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Abstract

Shadow removal from a single image is generally still
an open problem. Most existing learning-based methods
use supervised learning and require a large number of
paired images (shadow and corresponding non-shadow im-
ages) for training. A recent unsupervised method, Mask-
ShadowGAN [13], addresses this limitation. However, it
requires a binary mask to represent shadow regions, mak-
ing it inapplicable to soft shadows. To address the problem,
in this paper, we propose an unsupervised domain-classifier
guided shadow removal network, DC-ShadowNet. Specif-
ically, we propose to integrate a shadow/shadow-free do-
main classifier into a generator and its discriminator, en-
abling them to focus on shadow regions. To train our net-
work, we introduce novel losses based on physics-based
shadow-free chromaticity, shadow-robust perceptual fea-
tures, and boundary smoothness. Moreover, we show that
our unsupervised network can be used for test-time train-
ing that further improves the results. Our experiments show
that all these novel components allow our method to handle
soft shadows, and also to perform better on hard shadows
both quantitatively and qualitatively than the existing state-
of-the-art shadow removal methods.

1. Introduction
Shadow removal from a single image can benefit many

applications, such as image editing, scene relighting, etc.,
[19, 17, 16]. Unfortunately, in general, removing shad-
ows from a single image is still an open problem. Exist-
ing physics-based methods for shadow removal [7, 6, 10]
are based on entropy minimization that can capture the in-
variant features of shadow and non-shadow regions belong
to the same surfaces in the log-chromaticity space. These
methods, however, tend to fail, particularly when the image
surfaces are close to achromatic (e.g. gray or white sur-
faces), and are not designed to handle soft shadow images.
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(a) Input Image (b) Ground Truth

(c) Mask-ShadowGAN [13] (d) Our DC-ShadowNet

Figure 1. Exiting state-of-the-art shadow removal methods like
Mask-ShadowGAN [13] fail to remove soft shadows properly and
create artifacts (see regions inside red boxes). Compared to it, our
method generates a better shadow-free output.

Unlike physics-based methods, deep-learning methods,
e.g. [24, 27, 14, 20, 1, 21], are more robust to different
conditions of image surfaces and lighting. However, most
of these methods are based on fully-supervised learning,
which means that for training, they require pairs of shadow
and their corresponding non-shadow images. To collect
these image pairs in a large amount, particularly for images
containing diverse scenes and shadows can be considerably
expensive.

Recently, Hu et al. propose an unsupervised method,
Mask-ShadowGAN [13], the network architecture of which
is based on CycleGAN [34]. To remove shadows, the
method mainly relies on adversarial training that employs
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a discriminator to check the quality of the generated out-
put. Unfortunately, due to the absence of ground truth,
the discriminator relies solely on unpaired non-shadow im-
ages, which can cause the generator to produce incorrect
outputs. Moreover, the method uses a binary mask to rep-
resent shadow regions present in the input image, making it
inapplicable to soft shadow images. Fig. 1 shows an exam-
ple where for the given soft-shadow input image, the output
generated by the method [13] is improper.

In this paper, our goal is to remove both hard and soft
shadows from a single image. To achieve this, we pro-
pose DC-ShadowNet, an unsupervised network guided by
the shadow/shadow-free domain classifier. Specifically, we
integrate a domain classifier (that classifies the input image
to either shadow or shadow-free domain) into our gener-
ator and its corresponding discriminator. This allows our
generator and discriminator to focus on shadow regions
and thus perform better shadow removal. Unlike the ex-
isting unsupervised method [13], which only relies on ad-
versarial training based on an unpaired discriminator (i.e.
using unpaired non-shadow images as reference images),
our method uses additional novel unsupervised losses that
enable our method to achieve better shadow removal re-
sults. Our new losses are based on physics-based shadow-
free chromaticity, shadow-robust perceptual features, and
boundary smoothness.

