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Abstract

In this paper, we study a novel meta aggregation scheme
towards binarizing graph neural networks (GNNs). We be-
gin by developing a vanilla 1-bit GNN framework that bi-
narizes both the GNN parameters and the graph features.
Despite the lightweight architecture, we observed that this
vanilla framework suffered from insufficient discriminative
power in distinguishing graph topologies, leading to a dra-
matic drop in performance. This discovery motivates us to
devise meta aggregators to improve the expressive power of
vanilla binarized GNNs, of which the aggregation schemes
can be adaptively changed in a learnable manner based on
the binarized features. Towards this end, we propose two
dedicated forms of meta neighborhood aggregators, an ex-
clusive meta aggregator termed as Greedy Gumbel Neigh-
borhood Aggregator (GNA), and a diffused meta aggrega-
tor termed as Adaptable Hybrid Neighborhood Aggregator
(ANA). GNA learns to exclusively pick one single optimal
aggregator from a pool of candidates, while ANA learns
a hybrid aggregation behavior to simultaneously retain the
benefits of several individual aggregators. Furthermore, the
proposed meta aggregators may readily serve as a generic
plugin module into existing full-precision GNNs. Exper-
iments across various domains demonstrate that the pro-
posed method yields results superior to the state of the art.

1. Introduction
Graph neural networks (GNNs) have recently emerged

as the dominant paradigm for learning and analyzing non-
Euclidean data, which contain rich node content informa-
tion as well as topological relational information [7, 12, 53].
As such, a massive number of GNN architectures have been
developed [21, 46, 55, 60, 63]. The success of GNNs
also triggers a great surge of interest in applying elabo-
rated graph networks to various tasks across many domains,
such as object detection [11, 8], pose estimation [59], point
cloud processing [22, 51, 36], and visual SLAM [40]. These
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Figure 1. Illustrations of the computational workflow in (a) con-
ventional full-precision GNNs and (b) the proposed 1-bit GNNs.
In particular, we devise two meta aggregators for the proposed
model, termed as Greedy Gumbel Aggregator (GNA) and Adapt-
able Hybrid Aggregator (ANA), that learn to perform adaptive ag-
gregation in a graph-aware and layer-aware manner.

GNN-based applications, in general, rely on cumbersome
graph architectures to deliver gratifying results. For exam-
ple, SuperGlue, a GNN-based feature matching approach,
requires 12M network parameters to achieve the state-of-
the-art performance [40].

In practice, however, such applications typically require
a compact and lightweight architecture for real-time inter-
action, especially in resource-constrained environments. In
the case of autonomous driving [30], for example, it is
critical to maintain fast and timely responses for GNN-
based SLAM algorithms to handle complex traffic condi-
tions, thereby leading to the urgent need of compressing
cumbersome GNN models. The work of [58], as the first
attempt, leverages knowledge distillation to learn a com-
pact student GNN with fewer parameters. In spite of the
improved efficiency, this approach still relies on the expen-
sive floating-point operations, let alone a well-performed
teacher model pre-trained in the first place.

In this paper, we strive to make one step further towards
ultra lightweight GNNs. Our goal is to train a customized 1-
bit GNN, as shown in Fig. 1, that allows for favorable mem-
ory efficiency and meanwhile enjoys competitive perfor-
mance. We start with developing a naı̈ve GNN binarization
framework, achieved through converting 32-bit features and
parameters into 1-bit ones, followed by leveraging straight-

5301



−3

1

−21

−1

1−3

−3

1

0

−1

1−3

−2−1

−1

−3 1

−3

1

−1

−1
+1
+1

+1
−1
+1

∗

−1

Feature Weight

−1

−3 1

+1
−1
−1

−1
+1
+1

∗
FeatureWeight

−3

1

−1

∗: 1-bit Operation :  Mean Aggregation

+1
−1
−1

−1
+1
+1

∗
FeatureWeight

: Mean Aggregation : Max Aggregation
: Sum Aggregation

: Diffused Aggregation 1
: Diffused Aggregation 2

(a) (b) (c)
Figure 2. Example aggregation results of the two graphs with dif-
ferent topological structures for (a) the conventional pre-defined
and fixed aggregator, (b) the proposed exclusive form of meta ag-
gregators GNA, and (c) the proposed diffused form of meta aggre-
gators ANA.

through estimator to optimize the binarized model. The de-
rived vanilla binarized GNN enjoys favorable memory effi-
ciency; however, its performance is not encouraging as ex-
pected. Through parsing its underlying process, we iden-
tified that the binarization yields limited expressive power,
making the model incapable to distinguish different graph
topologies. An illustrating example is shown in Fig. 2(a),
where a mean aggregator, which is commonly adopted by
full-precision GNNs, produce identical aggregation results
for two diversified graph topologies with binarized features,
thereby leading to inferior performances.

