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Abstract 

Open-set domain adaptation (OSDA) considers that the 

target domain contains samples from novel categories unob- 

served in external source domain. Unfortunately, existing 

OSDA methods always ignore the demand for the informa- 

tion of unseen categories and simply recognize them as “un- 

known” set without further explanation. This motivates us 

to understand the unknown categories more specifically by 

exploring the underlying structures and recovering their in- 

terpretable semantic attributes. In this paper, we propose a 

novel framework to accurately identify the seen categories in 

target domain, and effectively recover the semantic attributes 

for unseen categories. Specifically, structure preserving par- 

tial alignment is developed to recognize the seen categories 

through domain-invariant feature learning. Attribute prop- 

agation over visual graph is designed to smoothly transit 

attributes from seen to unseen categories via visual-semantic 

mapping. Moreover, two new cross-domain benchmarks are 

constructed to evaluate the proposed framework in the novel 

and practical challenge. Experimental results on open-set 

recognition and semantic recovery demonstrate the superi- 

ority of the proposed method over other compared baselines. 

1. Introduction 

In recent years, domain adaptation (DA) attracts great 

interests to address the label insufficiency or unavailability 

issues, which is the bottleneck to the success of deep learning 

models [ 16 ]. DA casts a light by transferring existing knowl- 

edge from a relevant source domain to the target domain of 

interest via eliminating the distribution gap across domains 

[ 12 , 29 ]. Most DA efforts focus on the closed-set domain 

adaptation (CSDA) [ 12 , 9 ], assuming the source and target 

domain share identical label space, which is not always sat- 

isfied in real-world scenarios, since the target domain may 

contain more than we know from source domain. Following 

this, open-set domain adaptation (OSDA) has been widely 

studied given the source domain only covers a sub-set of 

the target domain label space[ 33 , 29 , 25 , 22 ]. Unfortunately, 

these pioneering OSDA attempts simply identify the known 

categories while leaving the remaining unobserved samples 

as an “unknown” outlier set. Without any further step, OSDA 

fails to discover what the unknown categories really are. In- 

terestingly, the target domain may contain some exactly-new 

categories human beings never see before. This motivates 

us to further analyze the unknown set more specifically and 

discover novel categories. 

In this paper, we define such a problem as Semantic Re- 

covery Open-Set Domain Adaptation ( SR-OSDA ), where 

source domain is annotated with both class labels and se- 

mantic attribute annotation, while target domain only con- 

tains the unlabeled and unannotated data samples from more 

categories. The goal of SR-OSDA is to identify the seen 

categories and also recover the missing semantic information 

for unseen categories to interpret the new categories in target 

domain. To our best knowledge, this is a completely new 

problem in literature with no exploration. The challenges 

now become two folds: (1) how to accurately identify seen 

and unseen categories in target domain with well-labeled 

source knowledge; (2) how to effectively recover the missing 

attributes of unseen categories. 

To this end, we propose a novel framework to simulta- 

neously recognize the known categories and discover new 

categories from target domain as well interpret them at the 

semantic level. The general idea of our model is to learn 

domain-invariant visual features by mitigating the cross- 

domain shift, and consequently build visual-semantic pro- 

jection to recover the missing attributes of unknown target 

categories. Our contributions are highlighted as follows: 

• We are the first to address the SR-OSDA problem, and 

propose a novel and effective solution to identify seen 

categories and discover unseen one. 

• We propose structure preserving partial alignment to 

mitigate the domain shift when target covers larger 

label space than source, and attributes propagation over 

visual graph to seek the visual-semantic mapping for 

better missing attribute recovery. 

• Two new benchmarks are built for SR-OSDA evalua-
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tion. Our proposed method achieves promising perfor- 

mance in both target sample recognition and semantic 

attribute recovery. 

2. Related Work 

Here we introduce the related work along the open-set 

domain adaptation and zero-shot learning, and highlight the 

differences between our work and the existing literature. 

Open-Set Domain Adaptation. Compared to classic closed 

set domain adaptation [ 48 , 45 , 44 , 6 , 38 , 50 , 37 , 20 , 19 , 41 ], 

open-set domain adaptation manages a more realistic task 

when the target domain contains data from classes never 

present in the source domain [ 4 , 31 , 26 , 28 , 22 , 15 , 36 , 3 , 33 ]. 

Busto et al . attempts to study the realistic scenario when the 

source and target domain both includes exclusive classes 

from each other [ 29 ]. Later on, Saito et al . focus on the 

situation when the source domain only covers a subset of the 

target domain label space and utilizes adversarial framework 

to generate features and recognizes samples deviated from 

the pre-defined threshold as “unknown” [ 33 ]. Instead of 

relying on the manually pre-defined threshold, [ 15 ] takes 

advantage of the semantic categorical alignment and con- 

trastive mapping to encourage the target data from known 

classes to move close to corresponding centroid while stay- 

ing away from unknown classes. STA adopts a coarse-to-fine 

weighting mechanism to progressively separate the target 

data into known and unknown classes [ 25 ]. Most recently, 

SE-CC augments the Self-Ensembling technique to with 

category-agnostic clustering in the target domain [28]. 