Our physics-based shadow-free chromaticity loss em-
ploys a shadow-free chromaticity image, which is obtained
from the input shadow image by performing entropy min-
imization in the log-chromaticity space [7]. Our shadow-
robust perceptual features loss uses shadow-robust features
obtained from the input shadow image using the pre-trained
VGG-16 network [15]. We also add a boundary smooth-
ness loss to ensure that our output shadow-free image has
smoother transitions in the regions that contained shadow
boundaries. All these ideas enable our method to better
deal with hard and soft shadow images compared to exist-
ing methods like [13] (see Fig. 1 for an example showing
the better performance of our method). Furthermore, we
show that our method being unsupervised can be used for
test-time training to further improve the performance of our
method. As a summary, here are our contributions:

1. We introduce DC-ShadowNet, a new unsupervised
single-image shadow removal network guided by a do-
main classifier to focus on shadow regions.

2. We propose novel unsupervised losses based on
physics-based shadow-free chromaticity, shadow-
robust perceptual features, and boundary smoothness
losses for robust shadow removal.

3. To our knowledge, our method is the first unsupervised
method to perform shadow removal robustly for both
hard and soft shadow in a single image.

2. Related work

Physics-based shadow removal methods (e.g. [4, 3, 5, 7,
6]) are based on the physics models of illumination and sur-
face colors. These methods assume that the surface colors
in the input image are chromatic, and hence they are erro-
neous when this assumption does not hold. These methods
are designed to remove hard shadows only. In contrast, our
method is based on unsupervised learning and is designed
to handle both hard and soft shadows. Also, our method is
more robust in dealing with achromatic surfaces.

Some other non-learning-based methods rely on user in-
teraction. Gryka et al. [9] propose a regression model to
learn a mapping function of shadow image regions and their
corresponding shadow mattes. However, they need the user
to provide brush strokes to relight shadow regions. Guo et
al. [10, 11] use annotated ground truth to learn the appear-
ances of shadow regions. Unlike these methods, our method
is learning-based and does not rely on hand-crafted feature
descriptors, making it more robust. Moreover, our method
does not need any annotated ground truth and user interac-
tion; hence, it is more practical and efficient.

To address the aforementioned limitations of non-deep
learning methods, many deep learning methods are pro-
posed. Wang et al. [27] use a stacked conditional GAN
(ST-CGAN) to detect and remove shadows jointly. Le et
al. [20, 21] propose SP+M-Net do shadow removal using
image decomposition. Hu et al. [14, 12] propose to add
global and direction-aware context into the direction-aware
spatial context (DSC) module. Ding et al. [2] introduce
an LSTM-based attentive recurrent GAN (ARGAN) to de-
tect and remove shadows. All these methods are trained on
paired data using supervised learning. Hence, training them
using various soft shadows and complex scenes is difficult,
since obtaining the ground truths is intractable. In contrast,
our method is based on unsupervised learning and does not
need any paired data.

Recently, Hu et al. [13] propose an unsupervised deep-
learning method Mask-ShadowGAN. Unfortunately, since
it mainly relies on adversarial training for shadow removal,
it cannot guarantee that the generated output images are
shadow-free since there is no strong guidance for the net-
work to do so. Moreover, it cannot handle soft shadows due
to the use of binary masks. In contrast, our method DC-
ShadowNet uses new additional unsupervised losses and
domain-classifier guided network that helps our method to
more effectively deal with hard and soft shadows.

3. Proposed Method

Fig. 2 shows the architecture of our network, DC-
ShadowNet. Given a shadow input image, Is, we use a gen-
erator, Gs, to transform it into a shadow-free output image
Zsf . Also, given an unpaired shadow-free input image, Isf ,
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Figure 2. Network Architecture of Our DC-ShadowNet. We have two domains: shadow, s, and shadow-free, sf . Our shadow removal
generator is represented by Gs. It consists of an encoder F g

s , a decoder Hg
s , and a domain classifier Φg

s . We also use a discriminator
Dsf that consists of its own encoder F d

sf , a classifier Cd
sf and a domain classifier Φd

sf . For the input shadow image Is, its corresponding
output shadow-free image is represented by Zsf . Also, for the unpaired input shadow-free image Isf , Gs reconstruct the image back. The
domain classifiers, Φg