Inspired by this discovery, we introduce to the pro-
posed GNN binarization framework a learnable and adap-
tive neighborhood aggregator, so as to alleviate the afore-
mentioned dilemma and enhance the distinguishability of 1-
bit graphs. Unlike existing GNNs that rely on a pre-defined
and fixed aggregator, our elaborate meta neighborhood ag-
gregators enables dynamically selecting (Fig. 2(b)) or gen-
erating (Fig. 2(c)) customized input- and layer-specific ag-
gregation schemes. As such, we explicitly account for the
customized characteristics of binarized graph features, and
further strengthen the discriminative power for handling
topological structures.

Towards this end, we propose two variants of meta ag-
gregators: an exclusive meta aggregator, termed as Greedy
Gumbel Neighborhood Aggregator (GNA), that adaptively
selects an optimal aggregator in a learnable manner, as well
as a diffused meta aggregator, termed as Adaptable Hy-
brid Neighborhood Aggregator (ANA), that either approx-
imates a single aggregator or dynamically generates a hy-
brid aggregation behavior. Specifically, GNA incorporates
the discrete decisions from the candidate aggregators, con-
ditioned on the individual graph features, into the gradient
descent process by leveraging Greedy Gumbel Sampling.
Inevitably, the performance of GNA is bottlenecked by the
individual aggregators in the candidate pool. Thus, we fur-
ther devise ANA that enables generating a hybrid aggrega-
tor dynamically based on the input 1-bit graphs. ANA si-
multaneously preserves the strengths of multiple individual

aggregators, leading to favorable competence to handle the
challenging 1-bit graph features. Moreover, the proposed
GNA and ANA can be readily extended as portable mod-
ules into the general full-precision GNN models to enhance
the expressive capability.

In sum, our contribution is a novel GNN-customized
binarization framework that generates a 1-bit lightweight
GNN model with competitive performance, making it com-
petent for resource-constrained applications such as edge
computing. This is specifically achieved through an adap-
tive meta aggregation scheme to accommodate the chal-
lenging quantized graph features. We evaluate the pro-
posed customized framework on several large-scale bench-
marks across different domains and graph tasks. Experi-
mental results demonstrate that the proposed meta aggrega-
tors achieve results superior to the state-of-the-art, not only
on the devised 1-bit binarized GNN models, but also on the
general full-precision models.

2. Related Work
We briefly review here several topics that are related to

our work, including graph neural networks (GNNs), GNN-
based applications as well as prior CNN-based network bi-
narization techniques.

Graph Neural Networks. The concept of graph neural
networks was proposed in [41], which generalized exist-
ing neural networks to handle graph data represented in the
non-Euclidean domain. Over the past few years, graph neu-
ral networks have achieved unprecedented advances with
various approaches being developed [21, 19, 63, 7, 57, 56,
25, 27, 48, 13, 24, 32, 26]. For example, graph attention
network in [46] introduces a novel attention mechanism for
efficient graph processing. GraphSAGE [10], on the other
hand, addresses the scalability issues on large-scale graphs
by sampling and aggregating feature representations from
local neighborhoods.

The success of GNNs has also boosted the applications
of graph networks in a wide range of problem domains [63],
including semantic segmentation [52, 22, 36, 34], object de-
tection [11, 8], pose estimation [59], interaction detection
[35, 17], and visual SLAM [40], etc. Specifically, Wang
et al. [52] propose a dynamic graph convolutional model
for point cloud classification and semantic segmentation,
which combines the advantages of the PointNet [33] and
graph convolutional network [21]. Despite the encourag-
ing performance, there is a lack of research on compressing
cumbersome GNN models, which is critical for deployment
in resource-constrained environments like on the mobile-
terminal side.

Network Binarization. In the field of model compres-
sion [62, 42, 43, 5, 44], network binarization techniques
aim to save memory occupancy and accelerate the network
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inference by binarizing network parameters and then utiliz-
ing bitwise operations [14, 15, 4]. In recent years, various
CNN binarization methods have been proposed, which can
be categorized into direct binarization [6, 14, 15, 20] and
optimization-based binarization [38, 4, 29]. Specifically,
direct binarization quantizes the weights and activations to
1 bit with a pre-defined binarization function. In contrast,
optimization-based binarization introduces scaling factors
for the binarized parameters to improve the representation
ability, but inevitably leading to inferior efficiency.

