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Abstract

In this paper, by modeling the point cloud registration

task as a Markov decision process, we propose an end-to-

end deep model embedded with the cross-entropy method

(CEM) for unsupervised 3D registration. Our model con-

sists of a sampling network module and a differentiable

CEM module. In our sampling network module, given a

pair of point clouds, the sampling network learns a prior

sampling distribution over the transformation space. The

learned sampling distribution can be used as a ªgoodº ini-

tialization of the differentiable CEM module. In our differ-

entiable CEM module, we first propose a maximum consen-

sus criterion based alignment metric as the reward function

for the point cloud registration task. Based on the reward

function, for each state, we then construct a fused score

function to evaluate the sampled transformations, where

we weight the current and future rewards of the transfor-

mations. Particularly, the future rewards of the sampled

transforms are obtained by performing the iterative closest

point (ICP) algorithm on the transformed state. By select-

ing the top-k transformations with the highest scores, we

iteratively update the sampling distribution. Furthermore,

in order to make the CEM differentiable, we use the sparse-

max function to replace the hard top-k selection. Finally, we

formulate a Geman-McClure estimator based loss to train

our end-to-end registration model. Extensive experimen-

tal results demonstrate the good registration performance

of our method on benchmark datasets. Code is available at

https://github.com/Jiang-HB/CEMNet.
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1. Introduction

Point cloud registration is the problem of finding the op-

timal rigid transformation (i.e., a rotation matrix and a trans-

lation vector) that can align the source point cloud to the

target precisely. It plays important roles in a variety of 3D

vision applications such as 3D reconstruction [1, 38, 20],

Lidar SLAM [12, 57], 3D object location [14, 46, 31]. How-

ever, various challenges such as outliers and noise interfer-

ence still hinder its application in the real world.

Owing to discriminative feature extraction of deep neural

networks, deep point cloud registration methods [48, 49, 28]

have shown impressive performance. Nevertheless, most of

their success mainly depends on large amounts of ground-

truth transformations for supervised point cloud registra-

tion, which greatly increases their training costs. To avoid

it, recent efforts have been devoted to developing an unsu-

pervised registration model. For example, cycle consistency

is used as the self-supervision signal to train the registration

models in [19, 54]. However, the cycle-consistency loss

may not be able to deal with the partially-overlapping case

well, since the outliers cannot form a closed loop. In addi-

tion, unsupervised point cloud registration methods [47, 25]

learn the transformation by minimizing the alignment er-

ror (e.g., Chamfer metric) between the transformed source

point cloud and the target point cloud. Nevertheless, for a

pair of point clouds with complex geometry, the optimiza-

tion of the alignment error between them may be difficult

and prone to sticking into the local minima.

Inspired by the model based reinforcement learning (RL)

[22, 21], in this paper, we propose a novel sampling network

guided cross-entropy method for unsupervised point cloud

registration. By formulating the 3D registration task as a

Markov decision process (MDP), it is expected to heuris-

tically search for the optimal transformation by gradually

narrowing its interest transformation region through trial

and error. Our deep unsupervised registration model con-

sists of two modules, i.e., sampling network module and dif-

ferentiable cross-entropy method (CEM) module. Given a
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pair of source and target point clouds, the sampling network

aims to learn a prior Gaussian distribution over the trans-

formation space, which can provide the subsequent CEM

module a proper initialization. With the learned sampling

distribution, the differentiable CEM further searches for the

optimal transformation by iteratively sampling the transfor-

mation candidates, evaluating the candidates, and updat-

ing the distribution. Specifically, in the sampling network

module, we utilize the learned matching map with the local

geometric feature for the mean estimation of the sampling

distribution and exploit the global feature for variance es-

timation, respectively. In the CEM module, a novel fused

score function combining the current and the future rewards

is designed to evaluate each sampled transformation. Par-

ticularly, the future reward is estimated by performing the

ICP algorithm on the transformed source point cloud and

the target point cloud. In addition, the differentiability in

our CEM module is achieved by softening the sorting based

top-k selection with a differentiable sparsemax function. Fi-

nally, we formulate a scaled Geman-McClure estimator [58]

based loss function to train our model, where the sublinear

convergence speed for the outliers can weaken the negative

impact on registration precision from the outliers.

To summarize, our main contributions are as follows:

• We propose a novel end-to-end cross-entropy method

based deep model for unsupervised point cloud regis-

tration, where a prior sampling distribution is predicted

by a sampling network to quickly focus on the promis-

ing searching region.

• In the cross-entropy method, we design a novel ICP

driven fused reward function for accurate transfor-

mation candidate evaluation and propose a spasemax

function based soft top-k selection mechanism for the

differentiability of our model.