s and Φd
sf , are used to classify whether the inputs to their respective networks, Gs and Dsf , belong to shadow (s) or

shadow-free (sf ) domain. To guide our generator Gs to do shadow removal, other than adversarial loss from the discriminator Dsf , we
include novel losses: shadow-free chromaticity loss Lchroma (purple) guided by the physics-based shadow-free chromaticity σσσphy

sf obtained
from Is; shadow-robust feature loss Lfeature (red) guided by the shadow-robust perceptual features V (Is) obtained from Is, and boundary
smoothness loss Lsmooth (orange) guided by the boundary detection of our generated soft shadow mask Ms.

we expect the generator, Gs, to simply reconstruct the im-
age back. Therefore, the generator Gs, whether its input is a
shadow or shadow-free image, always generates a shadow-
free output image. Note that, in our method, we have two
domains: shadow, s, and shadow-free, sf .

Our generator Gs consists of an encoder (F g
s ), decoder

(Hg
s ) and a domain classifier (Φg

s). We use a discriminator
Dsf to assess the quality of the shadow removal output. It
consists of an encoder (F d

sf ), a classifier (Cd
sf ) and a domain

classifier (Φd
sf ). Both the domain classifiers, Φg

s and Φd
sf ,

are used to classify the inputs of their respective modules,
Gs and Dsf , belonging to either shadow or shadow-free do-
main. However, unlike Φg

s , which is trained together with
Gs, Φd

sf is pre-trained, and its weights are kept frozen while
training Dsf . The underlying idea of integrating the domain
classifier into our generator and its discriminator is to guide
our network to focus on shadow regions. The reference
images of our discriminator are the unpaired shadow-free
real images. Our discriminator’s classifier, Cd

sf , outputs the
real/fake binary label, where real refers to the label given to
an image that belongs to the reference images.

While not shown in Fig. 2, for the sake of clarity, we em-
ploy another generator Gsf and the shadow mask to trans-
form the shadow-free output image back to a shadow image,
in order to enforce reconstruction consistency [34] and lo-

cate the shadow regions. Also, another discriminator Ds is
used to distinguish whether the generated shadow image is
real or not. Our method, DC-ShadowNet, is trained in an
unsupervised manner using our losses, which are described
in the following sections.

3.1. Shadow-Free Chromaticity Loss

Given a shadow input image Is, we obtain a physics-
based shadow-free chromaticity image σσσphy

sf , which is used
to guide our shadow removal generator Gs, through our
shadow-free chromaticity loss function. Obtaining σσσphy

sf

from Is requires two steps: (1) Entropy Minimization, and
(2) Illumination Compensation.

Entropy Minimization Following [6], as shown in Fig. 3,
we plot the input shadow image Is onto the log-chromaticity
space, calculate the entropy, and use the entropy minimiza-
tion to find the projection direction θ, which is specific to
Is. From θ, we can obtain a shadow-free chromaticity map
σσσent
sf that no longer contains any shadows (see Figs. 3 and

4b). However, owing to the projection, there is a color shift
present in σσσent

sf , which can be corrected by using the illumi-
nation compensation procedure.

Illumination Compensation To correct the color of the
shadow-free chromaticity map σσσent

sf , following [3], we add
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Figure 3. Shadow-Free Chromaticity Loss. The upper part is
the physics-based pipeline where we use entropy minimization fol-
lowed by illumination compensation to generate the shadow-free
chromaticity image σσσphy

sf from the input image Is. The lower part
shows our shadow removal generator Gs guided by σσσphy

sf through
our shadow-free chromaticity loss Lchroma.