Driven by the success of the aforementioned binarization
techniques in the CNN domain, in the paper, we propose
a GNN-specific binarization method. Specifically, we pri-
marily focus on GNN-based direct binarization, since our
goal is to develop super lightweight GNN models. We also
notice three concurrent works [47, 49, 1] that also aim to
accelerate the forward process for GNN models. However,
[47, 49] directly apply CNN-based binarization techniques
without considering the characteristics of GNNs, which in
fact will serve as the baseline method in our experiments.
The other work in [1] only focuses on improving the ef-
ficiency of dynamic graph convolutional model [52], by
speeding up the dynamic construction of k-nearest-neighbor
graphs in the Hamming space. Unlike [47, 49, 1], we aim
to devise a more general GNN-specific binarization frame-
work that is applicable to most existing GNN models.

3. Vanilla Binary GNN and Pre-analysis
In this section, we first develop a vanilla binary GNN

framework by simply binarizing model parameters and ac-
tivations. We then show the limitations of this vanilla binary
GNN by looking into the internal message aggregation pro-
cess and accordingly develop two possible solutions to ad-
dress these limitations. Eventually, built upon the possible
solutions, we introduce the idea of the proposed customized
GNN binarization framework with the meta aggregators.

Formulation of GNN Models. GNNs leverage graph
topologies and node/edge features to learn a representa-
tion vector of a node, an edge or the entire graph. Let
G = {V, E} denote a directed/undirected graph with nodes
vi ∈ V and edges (vi, vj) ∈ E , where {vj} is the set of
neighboring nodes of vi. Each node has an associated node
feature X = [x1 x2 ... xn]. For example, in the task of 3D
object classification, x can be set as the 3D coordinates.

Existing GNNs follow an iterative neighborhood aggre-
gation scheme at each GNN layer, where each node vi it-
eratively gathers features from its neighboring nodes {vj}
to capture the structural information [23, 55]. Let X ℓ

i de-
note the feature vector of the node vi at layer ℓ. The corre-
sponding updated feature vector X ℓ+1

i in a GNN can then
be formulated as:

X ℓ+1
i = f

(
X ℓ

i , {X ℓ
j : (j, i) ∈ E}

)
, (1)

where X ℓ
j represents the feature associated with the neigh-

boring nodes. f is a mapping function that takes X ℓ
i as well

as X ℓ
j as inputs. The choice of the mapping f corresponds

to different architectures of GNNs.
For the sake of simplicity, we take here graph convolu-

tional network (GCN) proposed by Kipf and Welling [21]
as an example GNN architecture for the following discus-
sions. We denote Mean as the mean aggregator that com-
putes an average of the incoming messages and W as the
learnable weight matrix for feature transformation. The
general GNN form in Eq. 1 can then be instantiated for
GCN as: X ℓ+1

i = ReLU
(
W l Mean(j,i)∈EX ℓ

j

)
or X ℓ+1

i =

ReLU
(
Mean(j,i)∈EW lX ℓ

j

)
, which respectively correspond

to the case where aggregation comes first or comes after the
feature transformation step [50].

Vanilla 1-bit GNN Models. We develop a naı̈ve binarized
GNN framework to compress cumbersome GNN models,
by directly binarizing 32-bit input features and learnable
weights in the feature transformation step into 1-bit ones.

Specifically, for the case of vanilla binary GCN, the for-
ward propagation process can be modeled as:

Net Forward: wb = sign(w) =

{
+1, w ≥ 0

−1, w < 0
, (2)

where w represents the element in the learnable weight ma-
trix W . We also binarize the graph features X in the same
manner, by replacing w in Eq. 2 with the feature element x.

During the backward propagation, it is not feasible to
simply exploit Backward Propagation (BP) algorithm [39],
as most full-precision models do, to optimize binarized
graph networks, due to the undifferentiable binarization
function, i.e., sign in Eq. 2. The derivative part of the sign
function will lead to 0 gradients almost everywhere, thereby
resulting in the vanishing gradient problem. To alleviate this
dilemma, we leverage the Straight-through Estimator (STE)
[2] for the backward propagation process in the binarized
graph nets, formulated as:

Net Backward:
∂L
∂w

=


∂L
∂wb

, w ∈ (−1, 1)

0, otherwise
, (3)

where L represents the loss function. Essentially, Eq. 3 can
be considered as propogagting the gradient through hard
tanh function, defined as: Htanh(x) = Clip(x,−1, 1).

