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Abstract

We present DepthInSpace, a self-supervised deep-
learning method for depth estimation using a structured-
light camera. The design of this method is motivated by
the commercial use case of embedded depth sensors in
nowadays smartphones. We first propose to use estimated
optical flow from ambient information of multiple video
frames as a complementary guide for training a single-
frame depth estimation network, helping to preserve edges
and reduce over-smoothing issues. Utilizing optical flow,
we also propose to fuse the data of multiple video frames
to get a more accurate depth map. In particular, fused
depth maps are more robust in occluded areas and incur
less in flying pixels artifacts. We finally demonstrate that
these more precise fused depth maps can be used as self-
supervision for fine-tuning a single-frame depth estimation
network to improve its performance. Our models’ effec-
tiveness is evaluated and compared with state-of-the-art
models on both synthetic and our newly introduced real
datasets. The implementation code, training procedure, and
both synthetic and captured real datasets are available at
https://www.idiap.ch/paper/depthinspace.

1. Introduction

With the advent of structured-light cameras, depth-
sensing became conceivable with basic algorithms imple-
mentable on devices with computational constraints in real-
time. For instance, Kinect V1 uses a correlation-based
block matching technique [36], and Intel RealSense [22]
employs a semi-global matching scheme [16]. However,
learning-based approaches in this field are relatively lim-
ited. Fanello et al. [35] propose a computationally efficient
feature matching method. Projecting image patches to com-
pact binary representation is proposed in UltraStereo [10] to
achieve a low complex matching scheme. HyperDepth [34]
casts the problem of depth estimation as a classification-
regression task, which it solves using an ensemble of cas-
caded random forests. However, HyperDepth assumes the

availability of ground-truth labels either from high-accuracy
sensors or exhaustive stereo-matching search algorithms.

Due to the lack of large-scale, precise ground-truth data,
an end-to-end training of a deep neural network in a self-
supervised manner has been at the center of attention re-
cently. ActiveStereoNet [49] uses Siamese networks for
predicting disparity and proposes a novel photometric loss
function based on a Local Contrast Normalization (LCN)
scheme for training. A separate color sensor is used in [24]
to enhance the performance of [49]. Riegler et al. [33] ex-
ploit the photometric loss function of [49] and propose an
edge-detection network along with an edge-aware smooth-
ness loss function to overcome the issue of edge fattening.
They also introduce another loss function that leverages the
information of other video frames to supervise the disparity
estimation network’s training. To do so, they use the esti-
mated disparity and camera pose parameters to transform
pixels into a 3D point cloud and apply the consistency of
predicted depth of matched pixels across multiple frames.

We take the work in [33] as the baseline, and our contri-
butions in this article are as follows:

• We propose a novel training scheme that uses op-
tical flow predictions from ambient images to find
matched pixels independently of the estimated dispar-
ities, which stabilizes the training and enhances accu-
racy. Our sensor can capture ambient images conve-
niently, and we exploit this feature in this regard.

• We extend this model to fuse information from multi-
ple video frames to obtain more precise disparity maps
with sharper edges and fewer artifacts.

• We finally propose to exploit the resulting fused dis-
parity maps to fine-tune a single-frame disparity esti-
mation network.

2. Related Works
Active Depth Estimation: The setup usually consists of a
camera and a projector which projects a random but known
pattern of dots into the scene. Dependent on the depth
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of objects in the environment, the camera receives a de-
formed shape of the projected pattern, and this phenomenon
could be used in depth estimation algorithms. Such al-
gorithms include basic searching for correspondences in
Kinect V1 [28], computationally efficient learning-based
techniques [10, 34, 7], and a deep neural network trained
end-to-end to estimate disparity map directly [49, 24, 33].

Leveraging Multiple Frames: Utilizing multiple frames
for depth estimation includes but is not limited to to
structured-light sensors [33]. In [11, 45, 25], the sec-
ond image of a stereo camera is regarded as another video
frame. Explicit utilization of multiple video frames of
a conventional camera for self-supervision is proposed
in [48, 50, 2, 12, 13, 31, 5]. Fusing the information of mul-
tiple frames during inference is employed in RGB depth
estimation models like DeepV2D [38], DeepMVS [17],
DeepSFM [42], and DPSNet [20] in the form of aggregat-
ing volume cost representations. In these papers, the ag-
gregation is done by simple pooling operations (DeepV2D
and DeepMVS) or performing convolution on the 2D grid
(DeepSFM and DPSNet). Such approaches would fail in the
context of structured-light images, where the projector also
moves with the camera. As a result of the moving projector,
the scene is textured with the projected dots differently, and
the camera captures an entirely new scene at each frame.
Simply warping frames together and aggregating on the 2D
grid will limit the performance since the dots information is
meaningless in the warped frames and interferes with the fu-
sion process. We tackle this issue in Section 3.2, where we
perform fusion and convolution in the continuous 3D space
to leverage the consistency of geometry there maximally.
Unfortunately, all the aforementioned models are designed
to work with RGB images, and we cannot evaluate them
for structured-light images through experiments. However,
we examine how the aggregation of frames on the 2D grid
would fail for these images in the supplementary material.