(a) Input (b) σσσent
sf (c) σσσphy

sf
(d) Output (e) σσσZ

SF

Figure 4. (a) Input shadow image Is, (b) Shadow-free chromatic-
ity after entropy minimization σσσent

sf , (c) Shadow-free chromaticity
after illumination compensation σσσphy

sf , (d) Output shadow-free im-
age Zsf , and (e) Chromaticity map the of output image σσσZ

sf . Our
shadow-free chromaticity loss constrains (e) to be similar to (c)
facilitating better shadow removal.

back the original illumination color of the non-shadow re-
gions to the map. For this, we use uniformly sampled 30%
of the brightest pixels from the input image Is based on the
assumption that these pixels are located in the non-shadow
regions of Is. Once we reinstate the illumination color, we
can obtain a new shadow-free chromaticity map σσσphy

sf , (see
Figs. 3 and 4c).

Having obtained our shadow-free chromaticity, σσσphy
sf , for

the output shadow-free image Zsf , we compute its chro-
maticity map σσσZ

sf by:

σσσZ
sfc

=
Zsfc

(Zsfr
+ Zsfg

+ Zsfb
)
, (1)

where c ∈ {r, g, b} represents a color channel, Zsf =
[Zsfr

,Zsfg
,Zsfb

], and σσσZ
sf = [σσσZ

sfr
,σσσZ

sfg
,σσσZ

sfb
]. We can

now define our shadow-free chromaticity loss as:

Lchroma(Gs) = EIs

[
||σσσZ

sf − σσσphy
sf ||1

]
. (2)

Using the loss function expressed in Eq. (2), we enforce
the chromaticity of the output shadow-free image, σσσZ

sf , to
be the same as our physics-based shadow-free chromaticity

(a) Input (b) V (Is) (c) Output (d) V (Zsf )

Figure 5. (a) Input shadow image Is, (b) Sample feature map for
Is, (c) Output shadow-free image Zsf , and (d) Sample feature map
for Zsf . We can observe that features in (b) for the input shadow
images are less affected by shadows, and they are similar to the
features in (d) owing to our shadow-robust feature loss.

σσσphy
sf , which can be observed in the results shown in Fig. 4

for both hard shadow and soft shadow images1.

3.2. Shadow-Robust Feature Loss

Our shadow-robust feature loss is based on the percep-
tual features obtained from the pre-trained VGG-16 net-
work [15, 26]. Since we do not have ground truth to ob-
tain the correct shadow-free features, to guide the shadow-
free output, we use features from the input shadow image it-
self. Our underlying idea is that, since with some degree of
shadows and lighting conditions, object classification using
the pre-trained VGG-16 is known to be robust [28], there
should be some features in the pre-trained VGG-16 that are
less affected by shadows. Based on this, we perform a cal-
ibration experiment and find that the Conv22 layer in the
VGG-16 network provides features that are least affected
by shadows.

Hence, from the input shadow image, we obtain the
shadow-robust features and use them to guide our shadow-
free output image. Specifically, given an input shadow im-
age Is and the corresponding shadow-free output image
Zsf , we define our shadow-robust feature loss as:

Lfeature(Gs) = EIs [
∥∥V (Zsf )− V (Is)

∥∥
1
], (3)

where V (Is) and V (Zsf ) denote the feature maps extracted
from the Conv22 layer of the pre-trained VGG-16 network
for Is and Zsf respectively. Fig. 5 shows some examples
where we can observe that the features V (Is) are less af-
fected by shadows and represent more of structural infor-
mation (like edges).

1For surfaces that are close to being achromatic, the entropy minimiza-
tion can fail, which can lead to the improper recovery of the shadow-free
chromaticity map. However, due to the presence of our other unsupervised
losses, our method can still generate proper shadow removal results.
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Figure 6. Domain Classification and Shadow Attention. In the
generator Gs, its encoder F g

s extracts feature maps Πg
s from the

input shadow image Is. As in [33], using global average pooling
(GAP), the domain classifier Φg

s is trained to learn the weights
wg

s of the feature maps. Averaging the weighted feature maps
generates an attention map Ag

s , i.e. Ag
s = 1

n

∑n
i=1 w

g
s iΠ

g
si (n

being the total number of feature maps), which clearly shows that
the network is focusing on shadow regions.

