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Abstract

Image hiding aims to hide a secret image into a cover
image in an imperceptible way, and then recover the secret
image perfectly at the receiver end. Capacity, invisibility
and security are three primary challenges in image hiding
task. This paper proposes a novel invertible neural network
(INN) based framework, HiNet, to simultaneously overcome
the three challenges in image hiding. For large capacity, we
propose an inverse learning mechanism by simultaneously
learning the image concealing and revealing processes. Our
method is able to achieve the concealing of a full-size secret
image into a cover image with the same size. For high invis-
ibility, instead of pixel domain hiding, we propose to hide
the secret information in wavelet domain. Furthermore, we
propose a new low-frequency wavelet loss to constrain that
secret information is hidden in high-frequency wavelet sub-
bands, which significantly improves the hiding security. Ex-
perimental results show that our HiNet significantly outper-
forms other state-of-the-art image hiding methods, with more
than 10 dB PSNR improvement in secret image recovery on
ImageNet, COCO and DIV2K datasets. Codes are available
at https://github.com/TomTomTommi/HiNet.

1. Introduction

The task of image hiding is to conceal a secret image

into a cover image to generate a stego image, which only

allows the informed receivers to recover the secret image,

but invisible to other people. For security concern, the stego

image is usually required to be indistinguishable from the

cover image. Different from bit-level message hiding or

steganography [2, 20, 35, 36, 39–41], image hiding is more

challenging, which requires large capacity, high invisibility

and security. Image hiding has a wide range of applications,

of which secret communication and privacy protection are

the most significant ones. Compared to the well-known im-

*Authors contributed equally.
†Corresponding author.

(a) Traditional methods

Concealing 
Network

xsecret xstego xrec

xsecret

(b) Our method

Invertible Network xstegoxrec

Revealing 
Network

Figure 1. The illustration of difference between our image hiding

method and the traditional methods [5, 23, 32].

age cryptography, image hiding has a remarkable security

advantage, i.e., the stego image with secret information in-

side is indistinguishable from the cover image, which makes

it more suitable for secret communication. In addition, un-

like image cryptography, image hiding focuses more on the

capacity and invisibility of hidden information rather than

robustness.

Traditional steganographic approaches can only hide a

small amount of information [6,11,13,16,19,24], which can-

not meet the requirement of large capacity in image hiding

task. Baluja [4] proposed the first convolutional neural net-

work (CNN) to solve image hiding problem. This work was

then extended in [5] by permuting the pixels of secret image

to enhance the hiding security. Weng et al. [32] further pro-

posed a deep network for video steganography by temporal

residual modeling. However, all these methods adopt two

sub-networks for image hiding: a concealing network to hide

a secret image xsecret into a cover image to generate a stego

image xstego, and a revealing network to recover the secret

image xrec from xstego, as shown in Fig. 1 (a). The con-

cealing and revealing networks have two sets of parameters,

which are linked through simple concatenation. This loose

connection may cause color distortion and texture-copying

artifacts. Besides, they barely consider the security issue,

making hidden secret information easy to be detected.

In this paper, we propose an invertible image hiding net-

work, HiNet, in which the concealing and revealing pro-
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cesses share the same set of network parameters, as shown

in Fig. 1 (b). To the best of our knowledge, our work is the

first attempt to explore invertible network in image hiding

task. The main novelty is that image revealing is modelled

as the reverse process of image concealing in an invertible

network architecture, which means the network only needs

to be trained once to get all network parameters for both con-

cealing and revealing. This is a radical difference from the

existing methods [5, 23, 32] which treat the concealing and

revealing processes independently. Consequently, our HiNet

achieves state-of-the-art performance on recovery accuracy,

hiding security and invisibility. The main contributions of

this paper are summarized as follows:

• We propose a novel image hiding network, namely

HiNet, based on invertible neural network for the task

of large-capacity image hiding.

• We design two concealing and revealing modules with

differentiable and invertible property, aiming to make

the image hiding process fully reversible.