• Compared to the unsupervised or even some fully su-

pervised deep methods, our method can obtain out-

standing performance on extensive benchmarks.

2. Related Work

Traditional point cloud registration algorithms. In the

traditional 3D registration field, a lot of research has fo-

cused on the Iterative Closest Point algorithm (ICP) [6]

and its variants. The original ICP repeatedly performs

correspondence estimation and transformation optimization

to find the optimal transformation. However, ICP with

improper initialization easily sticks into the local minima

dilemma and the sensitivity to the outliers also degrades

its performance in the partially overlapping case. To avoid

it, Go-ICP [53] globally searches for the optimal transfor-

mation via integrating the branch-and-bound scheme into

the ICP. Furthermore, Chetverikov et al. [7] proposed a

trimmed ICP (TrICP) algorithm to handle the partial case,

where the least square optimization is only performed on

partial minimum square errors rather than the all. Moreover,

other variants such as [40, 16, 4, 18, 11] also present com-

petitive registration perfromance. In addition, RANSAC

based methods [15, 10, 9, 45, 44, 13] also have been exten-

sively studies. Among them, one representative method is

the 4PCS [2, 42, 43] which determines the correspondence

from the sampled four-point sets that are nearly co-planar

via comparing their intersectional diagonal ratios. Further-

more, Super4PCS [33], an improved 4PCS method, is pro-

posed to largely reduce the computational complexity of

the congruent four-point sets sampling. Compared with the

quadratic time complexity of points in 4PCS, Super4PCS

only requires linear complexity, which greatly promotes its

application in the real world. In addition, other RANSAC

variants, including [35, 34, 52, 24, 17, 27] also show good

alignment results.

Learning-based point cloud registration algorithms. In

recent years, deep learning based point cloud registra-

tion methods have received widespread attention. PPFNet

method [11] is proposed to utilize the PointNet [37] to ex-

tract the feature of the point patches and then perform the

RANSAC for finding corresponding patches. DCP [48]

calculates the rigid transformation via the singular value

decomposition (SVD) where the correspondence is con-

structed through learning a soft matching map. RPM-

Net [55] also realizes the registration based on the match-

ing map generated from the Sinkhorn layer and annealing.

[56] aligns the point cloud pair by minimizing the KL-

Divergence between two learned Gaussian Mixture Mod-

els. In addition, ReAgent [5] is proposed to combine the

imitation learning and model-free reinforcement learning

(i.e., proximal policy optimization [39]) for registration

agent training. Instead, our method utilizes the model-based

cross-entropy method for registration with the constructed

MDP model. [26] proposes to search for the optimal solu-

tion by planning with a learned latent dynamic model. Al-

though it’s unsupervised and has a faster inference speed,

the approximation error in its latent reward and translation

networks may potentially degrade its registration precision.

Moreover, [19, 54] propose to apply the cycle consistency

as the supervision signal into the point cloud registration

for the unsupervised learning. However, since the non-

overlapping region cannot construct a closed-loop, they also

may not handle the partial case well. In addition, other

learning-based methods, including [49, 28, 8, 36, 30, 29, 59]

also present impressive performance.

3. Approach

3.1. Problem Setting

For the point cloud registration task, given the source

point cloud X = {xi ∈ R
3 | i = 1, ..., N} and the target
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Figure 1. The pipeline of the proposed sampling network guided cross-entropy method (CEM) for point cloud registration. Our framework

mainly contains two cascaded modules: (a) Sampling network module: Given the source and target point clouds {X,Y}, we extract

their per-point features FX and the global feature LY which are used to predict the mean µ0 and the standard deviation σ0 of the

initial sampling distribution (N (µ0,σ)) for subsequent CEM block. (b) Differentiable CEM module: In the t-th iteration (1 ≤ t ≤
T ), it alternatively performs the sampling transformation candidates {a1, ...,aN}; evaluating sampled transformations (obtaining scores

{S1, ..., SN}) through our designed fused score function which combines the current and future rewards; mapping the obtained scores

to a sparse distribution {p1, ...,pN} with the differentiable sparsemax function; updating the sampling distribution via Eq. 8. In the last

iteration, we use the expected value of the sampling distribution to estimate the optimal transformation.

point cloud Y = {yj ∈ R
3 | j = 1, ...,M}, we aim to re-

cover the rigid transformation containing a rotation matrix

R ∈ SO (3) and a translation vector t ∈ R
3 for aligning the

two point clouds. In this work, we formulate 3D point cloud

registration as a Markov decision process (MDP), which

contains a state set, an action set, a state transition function,

and a reward function.