We illustrate in Fig. 3 the computational workflow at an
example binarized GCN layer for the case where the ag-
gregation comes after the feature transformation. A similar
scheme can be observed for the GCN model where the ag-
gregation happens first. With compact node features and net
weights, binarized GCN only relies on 1-bit XNOR and bit-
count operations for graph-based processing, leading to an
efficient and lightweight graph model that is competent for
edge computing.
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Figure 3. Illustrations of the computational workflow at an exam-
ple binarized GNN layer. Despite the efficient 1-bit operations, the
output features are less distinguishable between each other, lead-
ing to the challenge in the aggregation step shown in Fig. 4.

Challenges and Possible Solutions. Despite the compact
binarized parameters and features, we empirically observed
that the results of the developed vanilla GNN were not
promising as expected. Specifically, we conduct a pre-
liminary experiment on the ZINC dataset [16] with the
GCN architecture in [7]. Averaged over 25 independent
runs, the full-precision GCN model achieves the perfor-
mance of 0.407±0.018 in terms of the mean absolute error
(MAE), whereas the vanilla binarized GCN yields the re-
sult of 0.669±0.070 in MAE, which is far behind that of the
full-precision one.

We explore the reason behind this challenge of implausi-
ble performance, by looking into the internal computational
process in binarized GNNs. Specifically, we look back on
Fig. 3, which shows the example workflow at a binarized
GCN layer where the feature transformation is performed
before the aggregation step. It is noticeable that the result of
1-bit operations lies in the discrete integer domain. The re-
sulted feature space is thereby much smaller than that of the
32-bit floating-point operations. In other words, the outputs
of 1-bit operations are less distinguishable from each other.
This property, when appearing in the graph domain, leads
to difficulties to extract and discriminate graph topologies
in the neighborhood aggregation process, which in fact is
the key to the success of graph networks.

To further illustrate this dilemma, we demonstrate a cou-
ple of examples in Fig. 4, including both max and mean ag-
gregation schemes that are commonly leveraged in GNNs.
Fig. 4(a) shows the aggregation results of the 32-bit GNN
layer, where both of max and mean aggregators successfully
distinguish the two different topological structures, respec-
tively. However, for the aggregation results of discrete inte-
ger features in binarized GNNs (Fig. 4(b)), neither max nor
mean aggregators can discriminate the corresponding two
graph structures. Moreover, the situation will be more chal-
lenging for the case where the aggregation happens before
the transformation, since the features fed into the aggregator
are limited to only 1 or −1.

Nevertheless, from Fig. 4(b), we also found that, by
combining different aggregation schemes, various graph
topologies could in fact become distinguishable. This ob-
servation motivates us to develop possible solutions to al-
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Figure 4. Example aggregation results of (a) conventional 32-bit
GNN layer and (b) binarized GNN layer, corresponding to Fig. 3.
For (a), both mean and max aggregators can distinguish the two
graph structures; however, for binarized GNN (b), max and mean
aggregators fail to differentiate between two topologies.

leviate the aforementioned dilemma in vanilla binarized
GNNs. Specifically, we propose a couple of straightforward
mixed multi-aggregators that combine the benefits of vari-
ous aggregation schemes in two different ways. The first
one conducts multiple times of message aggregation with
several different aggregators and then computes the sum
over the aggregation results, leading to the performance of
0.599±0.017 in MAE with five standard aggregators. The
second one, on the other hand, concatenates the results from
several independent aggregators, achieving the average re-
sult of 0.614±0.045 over 25 runs.

In spite of the improved performance, the devised pos-
sible solutions need to perform multiple times of feature
aggregations at each GNN layer, resulting in heavy com-
putational burdens. Motivated by this limitation, we intro-
duce the proposed meta neighborhood aggregators, which
aim to enhance the discriminative capability of topological
structures and meanwhile enjoy efficient computations.

4. Meta Neighborhood Aggregation
4.1. Overview

Towards addressing the aforementioned limitations of
the devised mixed multi-aggregators, we introduce in this
section the proposed concept of the Meta Aggregator, which
aims to adaptively and efficiently adjust the way to aggre-
gate information in a learnable manner. Towards this end,
we propose a couple of specific forms of meta aggregators,
i.e., the exclusive meta aggregation method and the diffused
meta aggregation method, as illustrated in Fig. 5.

