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Abstract

Single-frame temporal action localization (STAL) aims
to localize actions in untrimmed videos with only one times-
tamp annotation for each action instance. Existing meth-
ods adopt the one-stage framework but couple the counting
goal and the localization goal. This paper proposes a novel
two-stage framework for the STAL task with the spirit of di-
vide and conquer. The instance counting stage leverages
the location supervision to determine the number of ac-
tion instances and divide a whole video into multiple video
clips, so that each video clip contains only one complete ac-
tion instance; and the location estimation stage leverages
the category supervision to localize the action instance in
each video clip. To efficiently represent the action instance
in each video clip, we introduce the proposal-based repre-
sentation, and design a novel differentiable mask genera-
tor to enable the end-to-end training supervised by cate-
gory labels. On THUMOS14, GTEA, and BEOID datasets,
our method outperforms state-of-the-art methods by 3.5%,
2.7%, 4.8% mAP on average. And extensive experiments
verify the effectiveness of our method.

1. Introduction
Temporal action localization (TAL) plays an important

role in video understanding [35, 45, 38]. Its goal is to detect
and classify all action instances in untrimmed videos. Re-
cently, the fully-supervised setting [4, 18, 16, 34, 6, 14, 49]
which requires frame-level supervision, has achieved im-
pressive results; however, it is time-consuming and expen-
sive to densely annotate each frame. On the other hand, the
video-level weakly-supervised setting [19, 27, 28, 33, 20,
31] only needs the action category label of the whole video
for localization. But lacking explicit location supervision
fundamentally limits its empirical performance. To bridge
the gap between fully-supervised and video-level weakly-
supervised settings, a single-frame weakly-supervised TAL
(STAL) is recently introduced [21], where a single frame
(seedframe) is annotated for each action instance. STAL
provides limited, yet precise action location supervision,
and shows the potential to achieve great empirical perfor-

proposal-based
representation

frame-based
representation

ground truth

time

(A)   The one-stage framework

counting
&

localization

whole video whole video

(B)   The two-stage framework

results

center

length length

center

backgroundaction action

results

ground truthbackgroundaction action

video clips

conquer

divide

… …

time

seedframe
detection

Figure 1. Comparison. (A): The one-stage framework couples the
counting goal and the localization goal via thresholding, causing
inferior localization results. (B): The two-stage framework detects
seedframes to divide a whole video into multiple video clips, each
of which contains only one complete action instance; then, it sep-
arately localizes the action instance in each video clip.

mance and maintain cheap annotation overhead at the same
time. This work explores this new STAL task.

The existing STAL method [21] considers a one-stage
framework, similar to video-level weakly-supervised meth-
ods [28, 11, 19]. Based on Multiple Instance Learning, this
framework directly estimates the action probability at each
individual frame; and then, by thresholding the action prob-
ability sequence, the framework simultaneously determines
the number of action instances (counting) and localizes each
action instance (localization); see Figure 1 (A). Since this
one-stage framework couples the counting goal and the lo-
calization goal via thresholding, adjusting such a threshold
empirically would highly affect both counting and localiza-
tion performances, causing a serious coupling issue. Even
tuning a threshold to provide the perfect counting results,
this single and unified threshold might not be able to pre-
cisely localize all the action instances because each action
instance could have its local sensitivity.

To solve the coupling issue, this work introduces a strat-
egy of divide and conquer to decouple the counting goal
and the localization goal. In other words, we aim to strategi-
cally divide the STAL task into multiple sub-tasks, each of
which only needs to localize one action instance in a video
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Figure 3. Paired training data of the gate-approximation network,
which is simulated through Eq. (3). The input is a two-dimensional
proposal, indicating the center and the length. The label is a Ts-
dimensional gate-shaped mask, indicating the time interval.

sign a differentiable mask generator to transform the center
and the length, (∆p+p, ℓ), into a temporal mask, m ∈ RTs ,
which indicates the time interval of the proposal. The ele-
ment mt of the temporal mask at the t-th timestamp is:

mt =

{
1, if t ∈ [ŝ, ê],

0, if t /∈ [ŝ, ê].
(3)

Although mathematically simple, such a direct transforma-
tion is non-continuous at the two action boundaries, which
makes it non-differentiable and hence infeasible to back-
propagate training errors for model optimization.

To solve the non-differentiable issue, we propose two so-
lutions. The first is to approximate Eq. (3) by a learnable
network, and the second is to replace the gate-shaped mask
with a Gaussian-shaped mask. The empirical comparison in
Table 5 shows that the learnable approximation solution is
better than the Gaussian-shaped solution. To implement the
learnable approximation solution, the gate-approximation
network is trained independently of the location estimation
stage. In other words, during the end-to-end training of the
location estimation stage, we freeze the weights of the gate-
approximation network, so that it works as a deterministic
network to transform the two-dimensional proposal into the
Ts-dimensional approximate gate-shaped mask.