3.3. Domain Classification Loss

We incorporate an attention mechanism that allows our
DC-ShadowNet to know the shadow removal/restoration re-
gions [33, 23, 18]. To achieve this, we create a domain clas-
sifier Φg

s and integrate it with the generator Gs. We train
Φg

s to classify whether the input to Gs is from the shadow
or shadow-free domain. Fig. 6 shows the integration of
Φg

s into Gs to obtain an attention map Ag
s that highlights

shadow regions. We also add a similar domain classifier
Φd

sf to the discriminator Dsf . This allows our network to
selectively focus on important shadow regions and generate
better shadow removal results (see Fig. 7).

Since the generator can accept either a shadow or
shadow-free image as input, it allows us to train it together
with its domain classifier. However, for the discriminator,
the domain of its input image, which is the output of the
generator, can be ambiguous2. For this reason, we pre-train
the domain classifier of the discriminator using the follow-
ing classification loss:

Ldomcls(Dsf ) =EIs

[
− log

(
Φd

sf (F
d
sf (Is))

)]
+

EIsf

[
− log

(
1− Φd

sf (F
d
sf (Isf ))

)]
, (4)

and after pre-training, we freeze its weights during the main
training cycle that trains our entire network (see Fig. 2). To
train the domain classifier of the generator, we use a similar
classification loss:

Ldomcls(Gs) =EIs

[
− log

(
Φg

s(F
g
s (Is))

)]
+

EIsf

[
− log(1− Φg

s(F
g
s (Isf )

)]
. (5)

2In the early stage of training, shadow removal can be improper, and
the output of the generator can still have shadows. Hence, it is difficult to
ensure that the domain of the output is always shadow-free.

(a
)I

np
ut

(b
)A

g s
(c

)O
ut

pu
t

Figure 7. (a) Input shadow image Is, (b) Attention map Ag
s , and

(c) Output shadow-free image Zsf . The attention maps clearly
indicate the shadow regions of the input shadow images.

3.4. Boundary Smoothness Loss

To ensure that the output shadow-free image Zsf have
smoother transitions in the boundaries defined by the
shadow regions of the input shadow image Is, we also use
a boundary smoothness loss:

Lsmooth(Gs) = EIs

[∥∥B(Ms) ∗ |∇(Zsf )|∥1
]
, (6)

where ∇ is the gradient operation, B is a noise-robust func-
tion [29, 25, 31] to compute the boundaries of the shadow
regions from our shadow mask Ms. To obtain Ms, we com-
pute the difference between the input shadow image Is and
output shadow-free image Zsf , and apply our mask detec-
tion function F on the difference:

Ms = F
(
Isc−Zsf c

)
=

∑
c∈{r,g,b}

1

3

∣∣∣(N(Isc−Zsf c)
)∣∣∣, (7)

where the function N is a normalization function defined as
N(I) = (I − Imin)/(Imax − Imin), where Imax and Imin are
the maximum and minimum values of I, respectively. Note
that, our shadow mask Ms is a soft map and have the values
in the range of [0, 1]. See Fig. 8b for some examples.

The noise-robust function B is defined as: B(Ms) =
Bsx +Bsy where Bsx(p) =

∣∣∑
q∈Rp

gp,q∂x(Ms(q))
∣∣ and

Bsy(p) =
∣∣∑

q∈Rp
gp,q∂y(Ms(q))

∣∣, ∂x and ∂y are partial
derivatives in horizontal and vertical directions respectively,
p defines a pixel, Rp is a 3×3 window around p, and gp,q
is a weighing function measuring spatial affinity defined as
gp,q = exp

(−(p−q)2

2τ2

)
, where τ is set to 0.01 by default. See

Fig. 8(c) for some examples of our soft boundary detection.

