and inter-
transformer modules on top of this framework. The trans-
former modules take in the temporal sequences of object,
relationship, and pose features extracted from static images,
integrate these features with an attention mechanism along
both spatial and temporal dimensions, and finally generate
more accurate human-object relationship detection.

3.1. Feature extraction on static images

Given a video clip V = {I1, I2, ..., IT }, where It is the
RGB frame at time step t, we first extract the feature map
of each image: xt = F(It). F refers to a backbone image
feature extractor, typically implemented as a fully convo-
lutional neural network. xt ∈ RH′×W ′×C is the extracted
image feature map that will be shared by both the object and
relationship detection heads.

Our object detection head HO follows Faster R-
CNN [40] and consists of a region proposal network and
a box head. It takes in image feature maps xt and generates
bounding boxes {boi }t of object proposals, each of which
comes with an encoded object feature vector Oi ∈ Rdo and
a proposal confidence score si,static ∈ (0, 1):

{Oi}t, {boi }t, {soi,static}t = HO(xt), i ∈ {1, ..., Nt} (1)

where Nt is the number of detected objects on frame t. Nt

is typically larger than the number of ground truth objects
in the scene, as the object detector outputs many false posi-
tive object proposals that are not being interacted with. The
denotation soi,static indicates that these confidence scores
are generated only with the knowledge of static images.

soi,static highly depends on the appearance of objects rather
than the context of human-object interactions.

The relationship head HR infers the relationships be-
tween each human-object pair detected by HO. Following
the designs of many relationship heads [53, 46, 58], we take
the union box of each pair of human and object boxes bo as a
region of interaction br, pool an ROIAlign feature [20] from
xt, and then apply a neural network (e.g. ResNet-50 [21])
to extract a pairwise relationship feature Rj ∈ Rdr . HO
also takes a set of object features {Oi}t as input and then
outputs the logits zj ∈ RCR (CR referring to the number
of relationship classes) for classifying the relationships be-
tween the j-th pair of human and object (in static image
baseline methods). The function of HR is summarized as

{Rj}t, {brj}t, {zj}t = HR(xt, {boi }t, {Oi}t) (2)

for all j ∈ {1, 2, ...,Mt}, where Mt denotes the number of
human-object proposal pairs on frame t.

Research [54, 10, 31] has shown that understanding
human-object interactions in static images can benefit from
the knowledge of human poses. Hence, we believe that the
temporal dynamics of human poses are helpful for infer-
ring human-object relationships across time. Using a pose
estimator P , we generate human keypoints and determine
bounding boxes of body parts following [10, 31]: {bpk}t =
P(It), k ∈ {1, 2...,Kt}. Kt denotes the number of body
parts in a person (head, shoulders, wrists, pelvic, knees, and
ankles). Then we extract the feature {Pk}t ∈ Rdp for each
body part from xt: {Pk}t = HP(xt, {bpk}t).

So far we have extracted three sets of static image fea-
tures: objects {Oi,t}, relationships {Rj,t}, and human pose
{Pk,t}. We will now show how to spatio-temporally inte-
grate these features with our transformer models.
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3.2. 3-D positional encoding

While Recurrent Neural Networks [22, 8] maintain the
orders of tokens and Temporal Convolutional Neural Net-
works [47, 6] operate on temporal neighborhoods of fea-
tures, the Transformer [49] is a sequential model that uti-
lizes a fully-connected attention mechanism, thereby re-
moving restrictions caused by positions and allowing de-
pendencies between any pair of tokens to be modeled. How-
ever, in video analysis the knowledge of positions is still
crucial. Before feeding the features extracted from static
images into the transformer models, we need to reconstruct
the positional information for each feature vector, i.e. where
an object/relationship/pose feature is extracted from in the
3-D space of a video clip.