State space. We define the set of point cloud pairs as the

state space S , that is s = {X,Y} ∈ S .

Action space. We denote the rigid transformation space

SE(3) (SO(3) × R
3) as the action space A. To reduce the

dimension of the search space, we utilize the Euler angle

representation e = [e1, e2, e3] ∈ [−π, π]3 to encode the

rotation R ∈ SO(3). Thus, the action a ∈ A is represented

by a = [e, t] and R(e) is denoted as the corresponding

rotation matrix of the Euler angle e.

State transition function. After executing the action a =
[e, t] at the current state s = {X,Y}, we predict the next

registration state s′ =
{

X̃,Y
}

with the state transition

function T , that is:

s′ = T (s,a) =
{

{R (e)xi + t}Ni=1 ,Y
}

=
{

X̃,Y
}

.

(1)

Reward function. We evaluate the effect of executing the

action a at the state s with the reward function R (s,a) in

the point cloud registration task. In order to handle the par-

tially overlapping case, we define a maximum consensus

criterion based alignment metric Dmc as below to quan-

tify the reward, that is, R (s,a) = −Dmc (T (s,a)) =

−Dmc
(

X̃,Y
)

. The lower the alignment error between X̃

and Y, the higher the reward obtained by that action:

Dmc
(

X̃,Y
)

= 2− 1

N

∑

x̃i∈X̃

ρε (dx̃i,Y)

(

1− dx̃i,Y

ε

)

−

1

M

∑

yj∈Y

ρε

(

dyj ,X̃

)

(

1−
dyj ,X̃

ε

)

,

(2)

where dx̃i,Y = minyj
∥x̃i − yj∥2 denotes the shorest dis-

tance between the point x̃i and the point cloud Y and

ρε (x) = 1 {x ≤ ε} is the indicator function, where the

threshold ε > 0 is a hyper-parameter that specifies the

maximum allowable distance for inlier. Dmc measures the

alignment error via counting the number of overlapping

point pairs, which can effectively relieve the effect of out-

liers. Furthermore, each count in Dmc is weighted with

1 − dx̃i,Y/ε. Compared to the discrete count [27], such

weighting operation enforces the overlapping pair to be as

close as possible rather than just no more than the maximum

allowable distance.

Lemma 1 If the threshold ε is no less than the maxi-

mum of distances between all closest point pairs, that is,

max
{

maxi dx̃i,Y,maxj dyj ,X̃

}

≤ ε < ∞, Dmc is pro-

portional to the Chamfer metric Dcd with ratio 1/ε, i.e.,
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Dmc
(

X̃,Y
)

= 1/ε ·Dcd
(

X̃,Y
)

.

The proof is provided in Appendix A.

Based on the constructed MDP, given a source and target

point cloud pair s = {X,Y}, the point cloud registration

task aims to find the optimal action a∗ by maximizing its

reward as below:
a∗ = argmax

a∈A

R (s,a) = argmin
a∈A

Dmc (T (s,a)) . (3)

3.2. Differentiable Cross­Entropy Method based
Deep Registration Network

To solve the optimization problem in Eq. 3, we propose

a novel CEM based unsupervised cloud registration frame-

work. As shown in Fig. 1, our deep model contains two cas-

caded modules, including a sampling network module and

a differentiable CEM module. With the source and target

point cloud pair as the input, the sampling network mod-

ule predicts a sampling distribution over the transformation

space (Section 3.2.1). Guided by this sampling distribution,

the CEM module searches the optimal transformation by

iteratively narrowing the search space through the transfor-

mation sampling, transformation evaluation, and distribu-

tion updating. The optimal transformation can be estimated

with the mean of the elite transformations in the last itera-

tion (Section 3.2.2).

3.2.1 Sampling Network Module

Given the source and target point cloud pair s = {X,Y},

the traditional CEM randomly samples candidates from a

pre-defined sampling distribution. Instead, we aim to sam-

ple them with a learned Gaussian distribution {µ0,σ0} =
P (s;w) parameterized by the deep neural network with pa-

rameters w, so that given a registration state, it can increase

the chance that sampled candidates fall into the neighbor-

hood of the optimal transformation. As shown in Fig. 1, we

utilize the Dynamic Graph CNN (DGCNN) [50] to extract

the local geometric features FX ∈ R
N×P and FY ∈ R

M×P

via constructing the k-NN graph for each point in {X,Y}.