3.5. Adversarial, Consistency and Identity Losses

For shadow removal, we use the generator Gs, which is
coupled with a discriminator Dsf . To ensure reconstruction
consistency, we use another generator Gsf coupled with its
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(a) Input (b) Ms (c) B(Ms) (d) Output

Figure 8. (a) Input shadow image, (b) Soft shadow mask Ms,
(c) Detected shadow boundaries, and (d) Our output shadow-free
results. We can observe that our boundary smoothness loss helps
in having smoother outputs in the shadow boundary regions.

own discriminator Ds. We use adversarial losses to train
our DC-ShadowNet:

Ladv(Gs, Dsf ) = EIsf

[
log

(
Dsf (Isf )

)]
+ (8)

EIs

[
log

(
1−Dsf (Gs(Is))

)]
,

Ladv(Gsf , Ds) = EIs

[
log

(
Ds(Is)

)]
+ (9)

EIsf

[
log

(
1−Ds(Gsf (Isf ,Ms))

)]
.

During training, the losses expressed in Eqs. (8) and (9)
are actually minimized as minGs

maxDsf
(Ladv(Gs, Dsf ))

and minGsf
maxDs

(Ladv(Gsf , Ds)) respectively. Note
that, unlike generator Gs, the generator Gsf takes the mask
Ms (from Eq. 7) as input to help render more proper
shadow images [13]. Following [34, 30], we define our re-
construction consistency losses by:

Lcons(Gs) = EIs

[
||Gsf

(
Gs(Is),Ms

)
− Is||1

]
, (10)

Lcons(Gsf ) = EIsf

[
||Gs

(
Gsf (Isf ,Ms)

)
− Isf ||1

]
. (11)

While our Gs is designed to remove shadows from shadow
input image Is, we also encourage it to output the same im-
age as input, if the input is a shadow-free image Isf . We
achieve this by using the following identity losses [34]:

Liden(Gs) = EIsf

[
||(Gs(Isf ))− Isf ||1

]
, (12)

Liden(Gsf ) = EIs

[
||(Gsf (Is,M0)− Is)||1

]
. (13)

where M0 represents a mask with all zero values.

Overall Loss We multiply each loss function with its re-
spective weight, and sum them together to obtain our overall
loss function. The weights of the losses, {Lchroma,Lfeature,
Lsmooth, Ldomcls, Ladv, Lcons, Liden}, are represented by
{λchroma, λfeat, λsm, λdom, λadv, λcons, λiden}.

4. Experiments
To evaluate our method, we use five datasets: SRD [24],

adjusted ISTD (AISTD) [20], ISTD [27], USR [13] and

Table 1. RMSE results on the SRD dataset. All, S and NS repre-
sent entire, shadow and non-shadow regions respectively.

Method Training All S NS

Our DC-ShadowNet Unpaired 4.66 7.70 3.39
Mask-ShadowGAN [13] Unpaired 6.40 11.46 4.29

DSC [14] Paired 4.86 8.81 3.23
DeShadowNet [24] Paired 5.11 3.57 8.82

Gong et al. [8] - 12.35 25.43 6.91

Input Image - 13.77 37.40 3.96

Table 2. RMSE results on the AISTD dataset. All, S and NS
represent entire, shadow and non-shadow regions respectively. M
shows that ground truth shadow masks are also used in training.

Method Training All S NS

Our DC-ShadowNet Unpaired 4.6 10.3 3.5
Mask-ShadowGAN [13] Unpaired 5.3 12.5 4.0

DeshadowNet [24] Paired 7.6 15.9 6.0
ST-CGAN [27] Paired+M 8.7 13.4 7.7

Gong et al. [8] - - 13.3 -
Guo et al. [10] Paired+M 6.1 22.0 3.1
Yang et al. [32] - 16.0 24.7 14.4

Input Image - 8.5 40.2 2.6

LRSS [9], where LRSS is a soft shadow dataset. To ensure
fair comparisons, all the unsupervised baselines, including
ours are trained and tested on the same datasets. For the
SRD dataset, for Table 1 and Fig. 9 rows 2-4, we use 2680
shadow images and 2680 shadow-free images for training.
We use 408 shadow images that have shadow-free ground
truth for testing. Similarly, for Table 2, we use 1330 train-
ing and 540 testing AISTD images; Fig. 9 row 1, we use
1330 training and 540 testing ISTD images. For the USR
dataset, we use 1956 shadow, 1770 shadow-free images for
training, 489 shadow images for testing. However, for test-
ing, the USR dataset does not provide paired shadow and
shadow-free images.