To train this gate-approximation network, we need to
randomly simulate enough paired training data. As demon-
strates in Figure 3, the input data is a two-dimensional sim-
ulated proposal, representing the center and the length. For
each simulated proposal, based on Eq. (3), we calculate the
corresponding Ts-dimensional gate-shaped temporal mask
as its ground-truth label. That is, we assign positive labels
to all frames inside the proposal interval, and negative labels
to all frames outside the interval. We also use the weighted
cross-entropy loss to optimize the network:

Lmask =
1

T+
s

∑

t∈Λ+

H(mt, m̂t) +
1

T−
s

∑

t∈Λ−

H(mt, m̂t),

(4)
where mt ∈ {0, 1} and m̂t ∈ [0, 1] are the mask label and

the network output of the t-th timestamp, H denotes the
regular cross-entropy loss, Λ+ and Λ− are the positive and
negative sample sets, T+

s and T−
s are the number of positive

and negative samples, respectively.
Foreground/Background Feature Aggregator. Given

the output temporal mask m̂ of the mask generator, we use
it to filter out all action-related features, then calculate the
clip-level foreground action features by temporal pooling:

xfg =
1

Ts

Ts∑

t=1

m̂txt ∈ RD, (5)

where xt ∈ RD is the feature of the video clip at the t-th
timestamp, m̂t is the temporal mask of the t-th timestamp.
Similarly, the complement temporal mask 1− m̂ is used to
calculate the clip-level background feature:

xbg =
1

Ts

Ts∑

t=1

(1− m̂t)xt ∈ RD. (6)

Classifier. Given the clip-level foreground feature xfg

and the clip-level background feature xbg, we use a clas-
sifier to classify them, so that the location estimation stage
can be supervised by category labels. To better distinguish
foreground actions from the background, we carry out ac-
tion classification and background modeling [27, 11]. For-
mally, the classifier is fed with xfg (xbg), then outputs the
clip-level foreground classification probability ŷfg ∈ RC+1

(the clip-level background-aware probability ŷbg ∈ RC+1),
where C is the total number of action categories and the
additional one denotes the background category.

To optimize the classifier, we adopt the regular cross-
entropy loss between the predicted classification probability
and the corresponding ground-truth label:

Lcls = Lbg + βLfg = H(ybg, ŷbg) + βH(yfg, ŷfg), (7)

where H is the regular cross-entropy loss, β is a trade-off
hyperparameter, yfg = [y1, ..., yC , 0]T ∈ RC+1 and ybg =
[0, ..., 0, 1]T ∈ RC+1 are the foreground classification label
and the background-aware label, respectively.

3.5. Inference

At testing time, different from previous methods [21, 11,
31], our framework does not need complex post-processing,
e.g., non-maximum suppression. For a given video, we first
use the instance counting stage to detect seedframes, then
based on these seedframes, divide the whole video into mul-
tiple video clips, so that each video clip contains only one
complete seedframe. For each clip, we feed it into the loca-
tion estimation stage to generate a proposal, thus obtaining
the time interval of the action instance. And the classifier
is used to predict the action category of the proposal. Each
proposal is scored with the seedframe probability.
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Table 1. Comparison with the state-of-the-art methods on THUMOS14. In addition to manually annotated single-frame labels, we also use
the simulated single-frame labels, which are sampling from the ground-truth boundary labels through a uniform distribution. Our results
significantly surpass the competitors under two types of single-frame labels, revealing the effectiveness of our method. TS [36], UNT [39],
and I3D [3] denote three different feature extractors. AVG denotes the average mAP at IoU thresholds 0.1:0.1:0.7.

Supervision Method Feature
mAP@IoU

AVG
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Full

SSN [49] TS 66.0 59.4 51.9 41.0 29.8 19.6 10.7 39.77
BSN [18] TS - - 53.5 45.0 36.9 28.4 20.0 -

A2Net [44] I3D 61.1 60.2 58.6 54.1 45.5 32.5 17.2 47.03
BU-TAL [48] I3D 58.2 56.8 53.9 50.7 45.4 38.0 28.5 47.36
PGCN [30] I3D 69.5 67.8 63.6 57.8 49.1 - - -

SALAD [37] I3D 73.3 70.7 65.7 57.0 44.6 - - -
AFSD [15] I3D - - 67.3 62.4 55.5 43.7 31.1 -

Weak
Video-level

STPN [26] I3D 52.0 44.7 35.5 25.8 16.9 9.9 4.3 27.01
WTALC [28] I3D 55.2 49.6 40.1 31.1 22.8 14.8 7.6 31.60
CMCS [19] I3D 57.4 50.8 41.2 32.1 23.1 15.0 7.0 32.37