The original transformer model [49] uses a sinusoidal
encoding for word positions. This positional encoding has
been generalized to the x-y image plane in image appli-
cations [37, 5]. We further adapt this positional encod-
ing for three dimensions, x, y, and time step t, so that
the encoding indicates the position of each feature vector
in 3-D space. After normalizing the x-y coordinates by
x̃ = 2πx/W, ỹ = 2πy/H , the sinusoidal positional en-
coding along any dimension can be written as

PE(∗)2i = sin(∗/100002i/d∗) (3)

PE(∗)2i+1 = cos(∗/100002i/d∗) (4)

where ∗ can either be x̃, ỹ or t. With the dimensionality of
transformer input dTx = 512, we set dx̃ = 128, dỹ = 128,
dt = 256, such that dTx = dx̃ + dỹ + dt. By concatenating
the positional encoding from spatial and temporal dimen-
sions, we get the 3-D positional encoding:

PE(x̃, ỹ, t) = concat(PE(x̃),PE(ỹ),PE(t)) (5)

Note that the positional encodings are similar for features
that are spatio-temporally close and different for those that
are spatio-temporally far.

We use the (x, y) coordinates of the center point of each
box bo, br and bp for its positional encoding. Because the
dimensions of the features output by HO, HR and HP may
be different, we apply linear projections to align the dimen-
sions into dTx for inputs to the transformer models. After
adding the linearly projected features and positional encod-
ings, we have the inputs for the transformers as follows:

O′
i,t = WT

o Oi,t + PE(boi,t),Wo ∈ Rdo×dTx (6)

R′
j,t = WT

r Rj,t + PE(brj,t),Wr ∈ Rdr×dTx (7)

P ′
k,t = WT

p Pk,t + PE(bpk,t),Wp ∈ Rdp×dTx (8)

3.3. Intra- and Inter-Transformers

One of the key components of the original transformer
model is computing the multi-head self-attention of repre-

sentations, i.e. constructing an attention map between all
pairs of features in a sequence, and then using this atten-
tion map to integrate features. Mathematically, the attention
function computes the scaled inner product of a query fea-
ture sequence Q and a key feature sequence K to generate
an attention map A. Then A is used to look up in a value
feature sequence V . In the self-attention or intra-attention
setup, Q, K, and V are linear projections of the same fea-
ture sequence. We are omitting the multi-head details here
and we refer the readers to [49] or our supplementary ma-
terials for a more detailed description of the original intra-
attention transformer model.

When detecting human-object relationships in videos,
we need not only attention within each modality (object fea-
tures {O′

i,t} or relationship features {R′
j,t}), but also atten-

tion that is inter-modality. Pose and object features are crit-
ical cues for classifying relationships; pose and relationship
features are helpful in determining which objects are being
interacted with.

Our transformers are divided into two symmetric
branches: an object branch and a relationship branch (Fig-
ure 3). For simplicity, we will only describe the details
in the relationship branch (Figure 3(b)). The relation-
ship branch consists of one intra-transformer and two inter-
transformers, and each transformer contains an encoder and
a decoder. The intra-transformer simply follows the orig-
inal transformer design, where all Q, K, and V are linear
projections of the relationship features R.

The first of the two inter-transformers in the relation-
ship branch considers the attention between human poses
and relationships. Intuitively, by simply looking at the hu-
man poses (especially a temporal sequence of them), one
can make a reasonable impression of which relationships
are occurring in the scene. Taking Figure 2 as an example:
the pose suggests that the person is sitting somewhere and
may be holding something close to his face.

The second inter-transformer utilizes attention among all
three visual concepts: human poses, objects and relation-
ships. The encoder computes inter-attention between the
pose and object features, allowing the model to determine
which objects are salient by looking at the trajectory of hu-
man poses and all objects. The encoder outputs a pose-
object memory which is then passed into the decoder as a
reference for classifying relationships.

We will now describe the architecture of inter-
transformers. We prepare the input by flattening each set of
features {O′

i,t}, {R′
j,t} and {P ′

k,t} along spatial and tem-
poral dimensions. Note that the positional information has
been reserved in each feature vector, so flattening these fea-
tures will not lose knowledge of proximity. We denote each
resulting feature matrices as O ∈ RN×dTx , R ∈ RM×dTx ,
and P ∈ RK×dTx , where N =

∑
t Nt, M =

∑
t Mt and

K =
∑

t Kt.
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Figure 3: Architectures of the transformer models in HORT. We
have (a) an object branch and (b) a relationship branch. Each
branch contains one intra-transformer (IntraTx) and two inter-
transformers (InterTx) with different choices of query, key, and
value (input arrows from left to right) for the encoder and decoder.
O, R and P stand for features of objects, relationships and poses,
respectively. (c) The details of each encoder and decoder layer in
an inter-transformer. The encoder takes pose features P as the ini-
tial query, and iteratively updates them with key and value features
from objects or relationships. The encoder generates a Pose-X
memory (X being object or relationship) as the key and value to
the multi-head attention layers in the decoder.