Our DC-ShadowNet is trained in an unsuper-
vised manner (Sec. 3). The weights of our losses
{λchroma, λfeat, λsm, λiden, λadv, λcons, λdom} are set em-
pirically to {1, 1, 1, 10, 1, 10, 1}. Following the base-
lines [11, 13], to evaluate shadow removal performance3,
we use root mean squared error (RMSE) between the
ground truth and the predicted shadow-free image4. Hence,
lower numbers show better performance.

3Results of [13, 14, 27, 8, 20, 1] are taken from their official imple-
mentations. Results of [9, 11] are obtained from their project website:
http://visual.cs.ucl.ac.uk/pubs/softshadows/. The quantitative results are
taken from the paper [21].

4As mentioned in [22], the default RMSE evaluation code used by all
methods (including ours) actually computes mean absolute error (MAE).
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Table 3. RMSE (lower is better) and PSNR (higher is better) re-
sults on the LRSS dataset (soft shadow dataset). M and S respec-
tively show that ground truth shadow masks and synthetic paired
data are used in training. P and UP denote paired and unpaired
training, respectively.

Method Input [11] [11] (auto) [9] [1] [20] [13] Ours
RMSE 12.26 6.02 5.87 4.38 7.92 7.48 7.13 3.48
PSNR 18.05 27.88 28.02 29.25 25.57 23.93 25.12 31.01

Training - P+M P P+M+S P+M+S P+M UP UP

(a) Input (b) Ours (c) [13] (d) [21] (e) [27] (f) [8]

(a) Input (b) Ours (c) [13] (d) [14] (e) [24] (f) [8]

Figure 9. Comparison results on the ISTD (top row) and
SRD (bottom three rows) datasets. (a) Input image, (b)
Our method, unsupervised method (c) Mask-ShadowGAN [13],
weakly-supervised method (d) Param+M+D-Net [21] (top row),
supervised methods DSC [14], (e) ST-CGAN [27] (top row), De-
shadowNet [24], and traditional method (f) Gong et al. [8]. Our
method trained using unsupervised learning provides the best per-
formance.

Results on Hard Shadows We conduct quantitative eval-
uations on the SRD and AISTD datasets, and the corre-
sponding results are shown in Table 1 and Table 2, respec-
tively. For comparisons, we use the state-of-the-art unsu-
pervised shadow removal method Mask-ShadowGAN [13],
weakly-supervised method Param+M+D-Net [21], su-
pervised methods DSC [14], DeshadowNet [24], ST-
CGAN [27], and traditional methods Gong et al. [8], Guo
et al. [11], and Yang et al. [32]. From Tables 1 and
2, our DC-ShadowNet trained in an unsupervised manner
achieves the best performance compared to the baseline
methods. Compared to the state-of-the-art unsupervised
method Mask-ShadowGAN [13], our results for the shadow
regions are better by ∼33% and ∼18% on the SRD and
AISTD datasets, respectively.

The qualitative results for the SRD (rows 2-4) and ISTD
(top row) datasets are shown in Fig. 9, which include chal-
lenging conditions and diverse objects. For example, the
shadow image contains shadows casted on semantic objects
(i.e., building, wall). In Fig. 9, the method [13] alters the

Table 4. Ablation experiments of our method using the SRD
dataset. All, S and NS represent entire, shadow and non-shadow
regions, respectively. The numbers represent RMSE.

Method All S NS

Our DC-ShadowNet 4.66 7.70 3.39
w/o Lsmooth 4.72 7.80 3.43
w/o Lfeature 4.83 8.04 3.50
w/o Lchroma 5.05 8.50 3.61

w/o Φg
s 5.20 8.94 3.65

w/o Φd
sf 5.49 9.42 3.87

w/o Φg
s and Φd

sf 8.12 16.10 4.80

Input Image 13.77 37.40 3.96

colors of the non-shadow regions and cannot properly han-
dle shadow boundaries. For the method [8], the recovery
of the shadow-free images is unsatisfactory. In comparison,
our DC-ShadowNet performs better, showing the effective-
ness of our domain classification network and our novel un-
supervised losses.