With the learned point embeddings, we further generate a

matching map M ∈ R
N×M with the softmax function:

Mi,j = softmax
(

FYF⊤
xi

)

j
, (4)

where Fxi
∈ FX denotes the feature of the point xi and

the element Mi,j denotes the matching probability of the

points xi and yj . With the map M, we can estimate the

ªmatchingº point ŷi of xi:

ŷi =

M
∑

j=1

Mi,j · yj ∈ R
3. (5)

Once the correspondences {(xi, ŷi) | i = 1, . . . , N} are

obtained, we employ the singular value decomposition

(SVD) to calculate the transformation {R, t}. The expected

value µ0 of the Gaussian distribution is equal to the con-

catenated vector [e, t] ∈ R
6, where e is the corresponding

Euler angle of R. For the prediction of the standard de-

viation σ0, we first extract the global features of the point

cloud pair LX ∈ R
P and LY ∈ R

P via the maxpooling

operation, that is, LX = MaxPool (FX). Then, we feed the

concatenated global feature [LX, LY] into the 3-layer MLP

followed by a sigmoid function to output σ0.

Algorithm 1 CEM based deep registration framework

Input: state s = {X,Y}, sampling network P (s;w), iter-

ation times T , action candidate numbers N , iteration times

M of using future reward.

1: Initilize sampling distribution {µ0,σ0} = p0 (s;w) .
2: for t = 0 : T − 1 do

3: for i = 1 : N do

4: Sample transformation ait ∼ N
(

µt,σ
2
t I
)

.

5: Perform ait at the state s and obtain the next state

s′i and reward R
(

s,ait
)

.

6: if t ≥ M then

7: % Only-current reward.

8: Score S
(

s,ait
)

= R
(

s,ait
)

.

9: else

10: % Fused reward.

11: Perform ICP to registrate s′i and obtain the pre-

dicted transformation aiicp.

12: Calculate the R(s′i,a
i
icp) as the future reward.

13: Calculate fused score S
(

s,ait
)

via Eq. 6.

14: end if

15: end for

16: Calculate the sparsemax based weight vector via

Eq. 10 and update the distribution via Eq. 8.

17: end for

Return: µT

3.2.2 Differentiable Cross-entropy Method Module

Guided by the prior sampling distribution learned by the

network guidance module, the CEM model further itera-

tively searches for the optimal transformation by extensive

trial and error. During the iterative process, we propose

a novel fused score function combing the current reward

and the ICP based future reward for accurate transforma-

tion evaluation. Furthermore, we also propose a novel dif-

ferentiable CEM for the end-to-end training, where the hard

top-k operation is replaced by a differentiable sparsemax

function. Specifically, in the t-th iteration (0 ≤ t < T ), it

executes the three steps as below:

(a) Transformation candidates sampling. In this step,

we randomly sample N transformation candidates Ct =
{

ait | i = 1, . . . , N
}

from a Gaussian distribution gt =

N
(

µt,σ
2
t I
)

. Note that we exploit the prior distribution

{µ0,σ0} = P (s;w) predicted by the sampling network
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for the first iteration so that it can quickly focus on the

most promising transformation region for the optimal so-

lution searching. For differentiability, we utilize the repa-

rameterization trick to sample each candidate, that is, ait =
µt + ϵi · σt, where ϵi ∼ N (0,1I).

(b) Fused reward based transformation evaluation. Af-

ter sampling the transformation candidates, based on our

constructed MDP, we can obtain the corresponding rewards
{

R
(

s,ait
)

| 1 ≤ i ≤ N
}

for the sampled transformation

candidates. In the traditional CEM, the reward is directly

used to score each transformation, i.e., the score function

S
(

s,ait
)

= R
(

s,ait
)

. However, a good transformation

candidate needs to own not only the high current reward

but also the high future reward. For example, as shown in

Fig. 2, although the transformation a2 can temporarily ob-

tain a higher reward than a1 due to the more overlapping

pairs, the resulting registration state by performing a2 has

a worse pose than the state by performing a1 intuitively.

Thus, for a transformation, just focusing on the current re-

ward and ignoring the future reward of a transformation

may mislead the evolution of the CEM and cause it to stick

into the local optima. Therefore, for each transformation,

we need to define a future reward to determine whether the

transformd source and target point clouds have good poses

at the next registration state.

In our method, we utilize the ICP algorithm to quantify

the future reward of a transformation. Specifically, we first

perform each sampled transformation at the state s and ob-

tain a set of states {s′1, . . . , s′N} where s′i = T
(

s,ait
)

=
{

X̃i,Y
}

. Then, we use ICP to predict the transforma-

tion aiicp for the registration state s′i, and obtain the corre-

sponding next state
{

Z̃i,Y
}

and the reward R
(

s′i,a
i
icp

)

=

−Dmc
(

Z̃i,Y
)

. Finally, we use this reward as the future

reward. The higher reward means ait may lead to a bet-

ter pose at the next registration state. After that, we utilize

the weighted sum of the current and future rewards to score

each action:

S(s,ait) = α ·R(s,ait) + (1− α) ·R(s′i,a
i
icp), (6)

where α ∈ [0, 1] is the hyper-parameter for balancing the

weights of the current and future rewards. Note that bene-

fitting from the CUDA programming, we accelerate the in-

ference speed with the batch ICP consisting of the batch

SVD and point-wise parallelization for closest point search.