• We propose a low-frequency wavelet loss to control the

distribution of secret information in different frequency

bands, which significantly improves the hiding security.

2. Related Work
2.1. Steganography and Image Hiding

Steganography is the practice of hiding one message, au-

dio, image or video into another, in a way that does not

arouse any suspicion. Least Significant Bit (LSB) [26] is the

most traditional spatial domain based method in steganog-

raphy. It works by replacing the n least significant bits of

cover image with the most significant n bits of secret image.

The disadvantage of LSB algorithm is the texture-copying

artifacts, which often appear in smooth regions in an image.

Thus, the steganalysis methods [11, 16, 19] can easily detect

the existence of secret information hidden by LSB. In ad-

dition to LSB, there are many methods proposed to embed

information in frequency domains, such as discrete Fourier

transform (DFT) domain [24], discrete cosine transform

(DCT) domain [13], and discrete wavelet transform (DWT)

domain [6]. These methods are more robust and undetectable

than LSB, but they can only hide bit-level information.

Recently, some deep learning models [2,12,20,34–37,39–

41] have been proposed for steganography, which achieved

better performance than traditional methods. Specifically,

Zhu et al. [41] firstly proposed a network based on auto-

encoder to achieve watermark embedding and extracting.

Based on [41], Ahmadi et al. [2] introduced residual con-

nections and a CNN-based transform operation module to

embed watermarking in any transform space. Tancik et
al. [27] proposed a StegaStamp framework to hide hyper-

links in a physical photograph and successfully retrieve it

after decoding. Luo et al. [20] further enhanced the robust-

ness of network to unknown distortions by replacing a fixed

set of distortions by a generator. Zhang et al. [37] used gener-

ative adversarial network (GAN) to optimize the perceptual

quality of steganographic images. These methods are usu-

ally with good hiding security, i.e., the secret information is

unlikely to be detected by steganalysis tools, however, they

can only hide a small amount of data.

Image hiding is an important research direction of

steganography, which attempts to hide a whole image into

another one. Different from the aforementioned methods, it

usually requires large hiding capacity. Baluja [4, 5] firstly

proposed to hide a whole color image within another one

using deep neural networks. To achieve this, a preparation

network is developed to extract useful features of the secret

image, and then a hiding network is used to fuse the features

of secret image within the cover image. Finally, a reveal-

ing network is adopted to recover the original secret image.

Based on [4], Rahim et al. [23] added a regular loss to en-

sure joint end-to-end training. However, both of them have

the problem of color distortion. Zhang et al. [38] mitigated

this impact by decreasing the payload of secret images, i.e.,

only embedding gray-scale images. Weng et al. [32] further

applied this technology to video steganography by temporal

residual modeling. The previous works demonstrate that

deep networks have great potential in image hiding.

2.2. Invertible Neural Network

Invertible neural network (INN) was first proposed by

Dinh et al. [9]. Given a variable y and the forward computa-

tion x = fθ(y), one can recover y directly by y = f−1
θ (x),

where the inverse function f−1
θ is designed to share same

parameters θ with fθ. To make INN better handle image-

related tasks, Dinh et al. [10] introduced convolutional lay-

ers in coupling models, and multi-scale layers to reduce the

computational cost and increase the regularization ability.

Kingma et al. [15] introduced invertible 1 × 1 convolution

to INN and proposed Glow, which is efficient on realistic-

looking synthesis and manipulation of images.

Due to the excellent performance, INN has been utilized

in many image-related tasks. Specifically, Ouderaa et al. [28]

applied INN to image-to-image translation task. Ardizzone

et al. [3] introduced conditional INN to guided image gen-

eration and colorization, in which the inverse process was

guided by a conditional parameter. Xiao et al. [33] attempted

to find a mapping between low and high resolution images

using INN for image rescaling. Lugmayr et al. [18] pro-

posed a normalizing flow-based method via INN on super-

resolution, which attempted to directly account for the ill-

posed nature of super-resolution, and learn to predict diverse

photo-realistic high-resolution images. Most recently, Wang

et al. [30] applied INN in digital image compression task.