The exclusive form, termed as Greedy Gumbel Neigh-
borhood Aggregator (GNA), learns to determine a single
optimal aggregation scheme from a pool of candidate ag-
gregators, according to the individual characteristics of the
quantized graph features, as shown in the upper part of
Fig. 5. The diffused meta form, on the other hand, adap-
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Figure 5. The overall framework of the proposed meta neighborhood aggregation methods. The upper row illustrates the workflow of
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trapezoid) and exclusively determines a single optimal layer-wise and node-wise aggregator from a candidate aggregator pool. The lower
row, on the other hand, demonstrates the diffused meta aggregator ANA, which amalgamates various aggregation behaviors.

tively learns a customized aggregation formulation that can
potentially incorporate the properties of several independent
aggregators, thereby termed as Adaptable Hybrid Neighbor-
hood Aggregator (ANA) shown in the lower part of Fig. 5.

In what follows, we detail the devised two forms of meta
neighborhood aggregation methods, i.e., GNA and ANA,
and also the associated training strategy.

4.2. Greedy Gumbel Aggregator

Motivated by the observation from Fig. 4, where differ-
ent single aggregators work for a corresponding set of cases
as explained in Sect. 3, we propose the idea of adaptively
determining the optimal aggregator depending on the spe-
cific input graphs, as depicted in the upper part of Fig. 5.

To this end, there are a few challenges to be addressed.
First, the aggregation selector should understand the under-
lying characteristics of various input graphs without intro-
ducing much additional computational cost. To address this
issue, we propose to leverage a 1-bit graph auto-encoder to
extract meaningful information from input graphs, which is
then exploited to guide the decision of different aggregation
methods.

The second challenge is how to incorporate the dis-
crete selections into the gradient descent process in train-
ing GNNs. One straightforward solution would be to model
the discrete determination process as a state classification
problem and to consider the various aggregators in the can-
didate pool as different labels. However, this naı̈ve attempt
does not account for the uncertainty of the selector, which is
likely to cause the model collapse problem where the output
choice is independent of the input graphs, such as always or
never picking up a specific aggregator.

To alleviate this dilemma, we propose to impose stochas-
ticity in the aggregator decision process with greedy Gum-
bel sampling [28, 45] and propagate gradients through
stochastic neurons through the continuous form of Gumbel-
Max trick [18]. Specifically, we introduce such stochas-
ticity by greedily sampling noise from the Gumbel distri-
bution, due to its property of Gumbel-Max trick [9]. In
terms of Gumbel random variables, the Gumbel-Max trick

Algorithm 1 Training a lightweight 1-bit GNN model with
the proposed meta neighborhood aggregators.
Input: L: the number of layers; W: the GNN model

weight; G = {V, E}: input graph data with nodes
vi ∈ V and edges (vi, vj) ∈ E ; X : the input bina-
rized node feature vector; A: the graph auto-encoder;
Meta-Aggre.∈{GNA, ANA}: the choice of meta neigh-
borhood aggregators.

Output: Mb: Target 1-bit binarized GNN model.
1: for ℓ = 1 to L do
2: Feed the graph sample G into the GNN layer ℓ;
3: Binarize the GNN weight Wℓ into Wℓ

b by Eq. 2;
4: Perform 1-bit transformation with X and Wℓ

b ;
5: Binarize the weight WAℓ

of Aℓ into WAℓ

b by Eq. 2;
6: Obtain the encoded features Aℓ(G) with WAℓ

b ;
7: // Identify the choice from the two meta aggregators
8: if Meta-Aggre. is GNA then
9: // Exclusively decide an optimal aggregator

10: Feed Aℓ(G) into the GNA module.
11: Obtain the decision GNAℓ

i for node vi by Eq. 4;
12: Perform aggregations with the obtained GNAℓ

i ;
13: else if Meta-Aggre. is ANA then
14: // Generate a diffused aggregator
15: Feed Aℓ(G) into the ANA module;
16: Obtain the diffused aggregator ANAℓ

i by Eq. 5;
17: Perform aggregations with the obtained ANAℓ

i ;
18: end if
19: end for
20: Optimize the binarized GNN Mb for epochs by Eq. 3.

can be utilized to parameterize discrete distributions. How-
ever, there is a argmax operation in the Gumbel-Max trick,
which is not differentiable. We thereby resort to its continu-
ous relaxation form, termed as Gumbel-softmax estimator,
to address this issue, which uses a softmax function to re-
place the undifferentiable argmax function.

With the aforementioned graph auto-encoder and also
the Gumbel-softmax estimator to address the two chal-
lenges, respectively, the proposed greedy Gumbel aggrega-
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Table 1. Results on the ZINC dataset with different architectures, in terms of the mean absolute error (MAE). From left to right: the results
of the full-precision GNNs (Full), those of the 1-bit GNNs without the proposed meta aggregators (Vanilla), and the results of the 1-bit
GNNs with GNA and ANA. We also provide the p-value of the paired t-test to demonstrate the statistically meaningful improvements by
the proposed GNA and ANA.