Zero-shot learning. Demand of leveraging annotated data 

to recognize novel classes unseen before motivates a boom 

thread of research known as Zero-Shot Learning (ZSL) 

[ 11 , 39 , 7 , 47 , 40 , 49 , 13 , 10 , 18 ]. Early ZSL works ex- 

plore class semantic attributes as intermediate to classify the 

data from unseen classes [ 24 , 23 ]. Some ZSL methods learns 

a mapping between the visual and semantic spaces to com- 

pensate for the lack of visual features from the unseen cate- 

gories [ 5 , 1 ]. However, ZSL methods do not guarantee the 

discrimination between the seen and unseen classes, leading 

to bias towards seen classes under another realistic scenario, 

Generalized Zero-Shot Learning (GZSL). GZSL assumes 

the target data to evaluate are drawn from the whole label 

space including seen and unseen classes [ 18 , 34 , 17 , 5 , 14 ]. 

Recently, generative frameworks are explored to generate 

synthesized visual features from unseen classes boosts the 

performance of ZSL and GZSL [ 43 , 42 ]. [ 51 , 43 ] use a 

Wasserstein GAN [ 2 ] and the seen categories classifier to 

increase the discrimination of the synthesized features. [ 14 ] 

utilizes the cycle consistency loss to optimize the synthe- 

sized feature generator, and [ 42 ] study conditional VAEs 

[21] to learn the feature generator. 

Different from open-set domain adaptation, the proposed 

SR-OSDA problem demands to recover interpretable knowl- 

Table 1. Notations and Descriptions

 

Notation Description

 

Ds 

, Dt 

source / target domain 

D 

s
t 

, D 

u
t 

seen/unseen set 

Ks 

, Kt 

source / target domain number of classes 

Xs 

, Xt 

source / target data input 

Ns 

, Nt 

source / target samples number 

N 

s
t 

, N 

u
t 

seen / unseen set samples number 

Ys 

, As 

source domain labels / attributes 

xi
s 

, xj 

t 

source / target domain instance 

zis 

, zj 

t 

source / target domain embedding features 

ˆ y 

i
s 

, ˆ y 

j 

t 

predicted source / target label 

ˆ ais 

, ˆ aj 

t 

predicted source / target attributes 

Rx 

, Rz 

, visual / embedding features prototypes 

F 

i
s 

, F 

j 

t 

source / target joint representations

 

edge of the target data from classes never present in the 

source domain, and uncover new classes. Moreover, SR- 

OSDA is more challenging than the GZSL problem because 

we do not have access to the attributes nor any other seman- 

tic knowledge of the target domain new categories, which 

makes SR-OSDA a more realistic and practical problem. 

3. Motivations and Problem Definition 

In this section, we illustrate our motivations and provide 

the problem definition of the semantic recovery open-set 

domain adaptation. 

Open-set domain adaptation tasks [ 29 ] focus on the sce- 

nario when the target domain contains data from classes 

never observed in the source domain, which is more practi- 

cal than the conventional closed-set domain adaptation [ 12 ]. 

However, existing open-set domain adaptation efforts simply 

identify those unseen target samples as one large unknown 

category and give up exploring the discriminative and se- 

mantic knowledge inside the unknown set. The demand of 

further understanding the novel classes that only exist in the 

target domain motivates us to study how to recover missing 

semantic attributes to explain the target data and discover 

novel classes, which leads to the problem Semantic Recovery 

Open-Set Domain Adaptation ( SR-OSDA ) addressed in this 

paper. The main challenges of SR-OSDA lie in not only 

identifying the target samples in the unseen classes, but also 

providing the partitional structures of these samples with 

recovered semantic attributes for further interpretation. 

For better understanding, we clarify the problem with 

mathematical notations. The target domain is defined 

as Dt 

= { Xt 

} containing Nt 

samples with visual fea- 

tures from Kt 

categories. The auxiliary source domain 

Ds 

= { Xs 

, Ys 

, As 

} consists of Ns 

samples from Ks 

classes with visual features Xs, labels Ys, and semantic at- 

tributes As. For each source sample, the semantic attributes 

ai 

s 

= Ay 

i 

s , ai 

s 

∈ Rda are obtained from A , which consists of 

class-wise attributes of the source domain. SR-OSDA aims 

to recover the missing semantic attributes for the target data 

based on the visual features, and uncover novel categories
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Figure 1. Illustration of our proposed framework, where Xt 

contains some unseen categories from Xs. Convolutional neural networks (e.g., 

ResNet [ 16 ]) are used as backbone to extract visual features Xs/t, which are further input to GZ 

to learn domain-invariant features Zs/t 

through partial alignment. GA 

then maps Zs/t 

to semantic attributes As. Visual-semantic features are fused for the final classification tasks, 

one is D to identify seen/unseen from target data, and the other C to recognize all cross-domain data into Ks+1 classes (i.e., Ks 

seen + one 

unseen large category). 

never present in the source domain. Table 1 shows several 

key notations and descriptions in the SR-OSDA setting. 

It is noteworthy that the source and target domains are 

drawn from different distributions. Besides, the target data 

set covers all classes in the source domain, as well as K 

exclusive categories only exist in the target domain, where 

K = Kt 

− Ks 

> 0 . SR-OSDA is different from open-set 

domain adaptation, which ignores to recover interpretable 

knowledge and discover new classes in the target domain. 

Moreover, the defined problem is different from generalized 

zero-shot learning [ 34 ], as we have no access to the semantic 

knowledge of the target domain unseen categories. 