However, to the best of our knowledge, there is no work to
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Figure 2. The framework of HiNet. In the forward concealing process, a secret image is hidden in a cover image through several concealing

blocks to generate a stego image, together with the lost information. In the backward revealing process, the stego image and an auxiliary

variable z from Gaussian distribution are fed to a series of revealing blocks to recover the secret image. Note that in our HiNet, revealing is

the inverse process of concealing, and thus they share the same network parameters.

explore INN in image hiding task.

3. Methods
In this section, we propose a novel invertible concealing-

revealing network called HiNet to achieve image hiding with

large capacity, high security and high invisibility. Table 1

presents the notations used in this paper.

Table 1. Summary of notations in this paper

Notation Description

xsecret secret image: the image to be hidden

xcover cover image: the image to hide secret information

xstego stego image: the image with secret information inside

xrec recovery image: the recovered secret image from stego image

r lost information: the information lost in concealing process

z auxiliary variable: the variable to help recover stego image

3.1. Network architecture

Fig. 2 shows the overall framework of the proposed HiNet.

In the forward concealing process, a pair of secret image

xsecret and cover image xcover are accepted as inputs. They

are first decomposed into low and high-frequency wavelet

sub-bands through discrete wavelet transform (DWT), which

are then fed into a sequence of concealing blocks. The

outputs of the last concealing block go through an inverse

wavelet transform (IWT) block to generate a stego image

xstego, together with the lost information r. In the backward

revealing process, the stego image xstego and an auxiliary

variable z go through the DWT and a series of revealing

blocks to recover the secret image xsecret.

Wavelet domain hiding. Image hiding in pixel domain

can easily lead to texture-copying artifacts and color dis-

tortion [11, 32]. Compared to pixel domain, the frequency

domain, especially high-frequency domain, is more appro-

priate for image hiding. In this paper, we adopt DWT to

split image into low and high-frequency wavelet sub-bands

before entering the invertible blocks, so that the network can

better fuse the secret information into the cover image. More-

over, the perfect reconstruction property of wavelets [21] can

help decrease the information loss and improve the image

hiding performance. After DWT, the feature map of size

(B,C,H,W ) is turned into (B, 4C,H/2,W/2), in which

B is batch size, H is height, W is width and C is chan-
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nel number. As we can see, the computational cost can be

reduced by DWT, which can help accelerate the training

process. Here, we adopt Haar wavelet kernel to perform

DWT and IWT, for its simplicity and effectiveness. Note that

wavelet transform is bidirectional symmetric, which means

it will not affect the end-to-end training of our network.

Invertible concealing and revealing blocks. As shown

in Fig. 2, the concealing and revealing blocks have the

same sub-modules and share the same network parameters,

but with reverse information flow directions. There are M
concealing blocks with the same architecture, which is con-

structed as follows. For the i-th concealing block in the

forward process, the inputs are xi
cover and xi

secret, and the

outputs xi+1
cover and xi+1

secret are formulated as follows,

xi+1
cover = xi

cover + φ
(
xi

secret

)

xi+1
secret = xi

secret � exp
(
α(ρ

(
xi+1

cover)
))

+ η
(
xi+1

cover

)
,

(1)

where α is a sigmoid function multiplied by a constant factor

served as a clamp, and � indicates the dot product operation.

Here, ρ(·), φ(·) and η(·) are arbitrary functions and we

adopt the widely used dense block in [29] to represent them

for its good representation ability. The influence of different

architectures for ρ(·), φ(·), and η(·) is discussed in abla-

tion study in Section 4.4. After the last concealing block, we

can obtain the outputs xM+1
cover and xM+1

secret , which are then fed

into two IWT blocks to generate the stego image xstego and

lost information r, respectively.