Optical Flow and Depth Estimation: Numerous re-
searches in passive depth estimation suggest taking advan-
tage of consistency between optical flow prediction and
camera ego-motion between consecutive video frames. The
authors in [41, 47, 51, 32] claim that simultaneously train-
ing an optical flow network and a depth estimation network
can benefit both tasks and result in a better performance
than training those individually. The work in [27] proposes
a novel framework capable of fine-tuning a general monoc-
ular depth estimation network during test time by leveraging
a pre-trained optical flow estimation network. Although it
is not common in the context of active stereo depth sensing,
there is adequate ambient information in captured images
to exploit and predict optical flow between frames and im-
prove the quality of depth estimation accordingly.

Convolution in Point Cloud: In the context of point cloud
processing, some novel techniques are proposed that per-
form convolution on points in the continuous 3D space
resembling convolutional neural networks of regular grid
structures. Models in [39, 26, 46, 43, 3, 40] are shown to
be capable of applying convolution on unstructured and un-
ordered data and work well on point cloud benchmark tasks
and datasets. For 2D grid-style data, when depth informa-
tion is available, it is plausible to transform points into the
3D space and leverage such continuous convolutions. Such
an approach is presented in [9], where the authors jointly
benefit from conventional 2D convolution and parametric
continuous convolution introduced in [40].

3. Method
We build DepthInSpace (DIS) model upon the Connect-

ing the Dots (CTD) model in [33]. CTD suggests using two
separate networks, one for estimating the disparity, and the
other for detecting the edges in the images. The edge de-
tector is weakly supervised with the ambient images, which
are the same as dot images except that the projector is off
during photo capture. Obtaining ambient data is consider-
ably cheaper than the ground-truth depth data; however, the
edge detection network is proposed to reduce the number of
ambient images required for training.

We claim ambient images contain more valuable infor-
mation than only the objects’ edges. The sensor that we
use is equipped with a programmable switch that can cap-
ture both dot images and ambient images with no additional
cost. Accordingly, we discard the edge detection network
and replace the CTD’s smoothing loss function with a loss
that directly extracts edges from ambient images. Also, we
predict the optical flow from ambient images to find the
matched pixels and introduce a new loss which encourages
geometric consistency between them. Our proposed loss re-
places the geometric loss in CTD and is preferable in two
regards. First, CTD uses the momentary predicted depth
and ego-motion of the camera to find the matched pixels. As
a result, the optimization landscape changes rapidly during
training and could result in instability of training. Secondly,
the error in momentary predicted depths participates in the
procedure of finding matched pixels and leads to degraded
performance. In addition, the matching scheme with optical
flow provides more flexibility to detect mistakenly matched
pixels and exclude them from contributing to the loss func-
tion. We use LiteFlowNet [18] pre-trained on MPI Sintel [4]
for optical flow, which is a lightweight and fast model, but it
has comparable performance to computational and memory
resource expensive models like FlowNet2 [19].

3.1. Single-Frame Disparity Estimation

Our DepthInSpace Single-Frame (DIS-SF) model takes
the CTD model [33] as a baseline and modifies two of its
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Figure 1. The training scheme of our DIS-SF model for a sample pair of frames i and j, and a reference pattern P . The dot images Ii and
Ij are fed to the DispNet [29] separately to predict disparities Di and Dj . On another path, LiteFlowNet [18] generates optical flow of
these two frames Fi→j exploiting ambient imagesAi andAj jointly. The photometric loss Lph and the smoothness loss Ls are applied
to images separately, whereas the multi-view loss Lmv , which imposes consistency of predicted depths between two frames, is applied
pairwise (see Section 4). This scheme is employed for every pair of images from the same scene. The block Warp denotes bilinear 2D
warping via optical flow and the block Proj. to 3D means projecting points into 3D space using the disparities and the camera’s intrinsic
parameters and adjusting the view angle of points using the camera’s extrinsic parameters. After training and for disparity inference,
DispNet [29] takes a single dot image I and estimates a disparity mapD as output.

loss functions: we incorporate a novel multi-view loss func-
tion leveraging optical flow predictions and an improved
edge-aware smoothness loss. The training scheme of our
DIS-SF model is presented in Figure 1. The photomet-
ric loss Lph enforces consistency between the input image
and the warped reference pattern via the estimated disparity
map. For smoothness loss Ls, we propose using an edge-
aware one similar to [11, 12, 31], except that we extract the
edge information directly from the ambient images.