(c) Sparsemax based distribution updating. In this step,

we aim to use the elite transformations to update the sam-

pling distribution so that more ªbetterº candidates are ex-

pected to be sampled in the next iteration. In the tradi-

tional CEM, the top-k transformations It with the highest

scores are used as the elites to guide the distribution updat-

Input

�1 < �2

Current Reward 

�1 > �2

Future Reward 

ICP 

ICP 

Figure 2. After performing the actions a1 and a2 on the source

point cloud (blue), the transformed source point cloud via a2

has more overlapping pairs (red) with the target point cloud (yel-

low) than those via a1 (i.e., larger current reward, Rcurrent(a1) <

Rcurrent(a2)). However, the action a1 can lead to a better pose for

future alignment than a2 and obtain larger overlappings after per-

forming the ICP alignment. Thus, the future reward of the action

a1 is higher than that of the action a2 (Rfuture(a1) > Rfuture(a2)).

ing gt+1 = N
(

µt+1,σ
2
t+1I

)

by the updating formula:

µt+1,i =
1

k

∑

a∈It

ai, σ
2
t+1,i =

1

k

∑

a∈It

(ai − µt+1,i)
2
, (7)

where i = 1, ..., 6. In fact, Eq. 7 is the closed-

form solution of the maximum likelihood estimation

problem over the elites, that is,
{

µt+1,σt+1

}

=
argmax

µ,σ

∑

a∈It
f (a;µ,σ), where f(·;µ,σ) denotes

the probability density function of N
(

µ,σ2
)

. By re-fitting

the sampling distribution with the top-k samples, the up-

dated sampling distribution tends to focus on the more

promising transformation region. However, since the sort-

ing in the top-k operation is non-differentiable, such distri-

bution updating method cannot be directly used for end-to-

end training directly. Therefore, we propose to soften the

hard top-k selection via a differentiable sparsemax function

[32], which is different from LML layer used in [3]. For a

clear insight, we first rewrite Eq. 7 as:

µt+1,i =
∑

a∈Ct

p (a)ai, σ
2
t+1,i =

∑

a∈Ct

p (a) (ai − µt+1,i)
2

(8)

where p (a) = 1
k
· 1 {a ∈ It} is the weight assigned to each

candidate ait ∈ Ct for distribution updating and the sum of

all elements in p =
[

p
(

a1t
)

, ..., p
(

aNt
)]

is 1. Next, given

the score vector q =
[

S
(

s,a1t
)

, ..., S
(

s,aNt
)]

of all can-

didates, sparsemax based weight vector p̃ is defined as the

solution of the following minimization problem:

p̃ = sparsemax (q) = argmin
z∈∆N−1

∥z− q∥2, (9)

where ∆N−1 =
{

z ∈ R
N |∑i zi = 1, zi ≥ 0

}

is a (N -1)-

dimensional simplex. Eq. 9 has a closed-form solution, that

is sparsemaxi (q) =
[

S
(

s,ait
)

− τ (q)
]

+
, and the thresh-

old function τ (q) can be expressed as:

τ (q) =

∑

j≤M(q) q(j) − 1

M (q)
, (10)

where q(j) denotes the j-largest value in the vector q

and M (q) = max
{

m | 1 +mq(m) >
∑

j≤m q(j)

}

[32].
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The more details about the function τ and the Jacobian of

sparsemax for back propagation can be seen in Appendix B.

Note that the sparsemax function maps the scores of can-

didates to a probability distribution whose some elements

will be zero if the scores of the corresponding candidates

are too low. Compared to the softmax function, the sparse-

max function can adaptively ignore the negative effect of

the bad candidates, which better simulates the hard top-k
operation. Moreover, instead of assigning the same weight

(1/k) to the candidates, the sparsemax function assigns the

higher weights to the better candidates. Thus, the updated

distribution can focus on the actions with the higher scores

and more potential candidates in the next iteration can be

sampled. After T iterations, we use the expected value of

the sampling distribution to estimate the optimal transfor-

mation. The CEM based registration algorithm is outlined

in Algorithm 1.