The encoder consists of a stack of identical layers (with
different weights). In the first inter-transformer, the n-th
encoder layer takes R as the key and value and functions as
follows:

P (n) = InterTxEncLayer(n)
pr (Q = P (n−1),K = V = R), (9)

with the initial query P 0 = P . Similarly, the n-th encoder
layer in the second inter-transformer takes O as the key and
value, and encoder layers iteratively integrates object infor-
mation into pose nodes:

P (n) = InterTxEncLayer(n)
po (Q = P (n−1),K = V = O). (10)

The last encoder layer outputs a pose-relationship or pose-

object memory matrix, depending on the encoder key and
value. We use this memory matrix as the key and value in
the multi-head attention layers in the decoder. The rest of
the architecture of the inter-transformer follows the original
transformer model [49].

In the relationship branch, each of the three transformers
outputs a new relationship feature matrix. After computing
the linear projections for each respective feature matrix, we
add them together to create the logits for relationship clas-
sification. Prior work [30, 53, 58, 45] implicitly assumes
only a single relationship can exist between each pair of
subject and object; therefore, a softmax function is applied
upon the logits to get the relationship scores. Because we
are inferring multiple classes of relationships between hu-
man and objects (e.g. attentional, spatial, and contacting
relationships [24]), we use the sigmoid function to generate
per-class relationship scores sr ∈ (0, 1)M×CR .

Having an architecture symmetric to the relationship
branch, the object branch outputs object scores soTx ∈
(0, 1)N for object proposals. These scores indicate if ob-
jects are salient in the context of human-object interactions.

3.4. Training and post-processing

Although the entire model can be trained end-to-end, we
opt to pre-train the backbone and object detection head, fix
their weights, and then only train the feature extractor in the
relation head and the transformer models. This way, we can
fairly compare our model with other baseline methods using
the same backbone and object detector.

We utilize two loss functions while training our model:
a binary cross entropy loss Lo for object saliency classi-
fication and a binary cross entropy loss Lr for relation-
ship classification. We add the two losses for the total loss
L = Lo + λLr.

Our method generates two scores for each object: sostatic
from the static image object detector and soTx from the
object branch. We observed that sostatic are highly bi-
ased towards the saliency of object appearance rather than
whether an object is involved in any human-object interac-
tions. False positive objects are often assigned with very
high sostatic scores. Conversely, soTx pay more attention to
the interaction context as the object branch has integrated
features from temporal sequences of poses, objects, and re-
lationships; thus, soTx are usually low on false positive ob-
ject proposals. We combine the two scores by choosing the
minimum: so = min(sostatic, s

o
Tx). We have found that this

fusion effectively suppresses false positive object proposals.
Finally, we compute a total score for each triplet

⟨subject - relationship - object⟩:

s = sp ∗ sr ∗ so, (11)

where sp is the confidence score for the human box gener-
ated in pose estimator. We rank all possible human-object
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Figure 4: Examples of the detected human-object relationships in video clips in the Charades/Action Genome dataset. The detection
formulates a multi-graph on each frame as we simultaneously predict multiple pairwise relationships. (Left) Note that the box is not
detected as an active object when it is not interacted with. (Right) Relationships between the same human-object pair evolve with time.

relationship triplets in each frame by their total scores.

4. Experimental Results

4.1. Datasets

We have evaluated our HORT model over two third-
person view video databases: Action Genome [24] and the
re-annotated CAD-120-EVAR dataset [28, 60].

Action Genome. The Action Genome dataset [24] is
built upon the crowdsourced videos from the Charades
dataset [43], which captures indoor human activities and
behaviors in daily life. Action Genome provides annota-
tions of 476,229 bounding boxes of interacted objects and
1,715,568 relationship classes between the person and ob-
jects on 234,253 frames. Action Genome contains labels for
35 classes of objects and 25 classes of relationships. The re-
lationships in Action Genome can be categorized into three
types: attentional relationships indicating whether a per-
son is looking at something, spatial relationships such as
⟨chair - beneath - person⟩, and contacting relation-
ships indicating if a person is contacting an object and what
type of contact is happening.

