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Abstract

Editing an image automatically via a linguistic re-
quest can significantly save laborious manual work and is
friendly to photography novice. In this paper, we focus on
the task of language-guided global image editing. Existing
works suffer from imbalanced and insufficient data distri-
bution of real-world datasets and thus fail to understand
language requests well. To handle this issue, we propose
to create a cycle with our image generator by creating a
novel model called Editing Description Network (EDNet)
which predicts an editing embedding given a pair of im-
ages. Given the cycle, we propose several free augmenta-
tion strategies to help our model understand various edit-
ing requests given the imbalanced dataset. In addition, two
other novel ideas are proposed: an Image-Request Atten-
tion (IRA) module which allows our method to edit an image
spatial-adaptively when the image requires different editing
degree at different regions, as well as a new evaluation met-
ric for this task which is more semantic and reasonable than
conventional pixel losses (e.g. L1). Extensive experiments
on two benchmark datasets demonstrate the effectiveness of
our method over existing approaches.

1. Introduction

Image editing has a wide range of applications in many
scenarios. With the growth of social media such as Insta-
gram and Facebook, more and more users like to edit their
photos before they post them. People would like to use spe-
cific photo editing software like Photoshop, but using this
kind of professional software is not easy. It may cost novice
users a lot of time to learn, the process of editing is also
time-consuming. Moreover, as smartphones have become
the main user terminal, a way that can automatically edit
the images using the voice of users (like Siri or Cortana)
will be more user-friendly.

In this paper, we focus on the task of global image edit-
ing via linguistic requests: given an input image and a lin-
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Figure 1. The example of language-guided global image editing,
compared to existing tasks. Our task work on real-world scenarios
with editing requests.

guistic editing request, the model is required to produce a
target image that matches the request, as shown in the last
row of Figure 1. Global image editing is to retouch the in-
put image by adjusting the brightness, hue, saturation, con-
trast, tint, etc. Among the vision and language area, text-
guided image manipulation [11, 16, 5] may seem similar to
our task, but they are actually different. First, current text-
guided image manipulation methods [11, 16] are designed
for domain-specific datasets, which are either constrained to
images of a single salient object (e.g., bird) or virtual dataset
with simple objects, as shown in the first two rows of Figure
1. While in our task, we edit the images from the real-world
environment that contains various objects and scenes. Sec-
ond, text-guided image manipulation methods are designed
for template text inputs, which summarize the attributes of
the target image (e.g., “A bird with black eye rings and a
black bill”) instead of describing the editing request. The
linguistic requests on virtual datasets are also generated au-
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tomatically using the templates, which is hard to generalize
to the requests from users. In our task, we receive images
from the real-world environment and various linguistic re-
quests from users that describe the editing process.

To tackle the language-guided global image editing,
some methods [14, 22] try to map the language request into
a sequence of executable editing operations. In this way,
they require predefined editing operations and need addi-
tional annotations of editing operations. [26] is a GAN-
based method, which models each global operation as a
convolutional kernel and uses a neural generator that di-
rectly outputs the edited image. However, existing meth-
ods mainly have two limitations. First, current methods suf-
fer from the problem of insufficient and imbalanced data of
real-world datasets. For example, The GIER dataset pro-
posed by [22] has 7, 000 input-target-request triplets col-
lected from online image editing websites through the time
period from 2009 to 2020. Among the data, editing requests
related to hue adjustment only account for less than 10% of
the entire dataset, which indicates the imbalanced distribu-
tion of different editing operations. In addition, more than
80% of the editing requests related to brightness operation
is to increase the brightness, indicating that the imbalance
even exists inside a specific operation. Such severe data im-
balance issue will make methods fail to understand the lan-
guage input well, resulting in simply brightening the input
images when the received requests are related to brightness
operation but actually to decrease the brightness, and also
failing to respond to requests related to hue operation.

Second, even for global editing requests, it is often de-
sirable to have different editing degrees on different image
regions. For example, for an input image with a dark back-
ground and a bright foreground, given a vague user request
like “brighten the image”, it is more reasonable to brighten
the background a lot but the foreground a little instead of
brightening the whole image uniformly. However, previous
methods can only apply editing operations globally, which
results in unsatisfactory results.