To our best knowledge, SR-OSDA is the first time pro- 

posed, aiming to discover novel target classes via recovering 

semantic attributes from the auxiliary source data. In the 

following, we illustrate our solution to learn the relationship 

between the visual features and semantic attributes with the 

guidance of the source data, which can be transferred to the 

target data and interpretably discover unseen classes. 

4. The Proposed Method 

4.1. Framework Overview 

To tackle the above SR-OSDA problem, we propose a 

novel target discovery framework (Figure 1) to simultane- 

ously recognize the target domain data from categories al- 

ready observed in the source domain, and recover the inter- 

pretable semantic attributes for the unknown target classes 

from the source. To achieve this, three modules are conse- 

quently designed to address the cross-domain shift, semantic 

attributes prediction and task-driven open-set classification. 

Specifically, the source data are adapted to the target domain 

feature space through partial alignment while preserving 

the target structure. A projector GA( · ) bridging the do- 

main invariant feature space zi 

s/t 

and the semantic attributes 

space ai 

s/t 

is trained by the source data as well as the tar- 

get data with confident pseudo attributes. Moreover, the 

visual features will guide the attributes propagated from 

seen categories to unseen ones, and the semantic attributes 

will also promote the visual features discrimination through 

joint visual-semantic representation recognition for C ( · ) and 

D ( · ) , where D ( · ) is a binary classifier to identify seen and 

unseen target samples, and C ( · ) is an extended multi-class 

classifier with Ks 

+ 1 outputs. 

Since the target data are totally unlabeled and all three 

modules rely on the label information in target domain, we 

first discuss how to obtain the pseudo labels of target samples 

through our design progressive seen-unseen separation stage. 

That is, we will assign target samples into Ks 

observed 

categories and K unobserved categories. In the following, 

we introduce the progressive seen-unseen separation and 

three key modules in our proposed framework. 

4.2. Modules and Objective Function 

Progressive Seen-Unseen Separation . Here we describe 

the initialization strategy to separate the target domain data 

into seen and unseen sets based on the visual features space. 

Intuitively, part of source-style target samples are promis- 

ingly identified by the well-trained source model, which are 

actually belonging to seen categories more probably. On 

the other hand, those target samples assigned with even and 

mixed prediction probabilities across multiple classes tend 

to be unseen categories, as no source classifier can easily 

recognize them. To achieve this, we apply the prototypical 

classifier to measure the similarities between each target sam- 

ple to all source class prototypes [ 35 ]. For each target sample 

xi 

t 

and the source Ks 

prototypes { µc |Ks 

c =1 

} , the probability 

prediction is defined as:

  \label {eq:prot} p(y_t^i = c | \mathbf {x}_t^i) = \frac {\exp {\big (-d(\mathbf {x}_t^i, \,\, \mu ^c)\big )}}{\sum _{c'}\exp \big ({-d(\mathbf {x}_t^i, \,\, \mu ^c)}\big )}, 






































 

(1)
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where d ( · ) is the distance function. The highest proba- 

bility prediction pi 

t 

is adopted as the pseudo label ˜ y 

i 

t 

for 

xi 

t. Next, we adopt a threshold τ to progressively separate 

all target samples into seen D 

s 

t 

and unseen sets D 

u 

t 

. The 

number of samples in D 

s 

t 

and D 

u 

t 

are denoted as N 

s 

t 

and 

N 

u 

t 

, respectively. Specifically, we define τ the mean of 

the highest probability prediction of all target samples, i.e., 

τ = 

1

 

Nt 

∑ 

xi 

t 

∈Dt 

pi 

t. Based on that, we can build two sets as:

  \label {eq:separate} \left \{\begin {matrix} \mathbf {x}_t^i \in \mathcal {D}_t^{s}, & p_t^i \geq \tau \\ \mathbf {x}_t^i \in \mathcal {D}_t^{u}, & p_t^i < \tau \end {matrix}\right . . 




































 

(2) 

Since we only have the source prototypes in the beginning, 

they are not accurate to identify seen and unseen sets due 

to the domain shift. Thus, we can gradually update the seen 

prototypes by involving newly-labeled target samples from 

D 

s 

t 

as µc = (1 − α ) µc+ α 

1

 

N 

s ( c ) 

t 

∑ 

xi 

t 

∈D 

s ( c ) 

t 

xi 

t, where D 

s ( c ) 

t 

denotes a set of N 

s ( c ) 

t 

target samples predicted as ˜ y 

i 

t 

= c 

confidently, and α is the small value to control the mixture 

of cross-domain prototypes. 

After obtaining all pseudo labels in the seen set D 

s 

t , we 

also need to explore more specific knowledge in D 

u 

t 

instead 

of treating it as a whole like OSDA [ 33 ]. To this end, we 

apply K-means clustering algorithm to group D 

u 

t 

into K 

clusters with the cluster center as { η 

k1 , · · · , η 

K } . In this 

way, we can obtain all prototypes of seen and unseen cat- 

egories as Rx 

= { µ1 , · · · , µKs , η 

k1 , · · · , η 

K } . In order to 

refine the pseudo labels of target samples, we adopt K-means 

clustering algorithm with centers initialized as Rx 

over Xt 

until the results are converged. 