BM [27] I3D 64.2 59.5 49.1 38.4 27.5 17.3 8.6 37.80
BaSNet [11] I3D 58.2 52.3 44.6 36.0 27.0 18.6 10.4 35.30
TSCN [46] I3D 63.4 57.6 47.8 37.7 28.7 19.4 10.2 37.83
DGAM [31] I3D 60.0 54.2 46.8 38.2 28.8 19.8 11.4 37.03
A2CL [23] I3D 61.2 56.1 48.1 39.0 30.1 19.2 10.6 37.76

Weak
Single-frame

Uniform
ARST [24] UNT 24.3 19.9 15.9 12.5 9.0 - - -
SF-Net [21] I3D 68.3 62.3 52.8 42.2 30.5 20.6 12.0 41.24

Ours I3D 70.2 63.5 55.6 44.7 32.3 22.0 12.3 42.93

Manual
SF-Net [21] I3D 71.0 63.4 53.2 40.7 29.3 18.4 9.6 40.80

Ours I3D 72.8 64.9 58.1 46.4 34.5 21.8 11.9 44.34

3.6. Discussion and Comparison

Compared to the existing STAL method [21], our method
is novel from two aspects. First, the training framework is
different. The existing method couples the counting goal
and the localization goal in a one-stage framework, causing
inferior solutions to both goals; while our method designs a
two-stage framework to strategically divide the STAL task
into many sub-tasks, then separately conquer each sub-task.
Second, given a video clip containing a complete instance,
the output representation is different. The existing method
adopts the frame-based representation, causing serious false
positives and trivial actions; while our method considers the
efficient proposal-based representation, which has a smaller
solution space and temporal smoothness constraints.

Compared to fully-supervised methods, our method con-
siders a similar representation but is novel in terms of the
supervision setting. The limited single-frame supervision
pushes us to explore an original two-stage training frame-
work, with the spirit of divide and conquer. We separately
exploit location supervision and category supervision for
these two stages. And a novel mask generator is further de-
signed to optimize this representation with category labels.

4. Experimental Results
4.1. Datasets and Evaluation

We conduct experiments on the following three datasets.
For the sake of fairness, we adopt the single-frame labels

provided by SF-Net [21] during training.
THUMOS14 [7] contains 413 untrimmed sports videos,

which belong to 20 action categories. Following the con-
vention, we train on 200 validation videos and evaluate on
213 testing videos. There are total 3007 single-frame an-
notations available for training, and each video contains an
average of 15 action instances. Besides, action lengths and
video lengths vary widely, making this dataset particularly
challenging. BEOID [5] covers 58 videos in 34 categories.
Following [21, 24], we set the proportion of training and
testing videos to 80-20%, and obtain 594 single-frame an-
notations. GTEA [13] records 7 fine-grained actions in the
kitchen. There are 28 videos in total, divided into 21 videos
for training and 7 videos for testing. Each training video
contains 17.5 single-frame labels on average.

Evaluation Metrics. We follow the standard protocols
to evaluate with mean Average Precision (mAP) under dif-
ferent intersection over union (IoU) thresholds. And a pro-
posal is regarded as positive only if both IoU exceeds the
set threshold and the category prediction is correct.

4.2. Implementation Details

Feature Extraction. Following previous literature [21,
28, 19], we first split each untrimmed video into multiple
frames (snippets), then extract optical flow via TV-L1 algo-
rithm [40]. The video length T is set to 2500, 360, and 128
on THUMOS14, BEOID, and GTEA. We adopt the clas-
sic two-stream I3D network [3] pre-trained on Kinetics [3]
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Table 2. Comparison on GTEA and BEOID. On both datasets, our
method achieves the state-of-the-art performance. AVG denotes
the average mAP at IoU thresholds 0.1:0.1:0.7.

Dataset Method
mAP@IoU

AVG
0.1 0.3 0.5 0.7

GTEA

SF [21] 50.0 35.6 21.6 17.7 30.5
SFB [21] 52.9 34.9 17.2 11.0 28.0

SFBA [21] 52.6 32.7 15.3 8.5 26.4
SF-Net [21] 58.0 37.9 19.3 11.9 31.0

Ours 59.7 38.3 21.9 18.1 33.7

BEOID

SF [21] 54.1 24.1 6.7 1.5 19.7
SFB [21] 57.2 26.8 9.3 1.7 21.7

SFBA [21] 62.9 36.1 12.2 2.2 27.1
SF-Net [21] 62.9 40.6 16.7 3.5 30.1

Ours 63.2 46.8 20.9 5.8 34.9

as the feature extractor. After obtaining RGB and flow fea-
tures, we concatenate them along the feature dimension, and
get a 2048-dimensional vector for each frame.