3.3. Loss Function

Under the unsupervised setting, we utilize the alignment

error between the transformed source point cloud and tar-

get point cloud rather than the ground-truth transformation

for model training. To handle the partially-overlapping case

well, a proper robust loss function insensitive to the outliers

is desired. In this paper, we integrate the scaled Geman-

McClure estimator ρµ [58] into our loss function:

ρµ (x) =
µ · x2

µ+ x2
, (11)

where the Geman-McClure estimator has the sublinear con-

vergent speed for the outliers and thus can weaken their

negative impact on the registration precision. The hyper-

parameter µ determines the range of the inliers. Given a

training dataset D = {(Xi,Yi)}, the loss function L (w) is

defined as below:

L (w) = EX,Y∼D

[

1

|X|
∑

x̃i∈X̃(w)

ρµ (dx̃i,Y)+

1

|Y|
∑

yi∈Y

ρµ

(

dyi,X̃(w)

)

]

,

(12)

where X̃ (w) denotes the transformed source point cloud

after performing the transformation predicted by our deep

model on the source point cloud X.

4. Experiment

In this section, we perform extensive experiments and

ablation studies on benchmark datasets, including the Mod-

elNet40 [51], 7Scene [41] and ICL-NUIM [23]. We simply

name our CEM based Registration Network as CEMNet.

4.1. Implementation Details

We train our model using Adam optimizer with learn-

ing rate 10−4, and weight decay 5 × 10−4 for 50 epochs.

The batch size is set to 32. In our differentiable CEM mod-

ule, we set the numbers of iterations T and candidates N
to 15 and 1000, respectively, and the maximum allowable

distance ε is set to 0.1. For the fused reward for transfor-

mation evaluation, we set M to 3 and the impact weight α
in the score function is set to 0.5. The hyper-parameter µ
in the Geman-McClure estimator used in our loss function

is set to 0.01. We utilize PyTorch to implement our project

and perform all experiments on the server equipped with a

2080Ti GPU and an Intel i5 2.2GHz CPU.

4.2. Evaluation on ModelNet40

We first test our method on the ModelNet40 datatset [51],

which contains 40 categories and is constructed via uni-

formly sampling 1, 024 points from each of 12, 311 CAD

models. Then, we divide it into two parts where 2, 468 mod-

els are used for testing and the remaining models are for

training. Following the setting in [48], we first generate a

random rotation matrix and translation vector via uniformly

sampling in the Euler angle range [0, 45◦] and the transla-

tion range [−0.5, 0.5]. Then, we use the transformed source

point cloud as the target point cloud and the generated trans-

formation is as the ground truth. The metric for evaluating

the registration precision contains the root mean squared

error (RMSE) and mean absolute error (MAE) between the

predicted transformation and the ground-truth transforma-

tion, where the error about Euler angle uses the degree as

the unit. We compare our method with eight state-of-the-

art methods, where ICP [6], Go-ICP [53], Super4PCS [33],

SDRSAC [27] and FGR [58] belong to the traditional meth-

ods, and IDAM [28] and DCP-v2 [48] are fully supervised

deep methods while FMR [25] is unsupervised. Some visu-

alization results are presented in Fig. 3 and more qualitative

examples can be seen in Appendix D.

Partially overlapping unseen object. We first evaluate

our method on partially overlapping unseen objects, where

the test and training datasets contain all 40 categories, and

the non-overlapping region may still exist in the perfectly

aligned point clouds. Following [49], to construct the par-

tially overlapping point clouds, we first randomly sample a

point in source and target point clouds, respectively. Then,

we perform the farthest point subsampling (FPS) to sam-

ple 75% (768) points while the remaining 25% points are

viewed as the missing points and discarded. We utilize

the implementations provided by the authors to train FMR,

DCP-v2, and IDAM on our modified training dataset with

partial overlap. The left column of Table 1 shows that com-

pared to other algorithms, our unsupervised method can ob-

tain superior registration performance with all evaluation

metrics and even exceeds the fully supervised DCP-v2 and

IDAM, which owes to that the CEM module guided by the

sampling network can effectively search for the accurate

transformation.

Partially overlapping unseen category. To further test the
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Inputs ICP Go-ICP Super4PCS FGR IDAM OursSDRSAC

Figure 3. Qualitative registration examples on partially overlapping ModelNet40 dataset.