In the revealing process, the information flow direction is

from the (i+1)-th revealing block to the i-th revealing block,

which is in reverse order to the concealing process, as shown

in Fig. 2. Specifically, for the M -th revealing block, the

inputs are xM+1
stego and zM+1 which are generated by the stego

image xstego and an auxiliary variable z through DWT. Here,

z is randomly sampled from a Gaussian distribution. The

outputs of the M -th revealing block are xM
stego and zM . For

the i-th revealing block, the inputs are xi+1
stego and zi+1, and

the outputs are xi
stego and zi. Their relationship is modelled

as follows,

zi =
(
zi+1 − η

(
xi+1

stego

))� exp
(−α(ρ

(
xi+1

stego

)
)
)

xi
stego = xi+1

stego − φ
(
zi
)
.

(2)

After the last revealing block, i.e., the revealing block 1,

the output x1
stego is fed into an IWT block to generate the

recovery image xrec.

The lost information r and auxiliary variable z. The

lost information r is one of the outputs in the forward con-

cealing process, and z is one input to the backward revealing

process. In the concealing process, the network tries to

hide the secret image into the cover image. However, it

is difficult to hide such a large capacity in the cover im-

age, which inevitably leads to the loss of secret information.

In addition, the intrusion of secret image may destroy the

original information in the cover image. The lost secret

information and destroyed cover information make up the

lost information r. Here, r is assumed to be case-agnostic

for the reasons below. Suppose that the distribution of all

images in dataset is X . The inputs in the forward process are

xcover and xsecret, which are sampled from the same dataset

and thus follow the same distribution: xcover,xsecret ∼ X .

Due to the strict equivalence of Eqs. (1) and (2), and the

reversible constraint of INN, the mixed distribution of the

outputs xstego and r should obey the same distribution as

inputs, i.e., xstego × r ∼ X . For stego image xstego, the con-

cealing loss in Section 3.2 pushes its distribution to match

the cover image, i.e., xstego ∼ X . Thus, it is reasonable to

assume the remained r to be case-agnostic.

In backward revealing, the recovery image xrec is required

to be extracted from only the stego image xstego with no ac-

cess to r. This is actually an ill-posed problem, because

there can be millions of xrec recovered from the same xstego.

In order to obtain the accurate xrec, an auxiliary variable z is

adopted in the backward revealing process. The variable z is

randomly sampled from a case-agnostic distribution, which

is supposed to obey the same distribution as r. The distribu-

tion is learned during training through the revealing loss in

Section 3.2, ensuring that every sample in the distribution is

able to well recover the secret information. Here, without

loss of generality, we assume the distribution as Gaussian

distribution, i.e., z ∼ N
(
μ0, σ

2
0

)
.

Why INN works for image hiding? The image hiding

task is composed of two reverse procedures: the concealing

procedure aims to hide a secret image xsecret in a cover image

xcover, to generate a new container called stego image xstego;

while the revealing procedure attempts to recover the secret

image from the stego image as high-fidelity as possible. In

previous works [5, 23, 32], the concealing and revealing pro-

cedures are sequentially achieved by two forward networks,

i.e., one network for concealing and the other for revealing.

However, for perfect concealing and revealing performance,

these two processes should be fully reversible. Based on this,

we innovatively treat the image concealing and revealing as

the forward and backward processes of the same INN, i.e,

they are invertible. As a result, they can coordinate with

each other to improve the hiding and revealing performance

simultaneously. As demonstrated in the experiments, our

network with INN architecture significantly advances the

state-of-the-art image hiding performance.

3.2. Loss function

The total loss function is composed of three different

losses: the concealing loss to guarantee the concealing per-

formance, the revealing losses to ensure the recovering per-

formance, and a new low-frequency wavelet loss to enhance

the hiding security.

Concealing loss. The forward concealing process aims
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to hide xsecret into xcover, to generate a stego image xstego.