To this end, we obtain all pseudo labels for target sam- 

ples. We also assign semantic attribute to seen target sam- 

ples based on their pseudo label belonging to which source 

category. Next, we explore structure preserving partial align- 

ment, attribute propagation and task-driven classification to 

solve SR-OSDA. 

Structure Preserving Partial Alignment . Due to the dis- 

parity between the source and target domains label spaces, 

directly matching the feature distribution across domains is 

destructive. Considering our goal of uncovering the unseen 

categories in the target domain, preserving the structural 

knowledge of the target domain data becomes even more 

crucial. Thus, instead of mapping the source and target do- 

mains into a new domain-invariant feature space, we seek 

to align the source data to the target domain distribution 

through partial alignment. 

Specifically, with the help of the target domain pseudo 

labels Ỹt, for each class c in the pseudo label space, which 

contains Ks 

+ K categories, the prototype can be calculated 

as the class center in the space of feature z can be calculated 

as Rc
z 

= Exi 

t 

∈Dt
zi 

t 

· 1˜ y 

i 

t= c. The prototypes Rz 

describe the 

class-wise structural knowledge in the target domain in the z 

feature space. To solve the domain disparity, we align each 

source sample to its specific target center and also keep away 

from other target centers as:

  \label {eq:loss_s_cent} \begin {aligned} \mathcal {L}_{s}^{R} = & \frac {1}{N_s} \sum _{i=1}^{N_s}\sum _{c=1}^{|\mathcal {R_{\mathbf {z}}}|} \Big (\mathbf {1}_{y_s^i=c}d(\mathbf {z}_s^i, \mathcal {R}_{\mathbf {z}}^c) - \frac {\mathbf {1}_{y_s^i \neq c}}{|\mathcal {R_{\mathbf {z}}}|-1} d(\mathbf {z}_s^i, \mathcal {R}_{\mathbf {z}}^{c})\Big ), \end {aligned} 

















































 













 

(3) 

where Ks 

+ K = |Rz 

| is the total number of prototypes in 

Rz. Moreover, we deploy the similar loss to make within- 

class target samples more compact while keeping between- 

class target samples more discriminative as:

  \label {eq:loss_t_cent} \begin {aligned} \mathcal {L}_{t}^{R} = & \frac {1}{N_t} \sum _{i=1}^{N_t} \sum _{c=1}^{|\mathcal {R_{\mathbf {z}}}|} \Big (\mathbf {1}_{\tilde {y}_t^i=c} d(\mathbf {z}_t^i, \mathcal {R}_{\mathbf {z}}^c)- \frac {\mathbf {1}_{\tilde {y}_t^i \neq c}}{|\mathcal {R_{\mathbf {z}}}|-1} d(\mathbf {z}_t^i, \mathcal {R}_{\mathbf {z}}^{c})). \end {aligned} 



















































 









 

(4) 

Such a loss function will make within-class target samples 

more compact while pushing away from others. 

These two loss functions help align source and target to 

obtain domain-invariant visual features and also seek more 

discriminative knowledge over target samples. Then we 

obtain the objective of structure preserving partial domain 

adaptation as LR = LR 

s 

+ LR 

t 

. 

Attributes Propagation with Visual Structure . Since un- 

seen target samples are totally without any annotations ei- 

ther class label or semantic attributes, our goal is to recover 

their semantic attributes via visual-semantic projector GA( · ) . 

However, only attributes knowledge of the classes seen in 

the source domain is available for training, while the target 

samples from unseen categories have no way to optimize the 

GA( · ) , which might lead the projector GA( · ) towards bias 

to the seen categories when dealing with unseen target class 

samples. To this end, we propose the mechanism of attributes 

propagation to aggregate the visual graph knowledge into the 

semantic description projection, which is beneficial to the 

attributes propagated from seen classes to unseen classes. 

Specifically, for features zi = GZ( xi) of a training 

batch, the adjacency matrix A is calculated as Aij 

= 

exp( − d2 

ij 

/σ2) , where Aii 

= 0 , ∀ i , and dij 

= ∥ zi − zj ∥2 

is the distance of ( zi , zj) . σ is a scaling factor set as 

σ2 = Var( d2 

ij) as [ 32 ] to stabilize training. The attributes 

projected from visual features are reconstructed as:

  \label {eq:att_prop} \mathbf {\hat {a}}^i = \sum \nolimits _{j} {W}_{ij} G_A\Big (G_Z(\mathbf {x}^j)\Big ), 



















 

(5) 

where L = D 

− 1

 

2 AD 

− 1

 

2 , Dii 

= 

∑ 

j 

Aij 

and W = ( I − 

β L )− 1, in which β ∈ R is a scaling factor fixed as suggested 

by [ 32 ], and I is the identity matrix. After the semantic 

attributes propagation, âi 

s/t 

is refined as a weighted com- 

bination of its neighbors guided by the visual graph. This 

benefits attributes projector from overfitting to the seen cate- 

gories, while removing undesired noise [32]. 