Model
Unseen object Unseen category Unseen object with noise

RMSE(R) RMSE(t) MAE(R) MAE(t) RMSE(R) RMSE(t) MAE(R) MAE(t) RMSE(R) RMSE(t) MAE(R) MAE(t)

ICP [6] (∗) 13.7952 0.0391 4.4483 0.0196 14.7732 0.0351 3.5938 0.0132 12.5413 0.0398 4.2826 0.0184

Go-ICP [53] (∗) 14.7223 0.0328 3.5112 0.0127 13.8322 0.0321 3.1579 0.0121 14.5225 0.0329 3.4252 0.0114

Super4PCS [33] (∗) 1.5764 0.0034 5.3512 0.0214 2.5186 0.0032 1.4364 0.0041 12.4551 0.0201 1.3780 0.0033

SDRSAC [27] (∗) 3.9173 0.0121 2.7956 0.0102 4.2475 0.0139 3.0144 0.0121 0.4719 0.0185 2.3965 0.0164

FGR [58] (∗) 3.7055 0.0088 0.5972 0.0020 3.1251 0.0074 0.4469 0.0013 0.4712 0.0703 0.2353 0.0404

DCP-v2 [48] (♦) 4.8962 0.0248 3.3297 0.0169 6.3787 0.0246 4.4222 0.0173 5.1575 0.0251 3.4708 0.0176

IDAM [28] (♦) 2.3384 0.0102 0.4711 0.0025 2.1566 0.0151 0.6135 0.0037 3.5701 0.0206 1.0642 0.0066

FMR [25] (△) 9.0997 0.0204 3.6497 0.0101 9.1322 0.0223 3.8593 0.0113 5.5605 0.0194 2.5437 0.0072

CEMNet (ours, △) 1.5018 0.0009 0.1385 0.0001 1.1013 0.0020 0.0804 0.0002 2.2722 0.0014 0.3799 0.0008

Table 1. Comparison results on partially overlapping ModelNet40 dataset. (∗), (△) and (♦) denote the traditional, unsupervised and fully

supervised deep methods, respectively.

Dataset Model RMSE(R) RMSE(t) MAE(R) MAE(t)

7Scene

ICP [6] (∗) 19.9166 0.1127 7.5760 0.0310

Go-ICP [53] (∗) 24.2743 0.0360 7.1068 0.0137

Super4PCS [33] (∗) 19.2603 0.3646 15.7001 0.2898

SDRSAC [27] (∗) 0.3501 0.4997 0.2925 0.4997

FGR [58] (∗) 0.2724 0.0011 0.1380 0.0006

DCP-v2 [48] (♦) 7.5548 0.0411 5.6991 0.0303

IDAM [28] (♦) 10.5306 0.0539 5.6727 0.0303

FMR [25] (△) 8.6999 0.0199 3.6569 0.0101

CEMNet (ours, △) 0.1768 0.0012 0.0434 0.0002

ICL-NUIM

ICP [6] (∗) 10.1247 0.3006 2.1484 0.0693

Go-ICP [53] (∗) 1.5514 0.0601 0.6333 0.0241

Super4PCS [33] (∗) 28.8616 0.3091 24.1373 0.2502

SDRSAC [27] (∗) 9.4074 0.2477 7.8627 0.2076

FGR [58] (∗) 3.0423 0.1275 1.9571 0.0659

DCP-v2 [48] (♦) 9.2142 0.0191 6.5826 0.0134

IDAM [28] (♦) 9.4539 0.3040 4.4153 0.1385

FMR [25] (△) 1.8282 0.0685 1.1085 0.0398

CEMNet (ours, △) 0.0821 0.0002 0.0211 0.0001

Table 2. Comparison results on 7Scene and ICL-NUIM datasets.

(∗), (△) and (♦) denote the traditional, unsupervised and fully

supervised deep methods, respectively.

generalization ability of our model, we utilize 20 categories

for training and then test the trained model on another 20
unseen categories. The comparison results are listed in the

middle column of Table 1. Our method presents good gen-

eralization ability on unseen categories and still obtains the

best scores on all criteria.

Partially overlapping unseen object with noise. For

the robustness evaluation of our method in the presence

of noise, we jitter each point of the partially overlapping

source and target point clouds with Gaussian noise. Fol-

lowing [49], we sample the noise in each axis, clipped by

[−0.05, 0.05], from a Gaussian distribution with the mean

0 and the standard deviation 0.01. The right column of Ta-

ble 1 demonstrates that although it is worse than FGR in

terms of the RMSE and MAE criteria with respect to rota-

tion, it yields better performance on translation.

4.3. Evaluation on 7Scene and ICL­NUIM

We further evaluate our method on two indoor datasets:

7Scene and ICL-NUIM. The former consists of seven

scenes: Chess, Fires, Heads, Office, Pumpkin, Redkitchen,

and Stairs, and is split into two parts, one containing 296
scans for training and the other containing 57 scans as the

test dataset. The latter is split into 1, 278 and 200 scans

for training and test, respectively. As in Sec. 4.2, we ex-

ploit the FPS operation to obtain the partial point clouds
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Figure 4. Rotation errors in the cases of (a) different numbers of

candidates and iterations, and (b) different weights in fused score

function on ICL-NUIM dataset.