Furthermore, we introduce a novel multi-view loss Lmv ,
which enforces the consistency of the estimated depths be-
tween two different views with the help of bilinear warp-
ing via optical flow predictions. Note that the photometric
loss and smoothness loss apply to each image individually,
whereas the multi-view loss applies to all possible permuta-
tions of image pairs from the same scene. For more details
about the loss functions, refer to Section 4.

We use DispNet [29] for inferring disparity. We also
apply Local Contrast Normalization (LCN) preprocessing,
suggested in [49, 33], to both dot images I and the refer-
ence pattern P . Although we use ambient images A in our
training scheme, we do not directly employ them as Disp-

Net’s input. This makes data preparation more convenient
during inference, and DispNet [29] predicts disparity maps
D only based on dot images I . Instead, the pairs of ambi-
ent images are exploited as the input of LiteFlowNet [18] to
predict the optical flow map F . More discussion on how we
use pre-trained LiteFlowNet with ambient images, while it
is designed to work with RGB images, as well as an ablation
study are provided in the supplementary.

3.2. Multi-Frame Disparity Estimation

Our Multi-Frame (DIS-MF) model combines the infor-
mation of other frames from the same scene into one frame
and generates more accurate disparities. We assume an ini-
tial imperfect disparity map is available for each frame be-
forehand, and we attempt to increase the quality of the dis-
parities by fusing the frames. In this regard, we take the
outputs of our DIS-SF model as the imperfect disparities.
Compared to traditional RGB depth estimation, aggregating
data of multiple frames is more efficacious in structured-
light setup because the performance of depth sensing de-
pends on how the dots touch the objects in the environment.
Thus, the data contained in the frames are less correlated.
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Let φ ∈ RC×H×W denote a feature map of size H ×W
with C channels, and X ∈ R3×H×W denote the corre-
sponding 3D points obtained using the imperfect disparities
and camera projection matrix K ∈ R3×3. Let us assume
we have a pair of images with feature maps of (φi,φj) and
3D points of (Xi,Xj). Frame i is assumed as the target
frame, and we want to fuse the information of φj into φi.
Our model’s first step is warping both feature mapφ and 3D
points X on the 2D grid via optical flow predictions Fi→j

and Fj→i. Optical flow warping places the data of the
frames on the 2D grid such that corresponding data of the
frames appear in each other’s neighborhood on the 2D grid.

Let φj→i = wj→i(φj) and Xj→i = wj→i(Xj) de-
note warped features and warped points, where wj→i(·)
stands for bilinear 2D warping via the optical flow Fi→j .
We also define a binary mask mapMj→i ∈ {0, 1}1×H×W
which indicates if the warped data is valid and should be al-
lowed to participate in our fusion framework. We construct
Mj→i by evaluating the forward-backward consistency of
optical flow predictions, similar to [51, 30]:

Mj→i = |Fi→j + wj→i(Fj→i)|2

< 0.01× (|Fi→j |2 + |wj→i(Fj→i)|2) + 0.5 (1)

Despite having all warped data and their validation mask
map on the same 2D grid, we do not perform fusion naively
on the grid space. As we already mentioned in Section 2,
warped features in the structured-light setup contain inter-
fering data of warped dots that make the fusion task com-
plicated. Instead, we propose a fusion block that performs
fusion and convolution in the continuous 3D space. Our fu-
sion block also has a sense of faulty imperfect disparities
and can prevent those points from contributing to the aggre-
gation. The details of our fusion block and its utilization in
our DIS-MF network architecture are as follows.