Methods Full (GAT) [46] Vanilla (GAT) [14] GNA (GAT) ANA (GAT) Full (GCN) [21] Vanilla (GCN) [14] GNA (GCN) ANA (GCN)
Bit-width 32/32 1/1 1/1 1/1 32/32 1/1 1/1 1/1
Param Size 399.941KB 81.7070KB 82.0610KB 81.8799KB 402.645KB 82.2002KB 82.5566KB 82.3740KB
Test MAE±SD 0.476±0.006 0.670±0.064 0.592±0.013 0.566±0.012 0.407±0.018 0.669±0.070 0.608±0.024 0.607±0.020
Train MAE±SD 0.300±0.024 0.610±0.066 0.531±0.013 0.453±0.019 0.303±0.026 0.624±0.069 0.558±0.027 0.564±0.021
p-value GNA vs. Vanilla: 3.010×10−7 / ANA vs. Vanilla: 2.359×10−10 GNA vs. Vanilla: 1.597×10−4 / ANA vs. Vanilla: 9.787×10−5

tor (GNA) for node vi can then be formulated as:

GNAℓ
i = softmax

((
Aℓ(G) +G

)
/τ

)
, (4)

where Aℓ represents the binarized graph auto-encoder at
layer ℓ that extracts principal and meaningful information,
and G denotes the sampled Gumbel random noise. G is the
input subgraph with one centered node vi and a set of its
neighboring nodes vj where the connection (vi, vj) ∈ E . τ
is a constant that denotes the temperature of the softmax.
GNAℓ

i is the output one-hot vector that indicates the aggre-
gator decision at node vi and layer ℓ from a pool of candi-
date aggregators like {max,min, std, var, . . . ,mean}.

In this way, the proposed greedy Gumbel aggregator
adaptively decides the optimal aggregator conditioned on
each specific node and layer in a learnable manner, which
can significantly improve the topological discriminative ca-
pability of the vanilla binary GNN model.

4.3. Adaptable Hybrid Aggregator

Despite the improved representational ability, the perfor-
mance of the greedy Gumbel aggregator is bottlenecked by
that of the existing standard aggregators, which leaves room
for further improvement. Motivated by this observation, we
further devise an adaptable hybrid neighborhood aggrega-
tor (ANA) that can generate a hybrid form of the several
standard aggregators in a learnable manner, thereby simul-
taneously retaining the advantages of different aggregators.
The overall computational pipeline of ANA is demonstrated
in the lower part of Fig. 5.

We start by giving the developed graph-based mathemat-
ical formulation for diffused message aggregation, defined
as follows:

ANAℓ
i =

1

Aℓ(G)
log

 1

degi

∑
(j,i)∈E

exp(Aℓ(G)X ℓ
j )

 , (5)

where degi is the in-degree of the node vi and G = {V, E}
is the graph sample with edges (vi, vj) ∈ E . We use Aℓ to
denote the 1-bit graph auto-encoder at layer ℓ, as is also used
in Eq. 4. X ℓ

j represents the feature vector of the neighboring

node vj at layer ℓ, whereas ANAℓ
i is the obtained diffused

aggregator.
Eq. 5 can essentially approximate the max and mean

functions, depending on the output of graph auto-encoder
Aℓ(G). Specifically, higher Aℓ(G) will lead to a behavior
similar to that of the max aggregator, while smaller values
of Aℓ(G) generate an effect of the mean neighborhood ag-
gregation. Detailed mathematical proof is provided in the
supplementary material.

By slightly changing the form of Eq. 5, we can also
approximate other aggregators. For example, by simply
adding a minus to the input graph features, Eq. 5 can ap-
proach the behavior of the min aggregation. Also, by utiliz-
ing the fact Var(X ) = mean(X 2)−

(
mean(X )

)2
, the vari-

ance aggregator can be approximated by adding the square
operations to Eq. 5. More detailed derivations and mathe-
matical proofs can be found in the supplement.

Furthermore, it is also possible to simultaneously com-
bine the benefits of all these approximated aggregators, by
summing multiple terms in Eq. 5 with graph-based learn-
able weighting factors that adaptively control the diffused
degree of various aggregator approximations. We illustrate
the corresponding sophisticated formulation and also more
detailed explanations in the supplementary material.