CAD-120-EVAR. The CAD-120 video dataset [28] con-
sists of 4 subjects performing 10 different high-level house-
hold activities (e.g. arranging objects, taking food). Each
subject performs each household activity 3 or 4 times, to-
taling 124 video sequences. In our experiments, we utilize
the newly re-annotated version, which we call CAD-120-
EVAR [60]. CAD-120-EVAR consists of 551 video clips
with 32,327 frames. These frames are re-annotated to con-
tain 6 classes of relationships between objects (e.g. holding,
containing), the attributes of objects (e.g. open, closed), and
the regions of interest of all of the objects in the frames.

4.2. Implementation details

The model is implemented in PyTorch. We use ResNet-
101 [21] as our backbone image feature extractor and take
the C4 features as xt. For our experiments on both datasets,
we pre-train the backbone and object detection head with
the object detection task on Visual Genome [29]. For the
Action Genome experiments, we further finetune the back-
bone and object head on Action Genome’s training set. The
same backbone and object detector is shared in all baseline
experiments except for [33]. We do not finetune on CAD-
120-EVAR as the “ground truth” object bounding boxes are
generated by an object detector. We use an off-the-shelf
Keypoint R-CNN [20] to estimate all human keypoints.

In our Action Genome experiments, we choose the clip
length T = 5. Because Action Genome’s annotation sam-
pling rate is ∼1 FPS, our clip length effectively covers ap-
proximately 5 seconds on average. In our CAD-120-EVAR
experiments, we set T = 10. We use a clip batch size of
4 in training on both datasets. Our models are trained on 4
Nvidia TITAN XP GPUs for 80,000 iterations with a learn-
ing rate starting at 5e−4 and shrinking to 5e−5 and 5e−6 at
iteration 30,000 and 50,000, respectively. For all the trans-
formers, dTx = 512, 8 parallel heads are used, the feed for-
ward dimension is 2048, and both the encoder and decoder
contain 2 layers. Code will be released after acceptance.

4.3. HOR detection on Action Genome

Evaluation metrics. We follow the three standard evalu-
ation modes for image-based scene graph prediction [35],
which are also the evaluation metrics provided by Action
Genome [24]: (1) predicate classification (PredCls) which
assumes ground truth object classes and bounding boxes are
given and only evaluates the predicate/relationship labels
between each subject-object pair, (2) scene graph classifi-
cation (SGCls) which assumes ground truth object bound-
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Table 1: We compare our HORT model with recently proposed HOI detection models [39, 33] and image-based scene graph generation
models [35, 52, 30, 53, 58, 46, 45]. Note that we use the same object detector for all baselines and our model except for PPDM [33]. AP50

stands for Average Precision at IoU threshold of 50%. @20 and @50 are abbreviation for recall@20 and recall@50. Our HORT model
outperforms all baseline methods measured by all metrics.

Method
Object Detector PredCls SGCls SGDet

Backbone AP50
image video image video image video

@20 @50 @20 @50 @20 @50 @20 @50 @20 @50 @20 @50
GPNN [39] ResNet-101 20.7 62.28 68.14 62.50 68.37 40.11 53.25 41.35 54.88 32.15 42.08 33.29 42.60
PPDM [33] Hourglass-104 21.3 63.17 69.73 63.28 69.98 41.90 55.73 42.13 55.92 33.93 43.34 34.10 43.49
VRD [35] ResNet-101 20.7 49.32 64.10 50.79 64.82 27.66 42.66 27.49 42.11 22.22 33.27 21.97 32.68
IMP [52] ResNet-101 20.7 66.92 73.40 67.39 73.58 44.46 58.00 43.73 56.96 35.13 44.70 34.42 43.69
MSDN [30] ResNet-101 20.7 67.22 73.43 67.73 73.60 44.72 58.20 44.12 57.21 35.27 44.79 34.65 43.81
Graph RCNN [53] ResNet-101 20.7 67.31 73.60 67.84 73.80 45.02 58.46 44.49 57.46 35.53 45.05 34.95 44.09
RelDN [58] ResNet-101 20.7 67.77 73.32 68.31 73.54 45.91 59.78 45.35 58.93 35.80 45.81 35.13 44.87
VCTree [46, 45] ResNet-101 20.7 67.43 73.52 68.06 73.71 45.31 58.80 44.68 57.77 35.65 45.30 35.02 44.29
Temporal RelDN ResNet-101 20.7 67.88 73.44 68.39 73.59 46.05 59.86 45.42 59.00 35.85 45.83 35.19 44.92
HORT (Ours) ResNet-101 20.7 71.67 76.16 72.39 76.66 47.68 62.56 47.11 61.61 37.19 47.76 36.51 46.67