Fusion Block: Chen et al. [9] suggest when depth infor-
mation of a 2D image is available, it is conceivable to ex-
ploit continuous convolution in the 3D space and benefit
from both 2D and 3D data processing simultaneously. Such
a proposal is consistent with the idea of merging the data
of multiple frames as the projected points in the 3D space
could be processed regardless of their camera pose. In-
spired by them, we propose a fusion block capable of fus-
ing several feature maps originating from different frames
into the target frame’s feature map. For the sake of simplic-
ity, let us assume we only have two frames and intend to
merge the feature map φj into the target feature map φi.
The functionality of the fusion block is illustrated in Fig-
ure 2. We use the continuous 3D convolution [40] as the
core element of our fusion block. Most architectures that
exploit 3D convolution on the point cloud require running
exhaustive search algorithms to find points in the neighbor-
hood [9, 26, 46, 43, 3, 40], which is infeasible to perform

on dense data such as ours. For instance, Chen et al. [9]
pre-compute the indices of nearest neighbors for all points.
To mitigate the issue, we propose a novel technique that is
practical in real-time processing. Since our data is not fully
unstructured, we suspect points that are close in 3D space
will be close on the 2D grid map if they are warped to the
same camera perspective, but not vice versa.

Accordingly, we form the concatenated feature
map [φj→i,φi] and point map [Xj→i,Xi] and slide
a 3 × 3 window over each 2D grid map simultaneously
and perform convolution only on points inside the sliding
window similarly to a conventional CNN. The difference
is, instead of performing a weighted sum with learnable
parameters, we search for the nearest points and perform
continuous convolution. For simplifying the equations,
let φi→i = φi, Xi→i = Xi, and Mi→i = ~1. Also,
let φ(h,w) and X(h,w) represent the features and the
coordinate of the position (h,w) on the grid map where
0 ≤ h < H and 0 ≤ w < W . We first search for the
nearest points to the center point of the sliding window on
the target frame i:

l∗(h,w),m∗(h,w), n∗(h,w)

= k-arg min
l∈{i,j}
−1≤m≤+1
−1≤n≤+1

∣∣Xl→i(h+m,w + n)−Xi(h,w)
∣∣

Ml→i + ε
(2)

where k-arg min g(·) returns the k indices that minimize the
function g(·), and ε is a small constant. Ml→i is used in the
denominator to exclude invalid points, and we set k = 9 to
ensure all returned indices correspond to valid pixels due to
the window size 3 × 3. To extend the model to fuse more
than two frames, l in Equation 2 should span all available
frames rather than only {i, j}. The convolution’s result is:

φ′
i(h,w) = Ψ×

∑
l∗,m∗,n∗

(
φl∗→i(h+m∗, w + n∗)

� MLP
(
Xl∗→i(h+m∗, w + n∗)−Xi(h,w)

))
(3)

where MLP is a multi-layer perceptron mapping 3D vectors
to C-dimensional weights, � denotes element-wise prod-
uct, and Ψ is a C ×C learnable weight matrix. This imple-
mentation can be regarded as a continuous version of sep-
arable convolution. The MLP and weighted sum perform
depth-wise convolution, while the linear transformation re-
sembles 1× 1 convolution [9].

As shown in Figure 2, we adopt two 3D convolutions in
each fusion block. Accordingly, we warp the other frames’
outputs of the first 3D convolution to the target frame φ′

j→i

and fuse them into the second 3D convolution as well. We
also employ traditional 2D CNNs in the fusion block be-
cause there are some shortcomings to 3D convolution, such
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Figure 2. Internal architecture of our proposed fusion block, whose details of utilization in our DIS-MF model are illustrated in Section 3.2
and Figure 3. We depict how features of an auxiliary frame φj→i are being fused into the target frame’s features φi. Binary mask
mapMj→i, 3D points of the target frameXi and warped frameXj→i, and the warped result of the first 3D convolution of the auxiliary
frame φ′

j→i are also inputs of this block. φ′′
i stands for the output of this block, and φ′

i represents the output of the first 3D convolution
required for fusing into other frames’ fusion blocks. Conv(k × k, s) and 3D Conv(k × k, s) denote 2D and continuous 3D convolution
respectively, with kernel size of k and stride s, and the block Rescaling denotes the operations described in Equation (4).

as edge fattening near the boundaries of objects and back-
ground. To merge the feature maps in 2D CNNs, we handle
invalid points differently by proposing a scheme similar to
dropout [37]. To do so, we first zero out features of in-
valid points, and then rescale the remaining valid features
inversely proportionally to the number of valid frames for
each point on the 2D grid:

∀l ∈ {i, j} : φ̄l→i =
φl→i ×Ml→i∑
p∈{i,j}

Mp→i

(4)

The 3D convolutions along with 2D CNNs jointly con-
struct the fusion block, which is capable of processing high-
resolution feature maps and effectively benefits from the
information of other frames from the same scene. SELU
nonlinearity [23] and Group Norm [44] are used after each
convolution. We prefer Group Norm to Batch Norm [21] in
our model because Group Norm statistics are independent
of the number of samples in a batch and make training large
networks feasible with smaller batch sizes.