4.4. Training Strategy

We also propose a training strategy, tailored for the pro-
posed method. As a whole, the principal operations of train-
ing a 1-bit GNN model with the proposed meta neighbor-
hood aggregation approaches is concluded in Alg. 1. For
the sake of clarity, we omit the bias terms in our illustra-
tion, which have similar behavior to that of the GNN weight
W . Also, we take the case where the feature transformation
happens before the aggregation step as an example to illus-
trate the overall workflow.

As can be observed from Alg. 1, at each layer, the input
graph is fed into the lightweight 1-bit graph auto-encoder
A to extract useful information that is beneficial to the fol-
lowing meta aggregators. Followed by this graph encod-
ing process, the meta neighborhood aggregation module re-
ceives the encoded features and exclusively determines an
optimal aggregator, or produces a diffused aggregator that
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Table 2. Results of the proposed meta aggregation methods and
other approaches for 32-bit full-precision models on the ZINC
dataset, in terms of MAE. The results are averaged over 25 in-
dependent runs with 25 different random seeds.

Methods Param Size Test MAE±SD Train MAE±SD
GatedGCN [3] 413.027KB 0.426±0.012 0.272±0.023
GraphSage [10] 371.004KB 0.475±0.007 0.296±0.030
GIN [55] 402.652KB 0.387±0.019 0.319±0.020
MoNet [31] 414.070KB 0.386±0.009 0.299±0.016
GCN [21] 402.645KB 0.407±0.018 0.303±0.026
GAT [46] 399.941KB 0.476±0.006 0.300±0.024
GNA (Ours) 411.270KB 0.337±0.021 0.160±0.026
ANA (Ours) 404.504KB 0.325±0.015 0.109±0.014

amalgamates the behaviors of several independent aggre-
gators. The desired 1-bit GNN model can eventually be ob-
tained by optimizing the model for epochs with the straight-
through estimator, as explained in Sect. 3.

5. Experiments
In this section, we perform extensive experiments on

three publicly available benchmarks across diversified prob-
lem domains, including graph regression, node classifica-
tion, and 3D object recognition. Followed by the evalua-
tions, we further provide detailed discussions regarding the
strengths and weaknesses of the devised meta aggregators.

5.1. Experimental Settings

Datasets. We validate the effectiveness of the proposed
meta aggregation methods on three different datasets, each
of which specializes in a distinct task. Specifically, for the
task of graph regression, we use the ZINC dataset [16],
which is one of the most popular real-world molecular
datasets [7]. The goal of ZINC is to regress a specific
molecular property, i.e. the constrained solubility, which is
a critical property for developing GNNs for molecules [61].

Also, for the node classification task, we adopt the
protein-protein interaction (PPI) dataset [64], which is a
multi-label dataset with 24 graphs corresponding to dif-
ferent human tissues. Each node in the PPI dataset is la-
beled with various protein functions. The objective of PPI
is thereby to predict the 121 protein functions from the in-
teractions of human tissue proteins. Furthermore, we utilize
ModelNet40 [54] for the evaluation on the task of 3D object
classification. ModelNet40 is a popular dataset for 3D ob-
ject analysis [33, 34], containing 12,311 meshed CAD mod-
els from 40 shape categories in total. Each object comprises
a set of 3D points, with the 3D coordinates as the features.
The goal is to predict the category of each 3D shape.

Implementation Details. We primarily use three hetero-
geneous architectures, including graph convolutional net-
work (GCN) [21], graph attention network (GAT) [46], as

Table 3. Results on the PPI dataset for the task of node classi-
fication, in terms of micro-averaged F1 score. Detailed network
architectures can be found in the supplementary material.

Methods Bit-width Param Size F1 Score
Full Prec. [46] 32/32 43.7712MB 98.70
Vanilla [14] 1/1 28.2560MB 92.68
GNA (Ours) 1/1 28.2572MB 97.52
ANA (Ours) 1/1 28.2565MB 97.71

well as dynamic graph convolutional model (DGCNN) [52]
to evaluate the proposed meta aggregation approach. For
other settings such as learning rates and batch size, we fol-
low those in the works of [7], [46], and [52] for the tasks of
graph regression, node classification, and point cloud clas-
sification, respectively.

In particular, for more convincing evaluations, we re-
port the results on the ZINC dataset over 25 independent
runs with 25 different random seeds. Also, as done in the
field of CNN binarization [37], we keep the first and the last
GNN layer full-precision and binarize the other GNN layers
for all the comparison methods. More detailed task-by-task
architecture designs as well as the hyperparameter settings
can be found in the supplementary material.