After the projected attributes refinement via attribution 

propagation, we optimize the attributes projector GA( · ) on
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the seen categories across two domains as:

  \label {eq:loss_s_att} \mathcal {L}^A = \frac {1}{N_{s}+N_{t}^s} \sum _{\mathbf {x}^i \in \mathcal {D}_s \cup \mathcal {D}_t^s} L_{bce} (\hat {\mathbf {a}}^i, \,\,\, \mathbf {a}^i), 



























 

(6) 

where Lbce( · ) is the binary cross-entropy loss, and N 

s 

t 

is the 

number of samples in D 

s 

t . Each dimension of the semantic 

attributes ai ∈ Rda represents one specific semantic charac- 

teristic, and âi describes the predicted probability that the 

input sample has specific characteristics. 

Visual-Semantic Fused Recognition . Since visual features 

and semantic attributes describe the data distribution from 

different perspectives. To simultaneously leverage the multi- 

modality benefits of visual and semantic descriptions, we 

explore the joint visual and semantic representation by con- 

veying the semantic discriminative information ai into the 

visual feature zi as f 

i = zi ⊕ ai, where ⊕ is concatenating 

zi and ai as joint feature f 

i. 

It is noteworthy that during the training, several differ- 

ent semantic attributes are available in different stages, e.g., 

ground-truth ( ai), pseudo attributes ( ̃ai), and predicted at- 

tributes ( ̂ai). We take them all into account and will obtain 

various joint representations as:

  \label {eq:f_list} \left \{\begin {matrix*}[l] \mathcal {F}_s^i = \{\mathbf {f}_s^i, \mathbf {\hat {f}}_{s}^i\} ,& \mathbf {x}_s^i \in \mathcal {D}_s\\ \mathcal {F}_t^{i} = \{\mathbf {\tilde {f}}_t^i, \mathbf {\hat {f}}_t^i \} ,& \mathbf {x}_t^i \in \mathcal {D}_t^s \\ \mathcal {F}_t^{i}=\{ \mathbf {\hat {f}}_{t}^i\} ,& \mathbf {x}_{t}^i \in \mathcal {D}_{t}^u \end {matrix*}\right . , 















































































 

(7) 

where f 

i 

s 

= zi 

s 

⊕ ai 

s, f̃ 

i 

t 

= zi 

t 

⊕ ãi 

t, and f̂ 

i 

s/t 

= zi 

s/t 

⊕ âi 

s/t. 

All joint features in Fs 

and Ft 

are input into the classifier 

C ( · ) and D ( · ) to optimize the framework. 

To maintain the performance of classifier C ( · ) over su- 

pervision from source and target domains, we construct the 

cross-entropy classification loss as:

  \label {eq:loss_s_ce} \mathcal {L}^C = \frac {1}{N_{s}+N_{t}} \sum _{\mathbf {f}^i \in \mathcal {D}_s \cup \mathcal {D}_t } L_{ce} (C(\mathbf {f}^i), y^i), 

























 

(8) 

where Lce( · ) is the cross-entropy loss and y 

i denotes the Ks 

source labels and Ks 

+ 1 target labels. Moreover, we train a 

binary classifier D ( · ) to separate the target domain into seen 

and unseen subsets, which can be optimized by:

  \label {eq:loss_st_bi} \begin {aligned} \mathcal {L}_{t}^{D} = \frac {1}{N_t} \sum _{\mathbf {x}_t^i \in \mathcal {D}_t} \sum _{\mathbf {f} \in \mathcal {F}_t^{i}} L_{bce} (D(\mathbf {f}), \,\, \psi (\tilde {y}_t^i)), \end {aligned} 



































 

(9) 

in which ψ (˜ y 

i 

t) indicates if the target sample xi 

t 

is from the 

seen categories ( ψ (˜ y 

i 

t) = 0 , xi 

t 

∈ D 

s 

t ), or from the unseen 

categories ( ψ (˜ y 

i 

t) = 1 , xi 

t 

∈ D 

u 

t 

). 

Then we have our classification supervision objective on 

both source and target domain with joint visual and semantic 

representations as LT = LC + LD 

t 

. 

Overall Objective Function . To sum up, we can obtain 

the overall objective function by integrating the structure 

Table 2. Statistical characteristics on D2AwA and I2AwA dataset

 

Dataset

 

D2AwA

 

I2AwA

 

Domain

 

A P R

 

I Aw

 

Role

 

source target source target source target

 

source target

 

#Images

 

9,343 16,306 3,441 5,760 5,251 10,047

 

2,970 37,322 

#Attributes

 

85 85 85 85 85 85

 

85 85 

#Classes

 

10 17 10 17 10 17

 

40 50

 

preserving partial adaptation, semantic attributes propaga- 

tion and prediction, and joint visual-semantic representation 

recognition as:

  \label {eq:obj_overall} {\underset {G_Z, G_A, C, D}{\min }} \mathcal {L}^{T}+\lambda _1 \mathcal {L}^R + \lambda _2 \mathcal {L}^A, 









 

 



 

(10) 

where λ1 

and λ2 

are two trade-off parameters. Through 

minimizing the proposed objective, the semantic descrip- 

tive knowledge is aggregated from the source data into the 

unlabeled target domain through the joint visual-semantic 

representation supervision and attributes propagation. Mean- 

while, the discriminative visual structure in the target domain 

is promoted by the cross-domain partial adaptation. 