To tackle the aforementioned limitations, we propose
the Cycle Augmentation GAN (CAGAN) for language-
guided global image editing. First, we propose a new
cross-modal cyclic mechanism and data augmentation strat-
egy to address the problem of insufficient and imbalanced
data. Since directly collecting the training triplet exam-
ples (input-target-request) is expensive and laborious, we
design a cross-modal cyclic mechanism to augment the
data. Specifically, we devise an Editing Description Net-
work (EDNet) to take in the input image and the edited
image obtained from the generator, then produce the edit-
ing embedding that specifies the image transformation ap-
plied on the input image. With EDNet and generator, we
can apply swapping augmentation (i.e., swap the input and
target image) and random augmentations (i.e., adjusting the

brightness, hue of the image) and then reconstruct the in-
put image without leveraging linguistic requests. As we
learn a better EDNet, we can use EDNet to boost the perfor-
mance of the generator by maximizing the cosine similarity
between the editing embeddings obtained from EDNet and
the condition embedding obtained requests.

Second, we propose an Image-Request Attention (IRA)
to adaptively edit the input image in different spatial loca-
tions. The IRA calculates the attention between embed-
dings of linguistic requests and patches on visual feature
maps. By leveraging ground truth target images that are
spatial-adaptive retouched as supervision, IRA learns to as-
sign an appropriate degree for each location. For example,
a very light place will receive a low attention degree when
the request is “brighten the image” since the real intention is
likely to only brighten the dark places. Finally, we propose
a new evaluation metric for language-guided image editing
called Redescription Similarity Score (RSS). To calculate
the RSS, we leverage a pre-trained speaker model [24] to
generate requests given the input image and the generated
image, then calculate commonly used sentence similarity
metrics between generated requests and ground truth re-
quests. Higher similarity indicates better performance.

To sum up, we make the following contributions:

• We propose the CAGAN with a newly designed cross-
modal cyclic mechanism and augmentation strategy
for language-guided global image editing, which miti-
gates the problem of insufficient and unbalanced data.

• We propose IRA that calculates the degree of editing in
the spatial dimension, which produces reasonable and
interpretable editing results.

• We propose a new metric (RSS) to evaluate the per-
formance of editing, which uses a speaker model to
redescribe the input-output image pair.

• Experiments on both GIER [22] dataset and MA5k-
Req [23] dataset demonstrate the effectiveness of our
method.

2. Related Work
2.1. Image Editing

Image Editing has been studied a lot these years. Some
works [9, 18] are proposed for global image editing but they
do not use linguistic requests. Text-guided image manip-
ulation [11, 16, 5] is a task that use language for image
editing. But this task is designed for constrained domain-
specific data, which are limited to a single salient object
(e.g., bird) or virtual dataset domain. The text information
is more like templates, which summarizing the attributes of
target images. Recently, [22, 26, 23] are proposed to realize
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Figure 2. The left side indicates the cross-modal cyclic mechanism. Our model uses an RNN encoder to produce language embedding h
given the request t. The generator receives input image x and h to generate the edited image x̃. Then, the EDNet use x and x̃ to produce
editing embedding ex→x̃. Here, we apply reconstruction loss and cycle consistency loss for the cross-modal cyclic mechanism. For the
augmentation strategy, we swap the input and target images or augment them with random adjustment. With the swapped/augmented
images, EDNet produces the editing embedding ey→x and ex′→y′ . The CAGAN is required to reconstruct x and y′. The discriminator is
omitted here for clarity.

language-guided global image editing that works on real-
world scenarios and requests from real users. [22] intro-
duces a new language-guided image editing dataset GIER,
and edits images by using predefined editing operations, but
its training requires the annotation of the operation. [23]
proposed a text-to-operation model to map the vague edit-
ing language request into a series of editing operations. [26]
leverage an augmented image-to-image translation frame-
work [10] to learn editing operators as a convolutional ker-
nel. However, existing methods both suffer from the insuffi-
cient and imbalance of training data and can not adaptively
edit the image. Our CAGAN is proposed to solve the afore-
mentioned problem by a newly designed cross-modal cyclic
mechanism and IRA.