Network Architecture: Figure 3 illustrates the network ar-
chitecture of our DIS-MF model. The architecture includes
three sections as follows. The preprocessing section takes
the images (I,A) and the imperfect disparity D as input

and generates high-level feature maps for each frame indi-
vidually. Next, the feature maps are fed into cascaded series
of fusion blocks, along with their corresponding 3D points
X and binary masks M required for merging and 3D con-
volutions to obtain fused feature maps. Warping with the
optical flow is employed whenever any data on a 2D grid
map is needed to be warped to another frame’s 2D grid.

Lastly, the fused feature maps go through a refinement
structure to preserve high-resolution details such as edges
and reduce distortions resulting from combining frames.
Our refinement section is inspired by the one in [49], but
takes the upsampled fused features and the ambient image
as inputs. In both the preprocessing and refinement sec-
tions, we exploited residual blocks introduced in [15] to
promote gradient backpropagation and expedite the training
process.

An ablation study of design choices for the DIS-MF net-
work architecture is provided in the supplementary.

3.3. Fine-Tuning the Single-Frame Model

For purposes where resources are limited during infer-
ence, we propose an alternative approach to exploit the
scheme of fusing image frames. We suggest that after train-
ing the DIS-MF model, the produced disparities can be used
as an auxiliary loss function to supervise and fine-tune the
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Figure 3. Our DIS-MF network architecture when only two frames i and j are combined. Warping the first 3D convolution output φ′ and
the final output of each fusion block φ′′ using the relative optical flows are denoted by wi→j(·) and wj→i(·). Note that D stands for
imperfect disparity participating as one of the inputs, and D′ represents the final predicted disparity of the model. This figure depicts the
inference network of our DIS-MF model. For training the DIS-MF model, this network replaces those individual DispNet [29] networks
in the DIS-SF model in Figure 1, and the same scheme and loss functions (see Section 4) are adopted.

single-frame network. The resulting model, DepthInSpace
Fine-Tuned Single-Frame (DIS-FTSF), can yield more ac-
curate disparity maps with no additional memory or com-
putation cost during inference compared with DIS-SF.

4. Loss Functions
Here we introduce our loss functions employed in our

models. Let Γ = {Ii,Ai}N−1
i=0 denote the image samples

from the same scene. The overall loss function consists of a
photometric loss Lph, a smoothness loss Ls, a multi-view
loss Lmv , and a pseudo-ground truth loss Lpgt:

L =
1

N

∑
i∈Γ

(Li
ph + λ1Li

s + λ2Li
pgt)

+
1

N(N − 1)

∑
i,j∈Γ

λ3Lij
mv (5)

where {λk}3k=1 are weighting constants, which do not nec-
essarily take the same value in all of our models.

Let D denote the disparity map, Ĩ denote the local con-
trast normalized input image, and P denote the local con-
trast normalized reference dot pattern. Similarly to CTD,
we employ the smooth Census transform [14], represented
by ‖ · ‖C , in our photometric loss:

Li
ph =

∑
h,w

‖ Ĩi(h,w)− P
(
h,w −Di(h,w)

)
‖C (6)

Since we assume the availability of ambient images, we
introduce an edge-aware smoothness loss similar to [11,
12]. The smoothness loss imposes consistency between dis-
parity map discontinuities and edges in the ambient image:

Li
s = |∇hDi|e−β|∇hAi| + |∇wDi|e−β|∇wAi| (7)

where ∇h and ∇w stand for 2D spatial gradients and β is
a constant. Moreover, we impose the consistency between
the predicted depths in each pair of images from the same
scene. LetXi andXj denote the 3D point clouds of the two
frames obtained using the momentary predicted disparities
and camera intrinsic matrix. Our multi-view loss is:

Lij
mv =

∣∣∣∣〈Xi−wj→i
(
Tj→i× [Xj , ~1]