5. Experiments 

5.1. Experimental Settings 

Datasets . We construct two datasets for the novel SR-OSDA 

setting. (1) D2AwA is constructed from the DomainNet 

dataset [ 30 ] and AwA2[ 46 ]. Specifically, we choose the 

shared 17 classes between the DomainNet and AwA2, and se- 

lect the alphabetically first 10 classes as the seen categories, 

leaving the rest 7 classes as unseen. The corresponding 

attributes features in AwA2 are used as the semantic descrip- 

tion. It is noteworthy that DomainNet contains 6 different 

domains, while some of them barely share the semantic char- 

acteristics described by the attributes of AwA2, e.g., quick 

draw. Thus, we only take the “real image” (R) and “painting” 

(P) domains into account, together with the AwA2 (A) data 

for model evaluation. (2) I2AwA is collected by [ 53 ] consist- 

ing of 50 animal classes, and split into 40 seen categories 

and 10 unseen categories as [ 46 ]. The source domain (I), 

includes 2,970 images from seen categories collected via 

Google image search engine, while the target domain comes 

from AwA2 (Aw) dataset for zero-shot learning with 37,322 

images in all 50 classes [ 46 ]. We use the binary attributes 

of AwA2 as the semantic description, and only the seen cat- 

egories attributes of source data are available for training. 

Only one task I → Aw is evaluated on I2AwA . Table 2 shows 

several statistical characteristics of D2AwA and I2AwA . 

Evaluation Metrics . We evaluate our method in two as- 

pects: (1) target sample recognition under the open-set do- 

main adaptation and (2) generalized semantic attribute recov- 

ery. For the first one, we follow the conventional open-set 

domain adaptation studies [ 29 , 33 ], recognizing the whole 

target domain data into one of the seen categories or “un- 

known” category. The standard open-set domain adaptation
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Table 3. Open-set domain adaptation accuracy ( % ) on D2AwA and I2AwA

 

Dataset

 

D2AwA

 

I2AwA

 

Task

 

A → P A → R P → A P → R R → A R → P

 

I → Aw

 

Method

 

OS∗ OS⋄ OS OS∗ OS⋄ OS OS∗ OS⋄ OS OS∗ OS⋄ OS OS∗ OS⋄ OS OS∗ OS⋄ OS

 

OS∗ OS⋄ OS

 

OSBP [33]

 

49.6 10.8 46.0 74.2 13.6 68.7 76.0 9.1 69.9 63.3 6.9 58.2 90.1 13.7 83.2 55.9 10.6 51.7

 

67.6 7.5 66.2 

STA [25]

 

60.1 33.0 57.6 85.5 10.8 78.7 90.2 5.7 82.5 82.8 7.4 76.0 88.5 7.2 81.1 66.9 13.5 62.0

 

51.5 45.5 51.4 

AOD [15]

 

50.7 9.5 46.9 78.4 12.7 72.4 80.3 5.1 73.5 79.7 5.3 73.0 92.0 12.8 84.8 61.2 9.6 56.5

 

75.2 6.3 73.5

 

Ours(Init)

 

53.1 45.1 52.3 78.8 72.3 78.2 75.3 94.8 77.1 67.3 82.0 68.6 86.2 87.7 86.4 52.0 77.8 54.4

 

82.2 6.3 73.5 

Ours(Vis)

 

54.1 76.1 56.1 75.4 70.3 75.0 69.5 98.5 72.1 57.4 83.1 59.7 88.3 98.8 89.2 58.7 91.2 61.6

 

48.2 70.3 48.7 

Ours

 

62.8 47.2 61.4 90.9 71.4 89.1 79.2 98.5 81.0 78.3 83.7 78.8 94.9 90.5 94.5 61.2 80.4 63.0

 

83.2 70.2 82.8

 

Table 4. Semantic Recovery Accuracy ( % ) on D2AwA and I2AwA

 

Dataset

 

D2AwA

 

I2AwA

 

Task

 

A → P A → R P → A P → R R → A R → P

 

I → Aw

 

Method

 

S U H S U H S U H S U H S U H S U H

 

S U H

 

Source-only

 

67.6 0.0 0.0 87.6 0.0 0.0 91.3 0.0 0.0 85.3 0.0 0.0 94.1 0.0 0.0 71.1 0.0 0.0

 

77.2 0.3 0.7 

ABP [52]

 

68.1 0.0 0.0 87.9 0.0 0.0 91.7 0.0 0.0 83.6 0.0 0.0 94.4 0.0 0.0 70.0 0.0 0.0

 

79.8 0.0 0.0 

TF-VAE [27]

 

70.4 0.0 0.0 88.4 0.0 0.0 85.1 0.0 0.0 79.6 0.0 0.0 96.4 0.0 0.0 72.5 0.0 0.0

 

62.8 0.0 0.0

 

ABP* [52]

 

64.5 6.4 11.7 86.0 5.9 11.1 84.0 24.4 37.8 81.3 12.7 21.9 93.8 16.2 27.6 67.6 7.9 14.1

 

78.0 13.4 22.9 

TF-VAE* [27]

 

59.7 12.8 21.0 77.9 16.4 27.1 35.1 35.6 35.3 34.8 32.7 33.7 68.5 36.1 47.3 50.7 21.0 29.7

 

37.7 20.0 26.2

 

Ours

 

62.5 27.0 37.7 90.7 30.0 45.1 79.2 36.7 50.2 78.0 15.7 26.1 95.2 37.8 54.1 59.0 20.8 30.8

 

83.1 22.0 34.8

 

average accuracy calculated on all the classes are reported 

as OS. Besides, we report the average accuracy calculated 

on the target domain seen classes as OS∗, while for the tar- 

get domain unseen categories, the accuracy is reported as 

OS⋄. For semantic attribute recovery, we compare the pre- 

dicted semantic description with the ground-truth semantic 

attributes. Specifically, we adopt a TWO-stage test: (a) iden- 

tifying a test sample from seen or unseen set, (b) applying 

prototypical classification with corresponding seen / unseen 

ground-truth attributes. We report the performances on the 

seen categories and unseen categories as S and U , respec- 

tively, and calculate the harmonic mean H [ 34 ], defined as 

H = 2 × S × U / ( S + U ) . Note that all results we reported 

are the average of class-wise top-1 accuracy, to eliminate the 

influence caused by the imbalanced class. 