2.2. Conditional GAN

Generative adversarial networks (GANs) [15, 7, 6] have
made rapid progress on image generation in recent years.
Built on the basis of GANs, the conditional GAN aims to
synthesize the image according to the conditional signal.
The input conditional signal can be images [10, 30], human
poses [31], or semantic segmentation masks [19]. Text-to-
image synthesis [21, 28, 29, 27, 12] which learns a mapping
from textual descriptions to images propose to embed text
information as condition for GAN. Based on the framework
of text-to-image, SISGAN [4], TAGAN [16] and ManiGAN
[11] are proposed to manipulate the input image through
textual descriptions. But the textual descriptions used in
the aforementioned methods are more like summarizing the
attributes of the target image instead of describing the edit-
ing request. Recently, [5] propose the GeNeVA task and
the GeNeVA-GAN for iterative image generation, where a
new object is added one-by-one following the linguistic re-
quests. But GeNeVA-GAN focuses on iterative editing and
only tests on virtual toy datasets. We evaluated the afore-

mentioned methods on real-world datasets but the perfor-
mance is unsatisfactory, which could prove the difficulty of
our task. Different from the previous methods, CAGAN is
proposed to model linguistic requests instead of image cap-
tions and tested on real-world scenarios.

2.3. Cyclic Mechanism

Cycle consistency is widely researched in unsupervised
and semi-supervised representation learning, where a trans-
formation and its inverse operation are applied sequentially
on input data, the consistency requires that the output repre-
sentation should be close to the original input data in feature
space. CycleGAN [30] is a popular method that leverages
cyclic training for image-to-image transformation. Star-
GAN [3] augments CycleGAN using the conditional labels
for multi-domain image-to-image transformation. Recently,
MirrorGAN [20] propose to utilize an additional image cap-
tioning (Image-to-Text) network to describe the image that
generates from a Text-to-Image network. In this paper, we
build a new EDNet that takes in the input-output image
pairs for producing editing embeddings for cycle consis-
tency. Besides, indispensable data augmentations are ap-
plied in training EDNet, which protects our model from suf-
fering the insufficient and imbalance of data.

3. Method

Our task is to edit a given image according to the mod-
ification specified in the input linguistic request. We first
describe our basic generator in Sec. 3.1, which however has
the difficulty to understand language requests well given
the insufficient and unbalanced training data distribution.
Therefore, we introduce our EDNet which can predict an
editing embedding given a pair of images to create a cyclic
loop with the generator (Sec. 3.2). Such cyclic mechanism
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is useful to help our generator learn editing requests better
even without real request annotation given swapping the or-
der of image pairs and randomly augmented image pairs.
In addition, another module IRA is equipped with the basic
generator to predict the degree of editing which is useful for
spatial-adaptive editing (Sec. 3.3).

3.1. Generator

Given the linguistic request t, we first use a BiLSTM en-
coder to encode the linguistic request to obtain the sentence
embedding h ∈ RCh that represents the request. The gener-
ator G takes in the input image x and language embedding
h for generating the edited image x̃, as shown in Figure 2.
With the target image y and the discriminator D, L1 loss
and adversarial loss can be used to supervise the generator
G:

LL1
G = |x̃− y| . (1)

Ladv
G = −Ex̃∼Pmodel [logD(x̃)] ,

Ladv
D = −Ey∼Pdata [logD(y)]− Ex̃∼Pmodel [log(1−D(x̃))] .

(2)

3.2. Cross-Modal Cyclic Mechanism

However, real-world datasets for language-guided global
image editing are usually insufficient and unbalanced, e.g.,
over 80% of the editing requests related to adjusting the
brightness is to increase the brightness and less than 10%
of the requests in the entire dataset are related to hue opera-
tion. The learning methods are consequently biased by the
unbalanced data distribution and tend to increase the bright-
ness for every input image. However, directly augmenting
the images is not enough since we need to annotate addi-
tional linguistic requests. Thus we develop a cross-modal
cyclic mechanism to augment the training image pairs with-
out requiring additional request annotations.