The stego image is required to be indistinguishable from the

cover image. Toward this goal, the concealing loss Lcon is

defined as follows,

Lcon(θ) =
N∑

n=1

�C
(
x(n)

cover ,x
(n)
stego

)
, (3)

where x
(n)
stego is equal to fθ

(
(x

(n)
cover,x

(n)
secret)

)
, with θ indicat-

ing the network parameters. In addition, N is the number

of training samples, and �C measures the difference between

cover and stego images, which can be �1 or �2 norm.

Revealing loss. In the backward revealing process, given

the stego image xstego generated from the forward concealing

process, the network should be able to recover the secret

image using any sample of z from the Gaussian distribution

p(z). To achieve this goal, we define the revealing loss Lrev

as follows,

Lrev(θ) =

N∑
n=1

Ez∼p(z)[�R
(
x
(n)
secret,x

(n)
rec

)
], (4)

where the recovery image x
(n)
rec is equal to f−1

θ

(
x
(n)
stego, z

)
,

with f−1
θ (·) indicating the backward revealing process. Sim-

ilar to �C , �R measures the difference between recovered

secret images xrec and ground-truth secret images xsecret.

Low-frequency wavelet loss. In addition to the above

two losses, we propose a low-frequency wavelet loss Lfreq

to enhance the network’s anti-steganalysis ability. The moti-

vation of this loss is from [4], which verifies that the infor-

mation hidden in high-frequency components is less likely

to be detected than that in low-frequency components. Here,

in order to ensure most information is hidden in the high-

frequency sub-bands, the low frequency sub-bands of stego

image are required to be similar to those of cover image

after wavelet decomposition. Suppose that H(·)LL indicates

the operation of extracting low-frequency sub-bands after

wavelet decomposition, the low-frequency wavelet loss Lfreq

is defined as follows,

Lfreq(θ) =

N∑
n=1

�F
(
H(x(n)

cover)LL,H(x
(n)
stego)LL

)
. (5)

Here, �F measures the difference between the low-frequency

sub-bands of cover and stego images.

Total loss function. The total loss function Ltotal is a

weighted sum of concealing loss Lcon, revealing loss Lrev

and low-frequency wavelet loss Lfreq, as follows,

Ltotal = λcLcon + λrLrev + λfLfreq. (6)

Here, λc, λr and λf are weights for balancing different loss

terms. In the training process, we firstly pre-train the network

by minimizing Lcon and Lrev, i.e., λf is set to 0. Then, we

add Lfreq to train the network in an end-to-end manner.

4. Experiments

4.1. Experimental Settings

Datasets and settings. The DIV2K [1] training dataset

is used for training our HiNet. The testing datasets include

DIV2K [1] testing dataset with 100 images at resolution

1024× 1024, ImageNet [25] with 50,000 images at resolu-

tion 256× 256, and COCO [17] dataset with 5,000 images

at resolution 256 × 256. Note that the testing images are

cropped using center-cropping strategy, to make sure the

cover and secret images are with the same resolution. The

number of concealing and revealing blocks M is set to 16.

The training patch size is 256× 256, and the number of total

iteration is 80K. The parameters λc, λr and λf are set to

10.0, 1.0, 10.0, respectively. The mini-batch size is set to

16, in which half is randomly selected as cover patches and

the remained are secret patches. The Adam [14] optimizer is

adopted with standard parameters and an initial learning rate

of 1× 10−4.5 , which is halved every 10K iterations.

Benchmarks. To verify the effectiveness of our method,

we compare it with several state-of-the-art (SOTA) image

hiding methods, including one traditional image steganogra-

phy method named 4bit-LSB, and three deep learning based

methods: HiDDeN [41], Weng et al. [32], and Baluja [5].

For fair comparison, we re-trained the models of Weng et
al. [32], Baluja [5], and HiDDeN [41] using the same train-

ing dataset as ours. Note that the original HiDDeN [41]

model can only hide messages, which is not consistent with

the image hiding configuration in this paper. To make it able

to hide images, we slightly modified its output dimension

and then re-trained the network.