)〉
z

∣∣∣∣×M ′
j→i (8)

where Tj→i ∈ R3×4 is the transformation matrix consist-
ing of ego motion parameters, ~1 is an all one matrix, and
〈·〉z operator returns the depth z of its input 3D vector.
M ′

j→i is a binary mask map validating warped points sim-
ilarly to Mj→i in Section 3.2, but it strictly excludes low
confidence points from supervising the training. For more
details regardingM ′

j→i, refer to the supplementary.
Lastly, only in our DIS-FTSF model, we use the more

accurate fused disparity D′ as pseudo-ground truth to im-
prove the quality of the imperfect disparity D. We impose
the L1 consistency betweenD andD′ as an auxiliary loss:

Li
pgt = |Di −D′

i| (9)
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5. Experiments
Datasets: To evaluate our models and compare them with
existing methods, we examine the accuracy of depth es-
timation on three synthetic datasets and one real dataset.
We used the tool provided by CTD [33] to render the syn-
thetic data. Rendering is done in the same experimental
setup as CTD with the same objects of the ShapeNet Core
dataset [6], but the images are captured by a sensor whose
parameters are set similar to our own hardware. One dataset
is rendered using the Kinect dot pattern for projection, and
the second dataset is generated utilizing our own theoretical
dot pattern for the projector. For the last synthetic dataset,
we projected and captured the dot pattern in a real labora-
tory environment and used the observed pattern for render-
ing the dataset. In this regard, we use a virtual projector
with the same parameters of the capturing camera.

We incorporated multiple datasets because different dot
patterns could lead to different depth sensing performances.
The denser the dots are, the better the performance is. How-
ever, choosing a dot pattern could be restricted by hardware
limitations or available illumination power. That is why we
examine the models’ performances over different projected
dot patterns. For each synthetic dataset, we create 8192 se-
quences for training, 512 sequences for validation, and 512
sequences for testing. Each sequence contains 4 pair of dot
images and ambient images from the same scene.

We also evaluate the models on a smaller real dataset to
show the generalization of our method in an actual setup.
The data include 148 sequences of 4 pairs of dot images
and ambient images captured from 4 different scenes. The
sensor we use is equipped with a programmable switch, en-
abling the projector to be on and off, so it can capture dot
images and ambient images alternately at the rate of 15 fps
each. Given the capturing rate, each pair of dot image and
ambient image captures the same scene approximately. We
put aside 18 sequences for validating and testing and uti-
lized 130 sequences in training. To obtain accurate ground
truth we used a 3D scanner, the data of which is only used
for evaluation. Due to the scanner limitations, we take a set
of partial scans that best cover the scene. These are fused to-
gether to create a 3D model using the point-to-plane variant
of the ICP algorithm [8]. A 3D mesh is then produced using
the Ball-Pivoting algorithm [1]. For estimating the camera
motion parameters, the same ICP variant is used to align the
ground truth 3D model and the 3D model obtained from the
structured-light sensor via the block matching technique.

More details of the datasets and also implementing our
models are provided in the supplementary.

Metrics: We use the percentage of outliers o(t) as in [33]
for quantitative evaluation, which is the percentage of pixels
where the difference between the estimated and the ground
truth disparities is greater than t.

Comparison with existing methods: We compare our
models with Semi-Global Matching (SGM) algorithm [16],
HyperDepth [34], and CTD [33]. We observed through ex-
periments that the window size of 13 for the SGM algo-
rithm best suits our dataset. For HyperDepth, we used the
same reimplementation code provided by [33] with the hy-
perparameters that yield the best results in the original pa-
per [34]. Since HyperDepth is a supervised method, we
used the ground truth depth maps for training this model.

When training either CTD or our models on the real
dataset, we use the pre-trained weights obtained from the

Data Method o(0.5) o(1) o(2) o(5)

Sy
nt

he
tic

(K
in

ec
tP

at
t.)

SGM 10.36 9.13 8.76 2.45
HyperDeptha 4.38 3.22 2.69 2.39
CTD 2.74 1.45 0.77 0.24
DIS-SF 2.11 1.13 0.59 0.16
DIS-FTSF 1.92 1.00 0.51 0.14
DIS-MF 1.59 0.72 0.33 0.10

Sy
nt

he
tic

(O
ur

Pa
tt.