To create a cyclic loop with the generator G, we devise
another network called EDNet which receives the input im-
age x and the generated edited image x̃ to produce the edit-
ing embedding ex→x̃ that indicates the editing operation.
With the text conditional generatorG and the proposed ED-
Net, we have complete the cross-modal cyclic mechanism.
Intuitively, we can train the model by reconstructing the tar-
get image y. Suppose that we learn a better EDNet, we can
use EDNet to boostG by maximizing the similarity of ex→x̃

and h. The cross-modal cyclic mechanism can be illustrated
with the following equations:

x̃ = G(x, h),

ex→x̃ = ED(x, x̃),

Lcyc = 1− ex→x̃ · h
‖ex→x̃‖‖h‖

,

Lrec = |G (x,ED (x, y))− y| ,

(3)

where Lcyc is the cycle consistency loss which is to maxi-
mize the cosine similarity between ex→x̃ and h, Lrec is the
reconstruction loss. Next, we will explain how to build the
EDNet and how to learn it better using data augmentations
without additional ground truth editing requests.

Editing Description Network. To model the editing op-
eration of image pairs, we devise the EDNet. We first use
ResNet-101 [8] as the feature extractor to encode the input
image x and the target image y:

Fx = ResNet (x)

Fy = ResNet (y) ,
(4)

where Fx, Fy ∈ RCf×N×N are feature maps of x and y.
Cf , N indicates the number of channel and height or width
of the feature maps. Then, we use attention to model the
editing operation between images. For each feature F i

x in
the input feature map Fx, the input-to-target attention com-
putes its alignment with the feature F j

y in the target fea-
ture map Fy . The input feature maps and the attended
target feature are then flattened and merged together with
a fully-connected layer to obtain the editing embedding
ex→y ∈ RCh :

αi,j
x→y = softmaxj

((
W1F

i
x

)> (
W2F

j
y

))
,

F i
x→y =

∑
j

αi,j
x→yF

j
y ,

ex→y = tanh (W3[Fx;Fx→y] + b3) .

(5)

We decompose the attention weight into two small matrices
W1 and W2 so as to reduce the number of parameters since
the dimension of the image feature is usually large.

Data Augmentation on Image Pairs. In the vanilla
cross-modal cyclic mechanism, the data we used to train
EDNet still suffer from insufficient and unbalanced data,
which constrain the ability of EDNet. Thus we apply two
kinds of data augmentation on the image pairs to learn ED-
Net better by leveraging the cyclic mechanism, as shown
in Figure 2. First, we can swap the input image and target
image, which means the CAGAN is asked to reconstruct the
input image. This kind of augmentation mitigates the imbal-
ance of requests, e.g., by converting brightening operations
into darkening operations. Second, we apply random im-
age transformation on both the input image x and the target
image y to construct the new image pair x′ and y′. The ran-
dom transformation includes adjusting the brightness, con-
trast, hue, sharpness, and saturation of the images, which
are the combinations of frequent-used global editing oper-
ations. The EDNet and G are also required to reconstruct
the y′. This kind of augmentation mitigates the lack of data
by increasing the training image pairs. Mathematically, the
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Figure 3. IRA calculates the attention between language embed-
ding h and patches on image feature map V . Given the Hadamard
product of attention matrix A and the expanded linguistic embed-
dings h̄, the model learns to generate modulation parameters that
are used to modify the visual feature V .

augmentation loss Laug is calculated by:

x′ = random adjust(x)

y′ = random adjust(y)

Laug = |G (y,ED (y, x))− x|
+ |G (x′, ED (x′, y′))− y′|

(6)

3.3. Generator with Image-Request Attention

After obtaining the language embedding h extracted
from the request, we leverage a conditional generator G to
edit the input image x. However, even for global editing
requests, sometimes spatial-adaptive editing is more pre-
ferred while previous methods do not have such capability.
To solve this issue, we propose an Image-Request Atten-
tion (IRA) module in the generator to adaptively edit the
input image in different spatial locations. IRA predict an
attention map based on the correlation between the input
image and request, as shown in Figure 3. We leverage a
CNN to encoder the input image x to the visual featuer map
V ∈ RCv×H×W . The proposed IRA embeds visual features
V and the language embedding h ∈ RCh×1 into the same
space, then calculate the attention matrix A ∈ RH×W by:

A = Sigmoid
(
(W4h)T (W5V )

)
, (7)

where W4 ∈ RCv×Ch and W5 ∈ RCv×Cv are learnable
parameters. We also use the sigmoid function to normalize
the weight of degree into [0, 1]. The attention calculates the
multi-modal similarity which indicates that the larger the
value in A, the greater the degree of editing. We expand
and repeat the language embedding h in spatial dimension
to be h̄ ∈ RCh×H×W . Then, we reweight the elements in h̄
using attention matrix A to obtain h̄′ ∈ RCv×H×W :

h̄′ = W6h̄�A, (8)
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Figure 4. The overview of the proposed Redescription Similarity
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where W6 ∈ RCv×Ch is a learnable parameter, � de-
notes the Hadamard product. The language embedding af-
ter reweighting h̄′ is then fed to the generator to serve as the
conditional signal for editing.

Unlike some of the previous methods that rely on limited
predefined operations, our generator directly models the lin-
guistic request as modulation parameters that are used to
modify the visual feature maps. With the weitghted condi-
tion embedding h̄′, we generate the modulation parameters
γ ∈ RCv×H×W and β ∈ RCv×H×W by:

γ = W7h̄
′;

β = W8h̄
′,

(9)

where W7 ∈ RCv×Cv and W8 ∈ RCv×Cv are learnable
convolutional filters. The produced modulation parameters
γ and β achieve image editing through scaling and shifting
the visual feature map V ∈ RCv×H×W for only once:

V ′ = γ � V + β, (10)

where V ′ indicates the edited visual feature map. The edited
visual feature map V ′ is then fed to the subsequent decoder
of G for generating the result x̃.

4. Experiments
4.1. New Metric: Redescription Similarity Score

The existing metrics used by related works for evaluat-
ing language-guided global image editing are L1 distance
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Method
MA5k-Req GIER

IS↑ FID↓ RSS↑ User ↑ IS↑ FID↓ RSS↑ User ↑
BLEU-4 CIDEr METEOR ROUGE-L BLEU-4 CIDEr METEOR ROUGE-L

TAGAN[16] 12.67 60.21 8.25 63.06 10.62 21.92 1.98 8.91 79.54 2.83 26.91 8.42 21.14 2.61
SISGAN [4] 13.76 53.43 8.33 64.13 10.81 21.99 2.06 6.57 144.61 2.43 24.02 7.60 18.43 1.79
GeNeVA [5] 15.04 33.73 8.39 64.14 10.90 22.20 2.69 9.70 67.70 2.76 25.49 8.34 20.94 2.55
PixAug [26] 15.22 34.13 8.37 64.17 10.83 22.12 2.88 7.90 96.83 2.85 25.46 8.38 20.94 2.47
OMN [22] - - - - - - - 9.63 65.99 3.67 30.16 8.90 22.64 2.82
w.o. EDNet 16.23 10.01 8.42 65.84 11.03 22.17 3.02 9.83 44.88 3.79 35.73 9.15 23.14 2.93

w.o. Aug 16.29 10.09 8.39 65.89 11.01 22.20 3.05 9.91 44.70 3.81 35.81 9.16 23.23 2.91
w.o. IRA 16.93 10.12 8.53 66.13 11.07 22.65 3.12 10.17 42.36 3.78 36.28 9.21 23.40 3.02

Ours 17.16 9.95 8.66 66.18 11.13 22.83 3.29 10.35 42.01 4.09 37.03 9.45 23.60 3.07

Table 1. Quantitative comparison with existing methods on MA5k-Req and GIER datasets.

and user studies. However, the only quantitative metric L1
distance can not reflect the quality of editing. It is because
we only have one target image for each input-request pair,
while the editing results could be actually diverse as long
as the results match the request. We also find that a simple
baseline to beat all the comparison methods is to not edit the
images at all as shown on the left of Figure 4, which is un-
reasonable and reflects that the L1 distance is not suitable
as a metric. Some other metrics used in text-to-image or
image manipulation [11] like manipulative precision (MP)
are also not suitable for our problem since the language in-
formation of our problem is describing the editing request
instead of summarizing the attributes of the target image.