ModelNet40uc ICL-NUIM

SN Future dCEM MAE(R) MAE(t) MAE(R) MAE(t)
√

4.4222 0.0173 6.5826 0.0134√
1.8625 0.0041 1.8333 0.0023√ √
0.3675 0.0004 0.8364 0.0048√ √
0.1781 0.0004 0.3345 0.0005√ √ √
0.0804 0.0002 0.0211 0.0001

Table 3. Ablation study of different components on ModelNet40uc

(unseen category) and ICL-NUIM datasets. SN: Sampling network

module; Future: ICP driven future reward evaluation; dCEM: dif-

ferentiable CEM module.

and use the transformed source point cloud as the target

point cloud, where the transformation is also generated via

randomly sampling. As demonstrated in Table 2, on ICL-

NUIM, our method exhibits higher registration precision on

all criteria. In addition, on 7Scene, our method is slightly

worse than FGR in terms of the RMSE of translation but

shows the lower alignment errors on other criteria.

4.4. Ablation Study and Analysis

Sampling network module. As shown in the fourth

and fifth rows of Table 3, equipped with the sampling

network module (SN), dCEM (differentiable CEM) and

dCEM+Future (differentiable CEM with future reward) can

obtain significant error reduction on all criteria. This is be-

cause that SN can learn a better initial sampling distribu-

tion, which assists the dCEM to efficiently search for the

optimal solution. Note that we use the Gaussian distribu-

tion N (0,1I) as the pre-defined sampling distribution for

our method without SN. Moreover, since the sampling net-

work has a similar model design as DCP-v2 except for the

branch used for variance prediction, the results in the first

row refer to the scores of the fully supervised DCP-v2. One

can see that without planning in the CEM module, SN yields

poor performance, even guided by the ground truth transfor-

mation, which implies the necessity of the proposed CEM

module for the precise registration.

Fused score function. We further evaluate the effect of ICP

based future reward in the fused score function of CEM. As

shown in the second and fourth rows of Table 3, the perfor-

ModelNet40uc ModelNet40uo

# Future (M) Time (ms) MAR(R) MAR(t) MAE(R) MAE(t)

0 184.7 0.1782 0.00040 0.3505 0.00053

1 235.5 0.1709 0.00021 0.2688 0.00018

2 263.7 0.1198 0.00019 0.2137 0.00015

3 309.5 0.0804 0.00015 0.1385 0.00012

4 335.2 0.0470 0.00011 0.1258 0.00010

Table 4. The time and precision vary with different number of it-

erations using ICP driven potential evaluation on ModelNet40uc

(unseen category) and ModelNet40uo (unseen object) datasets.

mance drops significantly without considering the future re-

ward of the transformation candidate. Furthermore, Table 4

also shows that as the iteration times M of using the future

reward increases, the error keeps decreasing while the time

cost continues to increase. To balance the performance and

speed, we set M to 3 in all experiments. Finally, we test the

fluctuation of the error with different weights α in the fused

function. Fig. 4(b) shows that a good balance between the

current and future rewards tends to bring higher precision.

Parameters in CEM. We test the sensitivity of the hyper-

parameters in CEM, including the numbers of the iterations

T and the candidates N . Fig. 4(a) shows that as T and N
increase, the error tends to decrease (from the light color to

the dark color). However, as shown in Appendix C, their

performance gain is at the cost of the inference time and we

set N and T to 1000 and 10 in all experiments.

Inference time. We use the averaged running time on

each case from ModelNet40 dataset (unseen object) to eval-

uate the inference time of each algorithm. Note that the

traditional registration methods are performed on Intel i5

2.2GHz CPU while the deep learning based methods are

executed on 2080Ti GPU. The time cost of our method is

310ms, while the cost of the other methods are ICP (14ms),

Go-ICP (2, 278ms), Super4PCS (6, 790ms), FGR (75ms),

SDRSAC (23, 651ms), FMR (414ms), DCP-v2 (34ms), and

IDAM (53ms), respectively.

5. Conclusion
In this paper, we proposed a novel sampling network

guided cross-entropy method for unsupervised point cloud

registration. In our framework, the sampling network is

used to provide a prior sampling distribution for CEM.

Guided by this learnable distribution, the CEM module fur-

ther heuristically searches for the optimal transformation.

During this optimization process, we designed a fused score

function combining current and ICP based future rewards

for more accurate transformation evaluation. Furthermore,

we also replaced the hard top-k selection with the differen-

tiable sparsemax function for the end-to-end model training.
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