Results on Soft Shadows The LRSS dataset has 134
shadow images, mainly contains soft-shadow images. We
pre-trained our DC-ShadowNet on the SRD training set,
then we use 100 LRSS images for training it in an unsu-
pervised manner. The remaining 34 LRSS images with
their corresponding shadow-free images are used for test-
ing. The quantitative results are shown in Table 3. We
compare our DC-ShadowNet with the following methods:
unsupervised method Mask-ShadowGAN [13], supervised
methods SP+M-Net [20] and DHAN [1], automatic method
Guo [11], and interactive method [9] which requires user-
annotations of shadow regions. As shown in Table 3, our
method achieves the lowest RMSE and highest PSNR.

The qualitative results covering a diverse set of images
such as indoor/outdoor scenes, shadow regions, etc., are
shown in Fig. 10. While the state-of-the-art methods can re-
move shadows to some extent, the results are still improper.
Mask-ShadowGAN [13] fails to handle soft-shadows since
it uses binary masks to represent shadow regions. More-
over, it mainly relies on adversarial training that cannot
guarantee proper shadow removal. Supervised methods
like DHAN [1] and SP+M-Net [20] have artifacts in the
shadow regions as they suffer from the domain gap prob-
lem. Guo [11] fails due to the difficulty in automatically
identifying soft shadow regions. Compared to all the base-
line methods, our results are more proper, and the image
surfaces are better-restored.

Test-Time Training We show that our method being un-
supervised can be used for test-time training to further im-
prove the results on the test images. For this, we use the
34 shadow images from the test set used in the soft shadow
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(a) Input (b) Ours (c) [13] (d) [20] (e) [1] (f) Gryka [9] (g) Guo [11] (h) [11] (auto)

Figure 10. Comparison results on the soft shadow LRSS dataset (a) Input image, (b) Our result, (c) Unsupervised method Mask-
ShadowGAN [13], Supervised methods (d) SP+M-Net [20] and (e) DHAN [1]. (f)∼(h) are the results of the traditional methods (auto
means automatic detection). Our method, trained using unsupervised learning, generates better shadow-free results.

(a) Input (b) Ours (w/o) (c) Ours (w) (d) [13]

Figure 11. (a) Input image, (b) and (c) show our results without
and with test-time-training, (d) Result of Mask-ShadowGAN [13].

evaluation above, and employ our unsupervised losses to
train our method. To evaluate shadow removal perfor-
mance, we use the corresponding shadow-free images; and
the performance in terms of RMSE and PSNR improves
from 3.48 and 31.01 to 3.36 and 31.31, respectively. See
Fig. 11 for a qualitative example showing the effectiveness
of test-time training.

5. Ablation Study
We conduct ablation studies to analyze the effectiveness

of different components of our method such as the shadow-
invariant chromaticity loss Lchroma, shadow-robust feature

loss Lfeature, boundary-smoothness loss Lsmooth, and the
domain classifier Φg

s and Φd
sf . We use the SRD dataset for

our experiments and the corresponding quantitative results
are shown in Table 4. Each component of our method is
important and contributes to the better performance of our
method.

6. Conclusion
We have proposed DC-ShadowNet, an unsupervised

learning-based shadow removal method guided by domain
classification network, shadow-free chromaticity, shadow-
robust feature and boundary smoothness losses. Our
method can robustly handle both hard and soft shadow im-
ages. We integrate a domain classifier with our generator
and its corresponding discriminator, enabling our method
to focus on shadow regions. To train DC-ShadowNet, we
use novel unsupervised losses that enable it to directly learn
from unlabeled (no ground truth) real shadow images. We
also showed that we could employ test-time refinement that
can further improve our performance. Experimental results
have confirmed that our method is effective and outperforms
the state-of-the-art shadow removal methods.
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