)
SGM 12.93 11.64 11.22 4.06
HyperDeptha 7.35 6.48 6.11 5.86
CTD 3.38 1.71 0.85 0.28
DIS-SF 2.31 1.24 0.62 0.19
DIS-FTSF 1.96 0.95 0.45 0.12
DIS-MF 1.58 0.71 0.32 0.10

Sy
nt

he
tic

(O
bs

er
ve

d
Pa

tt.
) SGM 12.45 10.37 9.55 4.83

HyperDeptha 6.13 4.92 4.34 4.00
CTD 3.76 2.25 1.03 0.37
DIS-SF 3.66 2.16 1.00 0.23
DIS-FTSF 2.87 1.48 0.66 0.17
DIS-MF 2.46 1.24 0.54 0.14

R
ea

l

SGMb 25.54 19.23 17.75 16.96
HyperDeptha 34.62 25.09 22.49 21.77
CTD 22.74 9.26 3.79 1.00
DIS-SF 17.95 7.93 3.59 1.14
DIS-FTSF 17.06 7.48 3.47 1.11
DIS-MF 16.07 7.14 3.41 1.09

a HyperDepth is a supervised model trained with ground truth.
b We evaluated all models on the full image. SGM performs poorly
on the real data due to large disparities in the dataset and its inca-
pability of predicting valid depths on a large portion of the image
(whereas learning models extrapolate in those areas). As an exam-
ple, if we evaluated models on a cropped area of the depth maps,
o(0.5) and o(1) would drop to 15.56 and 8.81 for SGM, and 13.06
and 5.08 for DIS-FTSF.

Table 1. Quantitative comparison of the SGM algorithm [16], Hy-
perDepth [34], and CTD [33] versus our DIS-SF, DIS-FTSF, and
DIS-MF models. Numbers are percentages of outliers o(t), that
is the fraction of pixels for which the estimated disparity is more
than t away from ground truth. We indicate in bold the best per-
formance among single-frame methods (i.e. all but our DIS-MF
model, which, as expected, performs the best).
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Figure 4. Qualitative results of the methods and their corresponding error maps. (a) Ground truth disparity map. (b) Input dot image with
projected pattern. (c) HyperDepth [34]. (d) CTD [33]. (e) Our DIS-SF model. (f) Our DIS-FTSF model. (g) Our DIS-MF Model. Each
row represents a sample corresponding to each dataset in Table 1. Points for which the ground truth data is unavailable are excluded from
evaluation. For more sample images and extended qualitative evaluations, refer to the supplementary material.

synthetic data in order to speed up the training process.
Moreover, due to the limitations of the 3D scanner we used
to capture ground truth, we had to put objects very close
to the camera, resulting in very large values of dispari-
ties. Therefore, the statistics of disparities between the real
dataset and the synthetic dataset are different, causing net-
works to get stuck in local minima when they are fine-tuned
on the real data. We handled this issue by incorporating
an additional loss function and using the SGM algorithm’s
valid outputs as pseudo-ground truth during the first few
epochs of training. This loss function warms up the train-
ing process and resembles a coarse estimation of the ground
truth at the beginning of the training. This stratagem pre-
vents the networks from getting stuck in local minima and
is used for both CTD and our models.

Qualitative comparison of the estimated disparities of the
models on different datasets is depicted in Figure 4. It is no-
table that all of our models produce sharper edges than the
baseline model, CTD. Remarkably, our DIS-MF model best
preserves the edges and is also capable of retaining high-
resolution details. On the other hand, HyperDepth shows
poor performance at discontinuities despite its accuracy in
smooth regions. The figure also contrasts the quality of our
DIS-SF and DIS-FTSF models and exhibits the usefulness
of exploiting the DIS-MF model outputs to improve the ac-
curacy of the DIS-SF model. Extended qualitative evalua-
tions are provided in the supplementary material.

Table 1 provides the quantitative evaluation of the dis-
cussed models and shows the outcomes are consistent with
the qualitative results. Table 1 also reflects the effect of the
dot pattern on the performance of algorithms, where most
models have the best accuracy in the experiment with the

denser Kinect dot pattern. However, our models show ro-
bustness in all experiments. Particularly, DIS-MF yields
overall the best results in all the experiments. Also, among
the methods that predict disparities based on a single image,
our DIS-FTSF model outperforms others overall.

For further experiments and ablation studies of the loss
functions, validation masks, components of DIS-MF net-
work, effect of imperfect disparities, utilized optical flow
network, and extended qualitative analysis, refer to the sup-
plementary material.

6. Conclusion
We proposed DepthInSpace (DIS), which includes three

self-supervised deep learning models to estimate depth
from structured-light sensor data. Leveraging optical flow,
we utilize information from multiple video frames from
the same scene to improve depth estimation accuracy in
three different self-supervised fashions. We qualitatively
and quantitatively evaluated our models over four datasets:
a publicly available synthetic dataset, two synthetic datasets
customized with our setup parameters and dot pattern, and
a real dataset that we made publicly available. The experi-
ments validate the superiority of our models over the exist-
ing state-of-the-art methods.