5.2. Results

Graph Regression. Tab. 1 shows the ablation results of
the vanilla 1-bit GNN models and those of GNNs with the
proposed meta neighborhood aggregators GAN and ANA.
Specifically, we report the results on two GNN architec-
tures, i.e., GCN [21] and GAT [46], by averaging over 25
independent runs with 25 seeds.

The proposed GNA and ANA, as shown in Tab. 1,
achieves gratifying performance in terms of both test and
train MAE, and at the same time maintains a compact model
size. Moreover, we provide in the last row of Tab. 1 the
p-value of the paired t-test between the 1-bit GNNs with
a fixed aggregator (Vanilla) and those with the proposed
learnable meta aggregators. The corresponding results sta-
tistically validate the effectiveness of the proposed method.

Furthermore, we show in Tab. 2 the results of extending
the proposed meta aggregators to full-precision GNNs and
compare them with those of the state-of-the-art approaches
[3, 10, 55, 31, 21, 46]. Specifically, the results in the last
two rows of Tab. 2 are obtained by simply replacing the
pre-defined aggregator in GAT with the proposed GNA and
ANA. As can be observed from Tab. 2, the proposed method
outperforms other approaches by a large margin, and mean-
while introduces few additional parameters.

Node Classification. In Tab. 3, we demonstrate the results
of different methods with the GAT architecture. The pro-
posed GNA and ANA, as shown in Tab. 3, yield results on
par with those of the 32-bit full-precision models, but comes
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Fixed Aggr. GNA ANA Full Prec. Fixed Aggr. GNA ANA Full Prec.

Near Far

Figure 6. Visualization results of the learned feature space, depicted as the distance between the red point and the rest of the others. The
visualized features are extracted from the intermediate layer of the models. More results can be found in the supplementary material.

Table 4. Results on the ModelNet40 dataset for 3D object recog-
nition, in terms of the overall accuracy (Acc) and the mean class
accuracy (mAcc).

Methods Bit-width Param Size Acc (%) mAcc (%)
Full Prec. [52] 32/32 1681.66KB 92.42 89.51
Vanilla [14] 1/1 1091.20KB 74.19 65.95
GNA (Ours) 1/1 1091.30KB 78.36 71.67
ANA (Ours) 1/1 1091.30KB 84.64 78.89

with a more lightweight architecture. The proposed method
also outperforms the vanilla 1-bit GNN model that relies on
a fixed aggregation scheme.

3D Object Recognition. The results of the proposed ap-
proach and other methods on the ModelNet40 dataset are
shown in Tab. 4. We build our network here based on
the architecture designed in [58]. We also demonstrate in
Fig. 6 the corresponding visualization results of different
approaches, where the column termed as “Fixed Aggr.” in
Fig. 6 corresponds to the “Vanilla” model in Tab. 4. With
the proposed meta aggregation schemes, the 1-bit GNN
model gains a boost by more than 10% in both the overall
accuracy and the mean class accuracy. This improvement
is also illustrated in Fig. 6, where the proposed meta aggre-
gators help the 1-bit GNN learn a closer structure to that of
the full-precision GNN model.

5.3. Discussions

We provide here a detailed account of the strengths and
weaknesses of the proposed two meta aggregators GNA and
ANA. For the exclusive meta form GNA, the performance
can potentially be further enhanced with the advance of

novel aggregation schemes. In other words, the results of
GNA depend on those of every single aggregator in the can-
didate aggregation pool, which at the same time is a weak-
ness of GNA since its performance is bottlenecked by that
of the single aggregator. The diffused form ANA, on the
other hand, may simultaneously retain the benefits of sev-
eral popular aggregators. However, the mathematical form
in Eq. 5 limits the type of aggregators that ANA can poten-
tially approximate, meaning that ANA may not have much
room for further improvement even with the emergence of
novel and prevailing aggregators in the future.

6. Conclusions

In this paper, we propose a couple of learnable aggre-
gation schemes for 1-bit compact GNNs. The goal of the
proposed method is to enhance the topological discrimina-
tive ability of the 1-bit GNNs. This is achieved by adap-
tively selecting a single aggregator, or generating a hy-
brid aggregation form that can simultaneously maintain the
strengths of several aggregators. Moreover, the proposed
meta aggregation schemes can be readily extended to the
full-precision GNN models. Experiments across various
domains demonstrate that, with the proposed meta aggre-
gators, the 1-bit GNN yields results on par with those of
the cumbersome full-precision ones. In our future work, we
will strive to generalize the proposed aggregator to compact
and lightweight visual transformers.
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