Therefore, we propose a new evaluation metric called
Redescription Similarity Score (RSS). To calculate the RSS,
we leverage a difference-speaker [24] that is trained on our
datasets. As shown on the right side of Figure 4, we use
the trained speaker to generate the editing request t̃ given
the input image x and the synthesized image x̃. Then, RSS
is calculated by evaluating the similarity between the gen-
erated request t̃ and the ground truth requests t. Our RSS
consists of four well-known metrics BLEU-4 [17], CIDEr
[25], METEOR [1], ROUGE-L [13] which are used to eval-
uate the semantic similarity between sentences. Higher RSS
indicates that the generated requests are more semantically
similar to ground truth requests, which means the method
for global editing is better.

4.2. Experimental Settings

Datasets. We adopt GIER [22] dataset and MA5k-Req
[23] dataset in our experiments. GIER dataset consists of
7k samples, where each sample contains an input image, a
linguistic request, a target image, and a list of applied opera-
tions. The original MA5k dataset [2] consists of 25k exam-
ples, where each sample is an input-target image pair. But
it is used for image retouching and does not have language
annotations. [23] followed the annotating procedure of [22]
to collect the linguistic request for each input-target image
pair to form the MA5k-Req dataset.

Implementation details. We resize the images to 256×

256 for all the experiments. As for the generator, we
adopt an encoder-bottleneck-decoder structure that consists
of two downsample blocks, three bottleneck blocks, and
two upsample blocks. The scaling and shifting applied on
the feature map are only adopted in the first bottleneck. We
train our model and baselines for 50 epochs for every ex-
periment.

Baseslines. We compare our method with existing
language-guided global image editing methods PixAug and
OMN. PixAug [26] is a GAN-based model following the
language-augmented pix2pix [10] model that uses prede-
fined operations for image retouching. OMN [22] is Oper-
ation Modular Network that comprises submodules of the
predefined global operations. The parameters of each oper-
ation are also predicted by the modular network. Note that
OMN relies on the annotations of operations and thus can
not train on the MA5k-Req dataset. Besides, we also adapt
the existing text-guided image manipulation methods to our
task. GeNeVA [5] learns to generate the image step-by-step
according to the text description. To fit our task, we use it
for a single-step generation. TAGAN [16] and SISGAN [4]
are two approaches for text-guided image manipulation. For
a fair comparison, we add L1 loss for the baseline models
which are originally train on unpaired data. We also conduct
component analyses on IRA and our cyclic mechanism and
augmentation. w.o. IRA means the CAGAN without using
IRA. w.o. EDNet means the CAGAN without using cyclic
mechanism and data augmentations. w.o. Aug means the
CAGAN without using data augmentations.

4.3. Comparison

Quantitative Results. We conduct quantitative com-
parisons with the baselines using the Inception Score (IS),
Fréchet Inception Distance (FID), and the newly proposed
Redescription Similarity Score on both GIER and FiveK
datasets, as shown in Table 1. Note that IS and FID only
evaluate the results between generated image set and the
target image set, only RSS evaluates the results in example
level. We also conduct user studies for comparison. We
randomly selected 100 examples from the test set of two
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Input Target TAGAN GeNeVA PixAug SISGAN Ours

Request: Darken image to make more moody

Request: Turn down the saturation and create more blue hue

Request: Add more contrast to simulate more white light

Figure 5. Qualitative comparison with baseline models on MA5k-Req dataset. Best viewed in color.

Input Target SISGAN PixAug GeNeVA TAGAN OMN
Request: Fix overexposure problems to make it clear.

Request: Remove the purple tone and add pink.

Request: Remove the pink tone from the image, make colors more vivid.