Implementation . We use the pre-trained ResNet-50 [ 16 ] on 

ImageNet as the backbone, and take the second last fully 

connected layer as the features Xs/t 

[ 8 , 16 ]. GZ( · ) is a 

two-layer fully connected neural network with hidden layer 

dimension as 1,024, and the output feature dimension is 512. 

C ( · ) and D ( · ) are both two-layer fully connected neural net- 

works classifier with hidden layer dimension as 256, and the 

output dimension of C ( · ) is Ks+1 , while the output of D ( · ) 

is just two dimensions indicating seen or unseen classes. 

GA( · ) is a two-layer neural network with hidden layer di- 

mension as 256 followed, and the final output dimension 

is the same as the semantic attributes dimension followed 

by Sigmoid function. We employ the cosine distance for 

the prototypical classification, while all other distances used 

in the paper are Euclidean distances. For simplicity, we 

adopt the ground-truth novel classes number as K , and we 

notice that the results are not sensitive to the value of K 

within a range. There are many cluster number estimation 

methods but out of scope in this work. For parameters, we 

fix α = 0 . 001 , β = 0 . 2 , λ1 

= 10− 4, λ2 

= 0 . 1 , and the 

learning rate is fixed as 10− 3 for all experiments, and report 

the 100-th epoch results for all the experiments. Source code 

of this work is available online1. 

Competitive Methods . Since the problem we address in 

this paper is in a novel and practical setting, we mainly 

compare two distinctive branches of baselines in terms of 

open-set domain adaptation and zero-shot learning. 

For open-set domain adaptation, we compare our method 

with OSBP [ 33 ], AOD [ 15 ], and STA [ 25 ]. OSBP utilizes 

the adversarial training strategy to extract features for the 

target data, which is recognized into seen/unseen classes by 

a pre-defined threshold [ 33 ]. AOD exploits the semantic 

structure of open set data from categorical alignment and 

contrastive mapping to push the unknown classes away from 

the decision boundary [ 15 ]. Differently, STA adopts a coarse- 

to-fine mechanism to progressively separate the known and 

unknown data without any manually set threshold [25]. 

For the semantic recovery tasks, we implement a source- 

only trained neural network, and two zero-shot learning 

methods, ABP [ 52 ] and TF-VAE [ 27 ] under our setting, as 

baselines. The source-only model is a fully-connected neural 

network trained with only source domain ResNet-50 [ 16 ] 

features available, which learns a projector mapping the 

visual features to semantic attributes. ABP trains a condi- 

tional generator mapping the class-level semantic features 

and Gaussian noise to visual features [ 52 ]. TF-VAE propose 

to enforce semantic consistency at all training, feature syn- 

thesis, and classification stages [ 27 ]. Besides, both ABP and 

TF-VAE are able to handle generalized zero-shot learning 

problems given the semantic attributes from the whole target 

label space. We also report ABP* and TF-VAE*, which take

 

1https://github.com/scottjingtt/SROSDA.git
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(a) (b) (c) (d)

 

Figure 2. tSNE visualization of representations generated by (a) ResNet, (b) STA, and (c) Ours on I2AwA . (d) shows the joint visual-semantic 

features proposed in our paper. Red circles denote source data. Blue and gray triangles denote target domain seen and unseen classes.
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Figure 3. Ablation study of our proposed model on I2AwA by 

removing specific one of structure preserving partial alignment 

(w/o LR), binary classifier (w/o LD ,) attributes propagation (w/o 

AP), or joint visual-semantic representation (w/o VS). 

extra the semantics of unseen target categories as inputs. 

5.2. Algorithmic Performance 

Table 3 shows the open-set domain adaptation accuracy 

on D2AwA and I2AwA . From the results we observe that 

our proposed method outperforms all compared baselines 

in terms of overall accuracy on most tasks. Especially on 

the task A → R, our model improves 10 . 4% over the second 

best compared method. The significant improvements come 

from our effective framework and the extra source semantic 

information. Note that in the classical open-set domain adap- 

tation, none of the semantic attributes are leveraged. For 

fair comparisons, we provide the initialized results based 

on the visual features reported as “Ours(Init)” and further 

implement another variant of our method with only visual 

features available for training, denoted as “Ours(Vis)”. The 

performance decrease of “Ours(Vis)” proves the contribution 

and effectiveness of the semantic attributes for the open-set 

domain adaptation. Moreover, our proposed method reaches 

promising results on the unseen classes while keeping per- 

formance on the seen classes for all tasks. For example, STA 

achieves the best overall accuracy on task P → A, but com- 

pletely fails on the unseen categories and overfitting to the 

seen classes. Such an observation emphasizes the superiority 

of our method in exploring target domain unseen categories. 