Evaluation metrics. There are four metrics adopted

to measure the quality of cover/stego and secret/recovery

pairs, including Peak Signal-to-Noise Ratio (PSNR), Struc-

tural Similarity Index (SSIM) [31], Root Mean Square Error

(RMSE), and Mean Absolute Error (MAE). The larger value

of PSNR, SSIM and smaller value of RMSE, MAE indi-

cate higher image quality. In addition, we use the statistical

steganalysis tool named StegExpose [7] and SRNet [8] to

evaluate the security performance of our method.

4.2. Comparison against SOTA methods

Quantitative results. Table 2 compares the numerical

results of our HiNet with 4bit-LSB, HiDDeN [41], Weng et
al. [32] and Baluja [5]. As can be seen from Table 2, our

HiNet significantly outperforms other methods in terms of

all the four metrics for both cover/stego and secret/recovery

pairs. Specifically, for cover/stego image pairs, our HiNet

achieves 9.24 dB, 7.63 dB and 6.98 dB improvement in

PSNR than the second best results on DIV2K, COCO and

ImageNet datasets, respectively. For secret/recovery image

pairs, we provide 13.93 dB, 8.29 dB and 10.30 dB PSNR

improvement than the second bests on DIV2K, COCO and
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Table 2. Benchmark comparisons on different datasets, with the best results in red and second bests in blue.

Methods

Cover/Stego image pair

DIV2K COCO ImageNet

PSNR(dB)↑ SSIM↑ MAE↓ RMSE↓ PSNR(dB)↑ SSIM↑ MAE↓ RMSE↓ PSNR(dB)↑ SSIM↑ MAE↓ RMSE↓
4bit-LSB 33.19 0.9453 6.90 7.95 33.79 0.9479 7.31 9.12 33.68 0.9401 6.46 8.48

HiDDeN [41] 35.21 0.9691 6.98 6.82 36.71 0.9876 6.58 8.73 34.79 0.9380 6.12 7.33

Weng et al. [32] 39.75 0.9765 3.24 4.85 38.89 0.9762 3.99 5.91 37.62 0.9588 4.70 5.25

Baluja [5] 36.77 0.9645 3.79 5.02 36.38 0.9563 5.98 7.43 36.59 0.9520 5.61 5.41

HiNet 48.99 0.9971 1.33 1.94 46.52 0.9961 1.87 2.92 44.60 0.9928 2.52 3.62

Algorithms

Secret/Recovery image pair

DIV2K COCO ImageNet

PSNR(dB)↑ SSIM↑ MAE↓ RMSE↓ PSNR(dB)↑ SSIM↑ MAE↓ RMSE↓ PSNR(dB)↑ SSIM↑ MAE↓ RMSE↓
4bit-LSB 30.81 0.9020 8.96 8.01 32.04 0.9127 7.61 9.59 31.26 0.9033 7.71 9.76

HiDDeN [41] 36.43 0.9696 6.02 5.50 37.68 0.9845 4.72 6.33 35.70 0.9601 4.57 6.92

Weng et al. [32] 38.93 0.9683 3.95 5.16 38.69 0.9756 4.06 5.95 36.48 0.9537 4.98 6.28

Baluja [5] 35.88 0.9377 4.68 6.11 35.01 0.9341 6.52 8.00 34.13 0.9247 5.31 8.37

HiNet 52.86 0.9992 0.56 0.86 46.98 0.9957 1.60 2.66 46.78 0.9952 1.94 2.74

4bit-LSB Baluja OursWeng et al.