Ours

Figure 6. Qualitative comparison with baseline models on GIER dataset. Best viewed in color.

datasets respectively, and obtain 100 edited images for each
method. Given the input image and the request, the user
is asked to evaluate the image by considering the realism
and the consistency between the image and its correspond-
ing request. 10 volunteers are invited to rate scores from 1
(worst) to 5 (best). The average scores are reported in the
“User” column of Table 1.

We can see that our full model is leading in all the evalua-
tion metrics. Another observation is that the ranking of our
user studies is quite similar to the ranking of RSS, which
indicates that the newly proposed evaluation metric could
reflect the intuitive feeling of users. The performance of

our model drops without using the IRA or EDNet, which
demonstrates the effectiveness of the proposed components.
The results from user studies also support our view.

Qualitative Results. Qualitative comparison with base-
lines on the FiveK dataset and GIER dataset are shown in
Figure 5 and Figure 6. As shown in the first two rows of
Figure 5 and the first row of Figure 6, our CAGAN can ad-
just the lightness and contrast of the image according to the
linguistic requests accurately. While the images generated
by baseline models are abnormal, which do not match the
editing request well or even fail to preserve the content of
images. The much worse performance of SISGAN, PixAug
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Input w.o. IRA with IRA Attention Map
Request: Brighten the photo please

Request: Please reduce the lightness a little

Figure 7. Visualization of the IRA. Warmer colors indicate higher
values.

and TAGAN might because their task is different from ours
and their moel ability is limited when testing on complex
images. In the last row of the Figure 5 and the last two rows
of Figure 6, our model shows the performance on adjust-
ing the hue of images. Since the requests related to hue are
quite few in the dataset (< 10%), the baseline models of-
ten fail in these cases. By leveraging the cross-modal cyclic
mechanism and data augmentations, our method is able to
adjust the hue according to the requests.

4.4. Ablation Studies

Image-Request Attention. In CAGAN, our Image-
Request Attention calculates the attention weight for the
embedding of linguistic requests and patches on visual fea-
ture maps. The calculated weight matrix indicates the de-
gree of editing for each location. This design works well
in the situation that the request is vague and simple. As
shown in the first row of Figure 7, for the underexposure
input image with vague requests “brighten the photo”, our
IRA learns to assign appropriate editing degree in spatial
dimension by increasing the lightness in dark places a lot
but bright places a little. While without using IRA, the im-
age is only brightened slightly in all the locations. When
we have an overexposed image with a request that needs to
reduce the lightness, as shown in the second row of Figure
7, IRA can also decrease the brightness of the light and its
circular halo accurately. By leveraging the IRA, our model
can provide spatial-adaptive editing.

Cross-Modal Cyclic Mechanism and Data Augmenta-
tion. In CAGAN, we leverage the EDNet to achieve cross-
modal cyclic mechanism and data augmentation. The aug-
mented EDNet is used to supervise the generator, which
mitigates the insufficient and imbalance of data. The first
three columns of Figure 8 show examples of adjusting the
brightness. Since most of the requests in GIER and FiveK
datasets related to the brightness adjusting are to increase
the brightness, the model without EDNet or augmentation

Figure 8. Ablation study on data augmentation for EDNet.

fails to darken the image well and is not sensitive to the
requests with subtle differences. By leveraging the EDNet
and data augmentation strategy, the augmented generator is
able to darken the image and edit the image that matches
the requests well. In the last column of Figure 8, the model
without EDNet or augmentation simply brighten the image
and fail in removing the brown tone well since the examples
include adjusting the hue are less than 10% in the entire
dataset. With the cross-modal cyclic mechanism and data
augmentation, CAGAN can remove the brown tone well
that matches the request.

5. Conclusion
In this paper, we study the language-guided global im-

age editing problem that takes an input image and a linguis-
tic request as input and then outputs the edited image that
matches the request. To mitigate the insufficient and unbal-
anced data distribution, we build the EDNet and develop a
cyclic mechanism for data augmentations. To produce rea-
sonable and spatial-adaptive results when the requests are
vague, we devise the IRA to assign an appropriate editing
degree for each location. Both the design of EDNet and IPA
can improve the performance of editing. Lastly, to tackle
the lack of evaluation metric of the current problem, we
propose the RSS by using a speaker model to redescribe
the requests.
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