The natural extension for future work will be on the one
hand to apply our method to active stereo setup, combin-
ing the strengths of both sources of information, and on the
other hand to deal with a simplified setup, for instance with
a sparser less energy-hungry pattern of illumination.
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perdepth: Self-supervised, super-resolved monocular depth
estimation. In 2019 International Conference on Robotics
and Automation (ICRA), pages 9250–9256. IEEE, 2019. 2, 3

[32] Anurag Ranjan, Varun Jampani, Lukas Balles, Kihwan Kim,
Deqing Sun, Jonas Wulff, and Michael J Black. Competitive
collaboration: Joint unsupervised learning of depth, camera
motion, optical flow and motion segmentation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 12240–12249, 2019. 2

[33] Gernot Riegler, Yiyi Liao, Simon Donne, Vladlen Koltun,
and Andreas Geiger. Connecting the dots: Learning repre-
sentations for active monocular depth estimation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 7624–7633, 2019. 1, 2, 3, 7, 8

[34] Sean Ryan Fanello, Christoph Rhemann, Vladimir
Tankovich, Adarsh Kowdle, Sergio Orts Escolano, David
Kim, and Shahram Izadi. Hyperdepth: Learning depth
from structured light without matching. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5441–5450, 2016. 1, 2, 7, 8

[35] Sean Ryan Fanello, Julien Valentin, Adarsh Kowdle,
Christoph Rhemann, Vladimir Tankovich, Carlo Ciliberto,
Philip Davidson, and Shahram Izadi. Low compute and fully
parallel computer vision with hashmatch. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 3874–3883, 2017. 1

[36] Daniel Scharstein and Richard Szeliski. A taxonomy and
evaluation of dense two-frame stereo correspondence algo-
rithms. International journal of computer vision, 47(1-3):7–
42, 1920. 1

[37] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014. 5

[38] Zachary Teed and Jia Deng. Deepv2d: Video to depth with
differentiable structure from motion. In International Con-
ference on Learning Representations, 2019. 2

[39] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J

Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 6411–6420, 2019. 2

[40] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei
Pokrovsky, and Raquel Urtasun. Deep parametric continu-
ous convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2589–2597, 2018. 2, 4

[41] Yang Wang, Peng Wang, Zhenheng Yang, Chenxu Luo, Yi
Yang, and Wei Xu. Unos: Unified unsupervised optical-flow
and stereo-depth estimation by watching videos. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8071–8081, 2019. 2

[42] Xingkui Wei, Yinda Zhang, Zhuwen Li, Yanwei Fu, and Xi-
angyang Xue. Deepsfm: Structure from motion via deep
bundle adjustment. In European conference on computer vi-
sion, pages 230–247. Springer, 2020. 2

[43] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9621–9630, 2019. 2, 4

[44] Yuxin Wu and Kaiming He. Group normalization. In Pro-
ceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018. 5

[45] Junyuan Xie, Ross Girshick, and Ali Farhadi. Deep3d:
Fully automatic 2d-to-3d video conversion with deep convo-
lutional neural networks. In European Conference on Com-
puter Vision, pages 842–857. Springer, 2016. 2

[46] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
Spidercnn: Deep learning on point sets with parameterized
convolutional filters. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 87–102, 2018.
2, 4

[47] Zhichao Yin and Jianping Shi. Geonet: Unsupervised learn-
ing of dense depth, optical flow and camera pose. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1983–1992, 2018. 2

[48] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera,
Kejie Li, Harsh Agarwal, and Ian Reid. Unsupervised learn-
ing of monocular depth estimation and visual odometry with
deep feature reconstruction. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 340–349, 2018. 2

[49] Yinda Zhang, Sameh Khamis, Christoph Rhemann, Julien
Valentin, Adarsh Kowdle, Vladimir Tankovich, Michael
Schoenberg, Shahram Izadi, Thomas Funkhouser, and Sean
Fanello. Activestereonet: End-to-end self-supervised learn-
ing for active stereo systems. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 784–
801, 2018. 1, 2, 3, 5

[50] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G
Lowe. Unsupervised learning of depth and ego-motion from
video. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1851–1858, 2017. 2

[51] Yuliang Zou, Zelun Luo, and Jia-Bin Huang. Df-net: Un-
supervised joint learning of depth and flow using cross-task
consistency. In Proceedings of the European conference on
computer vision (ECCV), pages 36–53, 2018. 2, 4

6048