Cover image

Secret image

HiDDeNGT

(37.80/0.9702)

(38.88/0.9795)

(47.63/0.9960)

(52.49/0.9994)(31.84/0.9174)(38.10/0.9174)(24.86/0.9114)

(36.02/0.9850) (35.79/0.9377)(36.31/0.9603)

(PSNR/SSIM)

(PSNR/SSIM)

|Cover - Stego | 
10:

| Secret - Recover | 
10:

Figure 3. Visual comparisons of stego and recovery images of our HiNet and the comparison methods 4bit-LSB, HiDDeN [41], Baluja [5],

and Weng et al. [32]. The upper three rows show the enlarged stego images, while the lower three rows show the enlarged recovery images

of different methods.

ImageNet datasets, respectively. In addition to PSNR, sim-

ilar improvements can be seen in SSIM, RMSE and MAE.

We achieve significantly better results than the SOTA deep

learning based methods, thanks to the reversibility of our

HiNet architecture and the wavelet transform which can

greatly improve the hiding performance.

Qualitative Results. Fig. 3 compares the stego and re-

covery images of our HiNet and other four methods. As can

be seen, in our method, the difference between cover and

stego images is nearly invisible, indicating that we are able to

successfully conceal the secret image in the cover image. In

addition, our method can nearly perfectly recover the secret
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image, i.e., the residual map between the recovery image

and the ground-truth secret image is nearly all in black. In

contrast, the stego images of 4bit-LSB, HiDDeN [41] and

Baluja [5] have obvious texture-copying artifacts, especially

in smooth regions. In addition, their recovery images often

contain undesirable color deviation problem, in which Weng

et al. [32] also shows visible blurring artifacts. Compared to

these methods, our HiNet not only offers high recovery accu-

racy, but also enjoys high color fidelity without text-copying

artifacts both in the stego and recoveries.

Generalization ability. Although our model is trained

only using DIV2K dataset, it offers excellent results on

COCO and ImageNet datasets, as shown in Table 2. This

demonstrates the good generalization of our model, which is

of significant importance in practical applicaitons.

4.3. Steganographic analysis

Steganographic analysis measures the security of stego

images, which is an important evaluation part in image hid-

ing task. Specifically, steganalysis measures the possibility

to distinguish stego image from cover image by steganalysis

tools [22]. The mainstream steganalysis methods can be

divided into two categories: traditional statistical methods

and new deep learning based methods.

Figure 4. The ROC curve produced by StegExpose for our HiNet.

Statistical steganalysis. We follow [5] to use an open-

source steganalysis tool, called StegExpose [7], to measure

our model’s anti-steganalysis ability. Specifically, we ran-

domly select 2,000 cover and secret images from the testing

set and generate the stego images using our HiNet. Then,

the secret images are recovered from stego images by our

HiNet. To draw the receiver operating characteristic (ROC)

curve, we vary the detection thresholds in a wide range in

StegExpose [7]. Fig. 4 shows the ROC curve of our HiNet.

We can see that the value of area under ROC curve (AUC) is

0.5019, indicating that the detection accuracy is quite close

to the random guess. This demonstrates that the stego im-

ages generated by our model are with high security, which

are able to fool the StegExpose tool with high probability.

Table 3. The detection accuracy using SRNet

Methods Accuracy (%) ±std

4bit-LSB 99.96 ± 0.06

Baluja [5] 99.67 ± 0.01

HiDDeN [41] 76.49 ± 0.11

Weng et al. [32] 75.03 ± 0.59

HiNet 55.86 ± 0.27

Deep learning based steganalysis. SRNet [8] is a net-

work for image steganalysis, to distinguish stego image from

cover image. Table 3 presents the detection accuracy using

SRNet for different image hiding methods. Here, the closer

the detection accuracy is to 50% (random guess), the better

the image hiding algorithm performs. As can be seen, our

HiNet achieves 55.86 % detection accuracy, which is signif-

icantly better than other SOTA methods [5, 32, 41]. Since

55.86 % is quite close to 50%, the stego image of our method

is nearly in-detectable from the cover image.

Figure 5. Investigation on the anti-steganalysis ability of different

methods. Note that the closer the accuracy is to 50%, the higher

anti-steganalysis ability it can achieve.