Table 4 show the semantic recovery accuracy on D2AwA 

and I2AwA , respectively. Within the expectation, all ZSL 

methods fail to recognize the data from unseen categories 

and overfit to the seen classes due to lack of the capacity on 

tackling the open-set setting. Our proposed method achieves 

promising results on recognizing both seen and unseen cat- 

egories, e.g., our method achieves 37 . 8% accuracy for un- 

seen classes data while keeping 95 . 2% performance on seen 

classes for task R → A. Moreover, our proposed method even 

outperforms the ABP* and TF-VAE*. They have access 

to both the seen and unseen categorical attributes in source 

and target domain, while our method only employs the seen 

categories attributes information in the source domain. 

5.3. In-Depth Factor Exploration 

In this subsection, we first visualize the representation 

from our model, explore the ablation study of the proposed 

method, showcase several representative samples with the 

predicted attributes and finally provide more details on the 

seen and unseen target categories by confusion matrix. 

Representation Visualization . We show the t-SNE embed- 

dings of I2AwA from different models in Figure 2, where red 

circles denote source data, blue and gray triangles denote 

target domain seen and unseen classes, respectively. The 

embedding of our method shows that the same class samples 

across domains are more compact while discriminative in- 

ter classes than the representation produced by source only 

ResNet-50 [ 16 ] and STA [ 25 ]. Moreover, our embedding 

shows the joint visual-semantic representations with more 

discriminative distribution and separates the unseen cate- 

gories from seen classes more clear. Such an observation 

demonstrates the effectiveness of the semantic attributes, 

which is not only beneficial to the unseen categories, but 

also promotes the quality of features of the seen classes. 

Ablation Study . We dive into our complete method and sev- 

eral variants for open-set domain adaptation and semantic 

recovery tasks to understand the contribution of each spe- 

cific design in our framework. As shown in Figure 3, we 

have the following observations. (1) Compared to w/o R 

which removes the structure preserving partial alignment 

term LR, our method achieves significant performance gains 

on the open-set domain task, especially for the seen cate- 

gories. This demonstrates the effectiveness of aligning the 

source data to the target domain while preserving the target 

data structural characteristics. (2) Our method improves 

the performance D on both tasks compared to w/o, which 

removes the binary classifier D ( · ) and only uses classifier
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Figure 4. Selected samples from AwA2 dataset and attributes predicted by our method. The black ones are correctly predicted attributes, red 

ones are wrong prediction, and the green ones are wrong predictions but reasonable for the specific instance. “P” and “R” denote precision 

and recall of the attributes prediction for each sample, respectively.
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Figure 5. Confusion matrix of target samples from I2AwA . (a) shows 

the results of STA and (b) lists ours. The unseen classes are zoomed 

in for better visualization. 

C ( · ) to recognize seen/unseen categories. We conclude that 

the binary classifier can refine the separation of seen and 

unseen classes. (3) By removing the attributes propagation 

mechanism, the performance w/o decreases significantly on 

the semantic recovery tasks, especially for the unseen cat- 

egories, proving the contribution of attributes propagation 

for semantic recovery tasks and uncovering unseen classes. 

(4) Our method outperforms the variant without construct- 

ing visual-semantic fusion w/o VS, which only uses visual 

features for prediction. For both open-set domain adaptation 

seen classes and semantic recovery unseen classes, validat- 

ing the effectiveness of semantic knowledge to the visual 

features in both preserving performance on seen classes and 

exploring unseen categories. 

Qualitative Demonstration . To qualitatively illustrate the 

effectiveness of our method in discovering novel classes 

and recovering missing semantic information, we further 

show several representative samples from the target domain 

unseen categories on I2AwA in Figure 4. For each sample, we 

show some of the correct and wrong predicted attributes with 

corresponding prediction probabilities. “P” and “R” indicate 

the precision and recall score of predicting attributes of each 

sample. Moreover, some predicted attributes are wrong for 

the corresponding category, but reasonable for the specific 

image. From the results, we demonstrate the ability of our 

model in transferring semantic knowledge from the source 

domain into the target data, and discovering novel classes 

through missing semantic information recovery. 

Confusion Matrix . We visualize the confusion matrix of 

STA and our method on I2AwA in Figure 5. STA only rec- 

ognizes those target samples from unseen categories as un- 

known. On the contrary, our proposed method can discover 

novel categories in the target domain. Surprisingly, the ac- 

curacy of our method for the category “Giraffe” achieves 

96 . 5% . Moreover, we also notice that not just benefiting 

uncover unseen categories, our method also enhances the 

accuracy of the seen classes compared to STA. 

6. Conclusion 

We addressed a novel and practical Semantic Recovery 

Open-set Domain Adaptation problem, which aimed to dis- 

cover target samples from classes unobserved in the source 

domain and interpreted based on recovered semantic at- 

tributed. To this end, we proposed a novel framework consist- 

ing of structural preserving partial alignment, attributes prop- 

agation via visual graph, and task-driven classification over 

joint visual-semantic representations. Finally, two semantic 

open-set domain adaptation benchmarks were constructed 

to evaluate our model in terms of open-set recognition and 

semantic attribute recovery.
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