ing boxes are given and evaluates the triplet labels of
⟨subject - relationship - object⟩, and (3) scene
graph detection (SGDet) which evaluates all predictions in-
cluding bounding box locations and triplet labels. Action
Genome further proposes the video version of these three
metrics, where the per-frame measurements are first aver-
aged in each video, then averaged across all videos in the
test set. We report these metrics with recall@20 and re-
call@50, where recall@x computes the fraction of correct
relationships in the top x ranked triplet predictions.

Baselines. We report the performance of various HOI
detection and scene graph generation methods (Table 1).
GPNN [39] is the only recent HOI detection method that
also generalizes to video analysis. PPDM [33] is one of
the state-of-the-art models in HOI detection. PPDM makes
use of a different object detector than all other baselines.
We pre-trained this hourglass-based object detector with the
same curriculum as our Faster R-CNN detector: first on Vi-
sual Genome, then on Action Genome. PPDM’s object de-
tector achieves better performance (measured by AP50), but
PPDM does not perform as well as several other scene graph
generation baselines in HOR detection.

Among the scene graph generation models, we compare
with VRD [35], IMP [52], MSDN [30], Graph R-CNN [53],
RelDN [58] and VCTree [46, 45]. When the backbone and
object detector are fixed and shared by the baseline mod-
els, many models show similar performance, as they are de-
signed for static images only. We have also extended the
RelDN model with a simple approach of integrating tem-
poral contextual information (Temporal RelDN in Table 1):
when predicting relationships in both training and testing,
the final logits of a frame is obtained by averaging the log-
its from a 5-frame temporal window around this frame.

Note that our reported measurements of baseline meth-
ods are significantly higher than those in [24]. This is be-
cause [24] has the restriction that only one relationship

can be predicted between each pair of human and object
during training and testing. Here, we remove this restric-
tion, resulting in much higher measurements in all baseline
methods. As a reference, we have also reported the eval-
uation comparisons with the single-relationship constraint
in the supplementary material. Due to the intra- and inter-
transformer models, HORT outperforms all baseline meth-
ods. Figure 4 illustrates examples of the predictions output
by the HORT model. Please see the supplementary materi-
als for more qualitative results.

4.4. Relationship classification on CAD-120-EVAR

CAD-120-EVAR does not provide manually labeled
ground truth of object bounding boxes, so we do not train
and test the object detector on CAD-120-EVAR. Therefore,
the task of HOR detection is simplified to classifying the
relationship between each pair of objects. The metric used
in [60] is the accuracy of relationship classification, which
is essentially the same as PredCls.

We report the classification accuracy of all 6 relation-
ship categories in Table 2. Note that only holding, not hold-
ing, contacting and apart are human-object relationships,
whereas containing and separate are actually relationships
between microwave and other objects. Still, our model can
handle the cases of non-human relationships as well. HORT
outperforms both the baseline method reported in [60] and
a RelDN [58] baseline we constructed.

4.5. Ablation study

We have conducted ablation experiments on Action
Genome to inspect the effectiveness of each transformer,
the object branch, and different positional encodings.
Transformer modules. In total, we have 6 transformers
in our model: two branches for object scoring and rela-
tionship classification, each of which consists of an intra-
transformer and two inter-transformers. We found that all of
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Table 2: Accuracy of relationship classification on CAD-120-
EVAR [28, 60]. Abbreviation for classes of relationships: HO -
Holding; NH - Not holding; CTC - Contacting; AP - Apart; CTN -
Containing; SP - Separate. Our method achieves similar or better
performance on all relationship classes.