In addition to the aforementioned steganalysis method,

Weng et al. [32] proposed a new way for image steganalysis.

Specifically, the SRNet is re-trained with different number

of cover/stego image pairs generated by one specific model,

to investigate how many training images are needed to make

SRNet capable to detect stego images. Following [32], we

gradually increase the amount of training images to re-train

the SRNet. Fig. 5 shows the change of detection accuracy

with the number of training images. As we can see from this

figure, our HiNet achieve much lower detection accuracy

compared to other methods, which indicates the higher anti-

steganalysis ability of our method.

4.4. Ablation Study

Effectiveness of wavelet transform. As shown in Table

4, the wavelet transform plays an important role in improv-

ing the performance of our method. Specifically, as we can
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Table 4. Effectiveness of wavelet transform and low-frequency wavelet loss. The third row represents our HiNet.

Wavelet Lfreq Cover/Stego image pair Secret/Recovery pair
Detection rate (%)

transform loss PSNR(dB)↑ SSIM↑ MAE↓ RMSE↓ PSNR(dB)↑ SSIM↑ MAE↓ RMSE↓
� � 40.71 0.9789 3.72 5.16 44.22 0.9938 1.93 3.22 74.25

� � 44.23 0.9918 2.51 3.68 48.52 0.9973 1.32 2.19 75.42

� � 46.52 0.9961 1.87 2.92 46.98 0.9957 1.60 2.66 55.86

see from the first and second rows in Table 4, the PSNR

value with wavelet transform increases by 3.52 dB and 4.30

dB for cover/stego and secret image/recovery pairs, respec-

tively. The possible reason is that wavelet transform can

successfully separate the low-frequency and high-frequency

sub-bands, making it more effective for information hiding.

λfreq

Figure 6. Ablation study on Lfreq loss. The models are trained with

different λfreq values with the other parameters fixed.

Effectiveness of Lfreq loss. The Lfreq loss is designed

to guarantee that most of secret information is hidden in

the high-frequency sub-bands of the cover image, so that

the stego image can be less detectable. As demonstrated

in the second and third rows in Table 4, Lfreq significantly

improves the security of our method, i.e., the detection rate

is decreased from 75.42% to 55.86%. Moreover, with Lfreq,

the average PSNR value of cover/stego image pair is in-

creased by 2.29 dB. Fig. 6 shows the influence of different

λfreq on the performance of our method. We can see that

when λfreq = 101, the best trade-off between PSNR, SSIM

and detection rate can be obtained.

Influence of ρ(·), φ(·) and η(·) architecture. Fig. 7

shows the effects of different architectures of ρ(·), φ(·) and

η(·) on the performance of our method using violin plots.

The violin plots visualise the distribution of PSNR value

and its probability density (blue area). The top, middle and

bottom lines represent maximum, average and minimum

PSNR values, respectively. Here, we adopt three typical

block architectures, including convolutional, residual and

Figure 7. The influence of different architectures of ρ(·), φ(·) and

η(·) visualised by violin plots.

dense blocks, to analyze the influence of different structures

on the performance. For fair comparison, these three blocks

are constructed to contain same number of parameters. As

we can see from this figure, dense block produces the best

PSNR results, which is also the reason why we adopt it for

ρ(·), φ(·) and η(·) in this paper.

5. Conclusion

In this paper, we propose a novel invertible neural network

named HiNet for image hiding, which drastically increases

both the hiding security and recovering accuracy. Our HiNet

models the image concealing and revealing as the forward

and backward processes of an invertible network, which

means that they share the same network parameters. As

a consequence, the network only needs to be trained once

to get all network parameters for both image concealing

and revealing processes. In network training, a new low-

frequency wavelet loss is proposed to improve the security

of image hiding. Extensive experimental results show that

our method can achieve image hiding with large capacity and

high security, which significantly outperforms other SOTA

methods both quantitatively and qualitatively.
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