Parameter Settings. For all datasets, we optimize our
method by Adam [9] with a learning rate of 10−4. For
the hyperparameter β in Eq. (7), we set it to 2 on GTEA,
1.25 on BEOID and THUMOS14. The threshold θ is set
to 0, 0.01, and 0.15 on GTEA, BEOID, and THUMOS14.
The length of video clips Ts is set to 128 on THUMOS14,
64 on BEOID, and 32 on GTEA. To separately train the
gate-approximation network, we simulate 0.1 million paired
data, then optimize by Adam with a learning rate of 10−5.
The specific network architectures and more details are re-
ported in the supplementary material.

4.3. Comparison with state-of-the-art methods

Table 1 compares our method with current state-of-the-
art methods on THUMOS14. In addition to manually an-
notated single-frame labels, SF-Net [21] also provides the
simulated single-frame labels, which are sampled from the
ground-truth boundary labels via a uniform distribution.

Under two types of the single-frame labels, our method
achieves gratifying results and demonstrates the effective-
ness. Notably, when using manually annotated labels, our
method significantly outperforms the state-of-the-art STAL
method [21] with a substantial gain of 3.5% average mAP,
bridging the gap between single-frame supervision and full
supervision by a large margin. Moreover, our method even
surpasses several fully-supervised counterparts [49, 48, 18]
at some low IoU thresholds. The main reason is that these
fully-supervised methods utilize the weaker feature extrac-
tor [36] or the weaker classifier in [39]. And due to the lack
of precise frame-level supervision, our performance drops
significantly as the IoU threshold increases.

Table 2 quantitatively compares our method with previ-
ous methods on GTEA and BEOID. SF, SFB, and SFBA
are three benchmark models designed in SF-Net [21]. On

Table 3. Evaluation of divide and conquer on THUMOS14. Com-
paring (B) to (A), dividing the STAL task into multiple sub-tasks
by a two-stage framework brings a significant improvement. Com-
paring (C) to (B), the proposal-based representation outperforms
the frame-based representation in the location estimation stage.

ID Division Representation
mAP@IoU

AVG
0.3 0.5 0.7

(A) no frame-based 51.7 29.3 9.2 39.6
(B) yes frame-based 55.2 30.7 9.8 41.7
(C) yes proposal-based 58.1 34.5 11.9 44.3

Table 4. Ablation studies of the location estimation stage on THU-
MOS14. ∆p is the center offset, Lfg and Lbg are the foreground
classification loss and the background-aware loss in Eq. (7). AVG
is the average mAP at IoU thresholds 0.1:0.1:0.7. All components
are effective and essential to achieve the best performance.

Lfg Lbg ∆p
mAP@IoU

AVG
0.3 0.5 0.7

✓ 51.9 27.2 8.0 38.7
✓ ✓ 57.1 33.8 11.5 43.8
✓ ✓ 53.0 28.1 8.7 39.6
✓ ✓ ✓ 58.1 34.5 11.9 44.3

Table 5. Comparison of the mask generator. AVG denotes the aver-
age mAP at IoU thresholds 0.1:0.1:0.7. The ‘Gate-approximation’
network is superior to the ‘Gaussian-shaped’ mask.

Solution
mAP@IoU

AVG
0.3 0.5 0.7

Gaussian-shaped 56.8 31.5 10.6 42.7
Gate-approximation 58.1 34.5 11.9 44.3

GTEA, our method achieves a new state-of-the-art perfor-
mance, with a considerable improvement of 2.7% average
mAP. On BEOID, our method surpasses the best competitor
by 4.8% in terms of the average mAP.

4.4. Ablation Studies and Comparison

Effectiveness of divide and conquer. Table 3 evaluates
the effectiveness of the instance counting stage and the loca-
tion estimation stage. (A): The baseline is a traditional one-
stage framework using the frame-based representation. Its
optimization and post-processing setting are similar to [21].
(B): We add the instance counting stage to the baseline, thus
turning the one-stage framework into the two-stage frame-
work. That is, first divide the whole video into several video
clips by detecting seedframes, ensuring each video clip only
contains one complete seedframe; then use the frame-based
representation to localize the action instance in each video
clip. (C): Based on (B), replace the frame-based represen-
tation with the proposal-based representation.

Comparing (B) to (A), there yields a significant boost in
performance, with a gain of 2.1% average mAP. This phe-
nomenon indicates that dividing the STAL task by detecting
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