Method HO NH CTC AP CTN SP
EVAR w/o obj [60] 0.86 0.91 0.59 0.60 0.93 0.67
EVAR w/ obj [60] 0.82 0.96 0.80 0.96 0.95 0.96
RelDN [58] 0.88 0.96 0.88 0.95 0.95 0.94
HORT (Ours) 0.89 0.96 0.98 0.97 0.96 0.97

Table 3: Ablation study: effectiveness of different transformers.
InterTx-2 refers to inter-transformers with two set of features as
inputs, either pose-object in the object branch or pose-relationship
in the relationship branch. InterTx-3 refers to inter-transformers
with three modalities as inputs.

IntraTx InterTx-2 InterTx-3 SGDet-Img
@20 @50

Object
branch

✓ 36.03 46.10
✓ ✓ 36.92 47.51
✓ ✓ ✓ 37.19 47.76

Relation
branch

✓ 35.93 45.96
✓ ✓ 36.36 46.55
✓ ✓ ✓ 37.19 47.76

❌ shelf

(b) Before

w/o object branch w/ object branch

❌mirror

Figure 5: In these two pairs of frames, the single-frame object
detector produces false positive proposals, such as a shelf and a
mirror. With the transformer object scorer, our model re-ranks the
object significance so proposals of inactive objects are removed.

the 6 transformers contribute to the human-object relation-
ship detection performance. As shown in Table 3, adding
each transformer into the model leads to a HOR detection
performance gain measured by SGDet. The results do show
a difference on the importance of the features. In both
branch, the biggest performance gain comes from adding
pose-object attention (InterTx-2 in the object branch and
InterTx-3 in the relationship branch) compared to adding
other types of attention. This phenomenon is intuitive as
the temporal dynamics of human poses serve as strong cues
for deciding which objects are being interacted with.
Transformer object scores. From Table 3, we can also
tell that the transformer object scores soTx are crucial: if
the entire object branch is ablated, the performance drops

36.21
36.40

36.82

37.19

35.50

36.00

36.50

37.00

37.50

none t xy xyt

SGDet@20

46.37

46.79

47.25

47.76

45.50

46.00

46.50

47.00

47.50

48.00

none t xy xyt

SGDet@50

Figure 6: Ablation study: We measure the SGDet of our model
with different types of positional encoding. t refers to temporal
encoding only, xy to spatial encoding only, and xyt to the 3-D
positional encoding we use in our full model.

to a level similar to static image baselines. We illustrate the
function of soTx in Figure 5. Because the total object score
is generated by taking the minimum of static image object
detector scores sostatic and transformer object scores soTx,
false positive object proposals output by the object detector
are assigned with lower confidence scores by the transform-
ers, resulting in more precise object detection.
Positional Encoding. Positional encoding has been critical
in many applications of transformer models including natu-
ral language processing [49, 9, 3], image recognition [37],
and object detection [5]. For our spatio-temporal applica-
tion, we apply positional encoding on three dimensions: x
and y on the image plane and the time step t. As shown
in Figure 6, adding 3-D positional encoding achieves supe-
rior HOR detection performance than the case with no posi-
tional encoding or only encoding either spatial or temporal
positions. In the xy-only experiment, dx = dy = 256; in
the t-only experiment, dt = 512. Moreover, the data show
that the positional encoding on the spatial dimensions are
more important than the temporal counterpart.

5. Conclusion
In this paper, we propose a Human-Object Relationship

Transformer (HORT) model for the problem of detecting
human-object relationships in videos. Our model is com-
posed of two stages, static image prediction and feature
extraction, followed by intra- and inter-transformers per-
forming spatio-temporal reasoning. By integrating features
from different instances scattered across image planes and
time steps, our model filters out false positive object pro-
posals, identifies the active objects, and refines the relation-
ship classification. We conducted experiments on two video
datasets, Action Genome and CAD-120-EVAR, and showed
how our model enables a better understanding of human-
object relationships. We also inspected the contribution of
each submodule in our ablation study, verifying the efficacy
of our spatio-temporal reasoning.
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