
Gated3D: Monocular 3D Object Detection

From Temporal Illumination Cues

Frank Julca-Aguilar1* Jason Taylor1* Mario Bijelic2,3 Fahim Mannan1 Ethan Tseng3 Felix Heide1,3

1Algolux 2Mercedes-Benz AG 3Princeton University

Abstract

Today’s state-of-the-art methods for 3D object detec-

tion are based on lidar, stereo, or monocular cameras.

Lidar-based methods achieve the best accuracy, but have

a large footprint, high cost, and mechanically-limited an-

gular sampling rates, resulting in low spatial resolution at

long ranges. Recent approaches using low-cost monocu-

lar or stereo cameras promise to overcome these limita-

tions but struggle in low-light or low-contrast regions as

they rely on passive CMOS sensors. We propose a novel 3D

object detection modality that exploits temporal illumina-

tion cues from a low-cost monocular gated imager. We in-

troduce a novel deep detection architecture, Gated3D, that

is tailored to temporal illumination cues in gated images.

This modality allows us to exploit mature 2D object feature

extractors that guide the 3D predictions through a frustum

segment estimation. We assess the proposed method ex-

perimentally on a 3D detection dataset that includes gated

images captured over 10,000 km of driving data. We val-

idate that our method outperforms state-of-the-art monoc-

ular and stereo methods, opening up a new sensor modal-

ity as an avenue to replace lidar in autonomous driving.

https://light.princeton.edu/gated3d

1. Introduction

3D object detection is a fundamental vision task in

robotics and autonomous driving. Accurate 3D detections

are critical for safe trajectory planning, with applications

emerging across disciplines such as autonomous drones, as-

sistive and health robotics, as well as warehouse and de-

livery robots. RGB-D cameras using correlation time-of-

flight [22, 29, 34], such as Microsoft’s Kinect One, enable

robust 3D detection indoors [55, 56] for small ranges. In the

past, autonomous driving, which requires long ranges and

high depth accuracy, has relied on scanning lidar for 3D de-

tection [50, 60, 15, 64, 35, 11, 68, 30, 33]. However, while

lidar provides accurate depth, existing systems are funda-

mentally limited by point-by-point acquisition, resulting in

*indicates equal contribution.

spatial resolution that falls off quadratically with distance

and linearly with frame rate. In contrast to conventional

cameras, lidar systems are three orders of magnitude more

expensive, suffer from low resolution at long distances, and

fail in the presence of strong back-scatter, e.g. in snow or

fog [3].

Promising to overcome these challenges, a recent line

of work proposed pseudo-lidar sensing [61], which relies

on low-cost sensors, such as stereo [10, 7, 27] or monoc-

ular [9, 20, 14] to recover dense depth maps from conven-

tional intensity imagers. Point-clouds are sampled from the

depth maps and ingested by 3D detection methods that op-

erate on point-cloud representations [33, 68]. More recent

methods predict 3D boxes directly from the passive input

images [36, 4, 54]. Although all of these methods promise

low-cost 3D detection with the potential to replace lidar,

they rely on passive camera-only sensing. Passive stereo

approaches degrade at long ranges, where disparities are

small, and in low-light scenarios, e.g. at night, when stereo

or monocular depth cues are less visible.

In this work, we introduce the first 3D object detection

method using gated imaging and evaluate this as a low-

cost detection method, outperforming recent monocular and

stereo detection methods. Similar to passive approaches,

we use CMOS sensors but add active temporal illumina-

tion. The proposed gated imager captures illumination dis-

tributed in three wide gates (> 30 m) for all sensor pixels.

Gated imaging [25, 5, 2, 63, 49, 1, 21] allows us to capture

several dense high-resolution images distributed continu-

ously across the distances in their respective temporal bin.

Additionally, back-scatter can be removed by the distribu-

tion of early gates. Whereas scanning lidar trades off tem-

poral resolution with spatial resolution and signal-to-noise

ratio (SNR), the sequential acquisition of gated cameras

trades off dense spatial resolution and SNR (i.e. wide gates)

with coarse temporal resolution. We demonstrate that the

temporal illumination variations in gated images are a depth

cue naturally suited for 3D object detection. Operating on

2D gated slices allows us to leverage existing 2D object de-

tection architectures to guide the 3D object detection task

with a novel frustum segmentation. The proposed archi-

tecture further exploits gated images by disentangling the
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Figure 1: We propose a novel 3D object detection method, “Gated3D”, which uses a flood-illuminated gated camera. The

high resolution of gated images enables semantic understanding at long ranges. In the figure, our gated slices are color-coded

with red for slice 1, green for slice 2 and blue for slice 3. We evaluate Gated3D on real data collected with a Velodyne

HDL64-S3D scanning lidar as reference, as seen in the overlay on the right.

semantic contextual features from depth cues in the gates

through a two stream feature extraction. Relying on the re-

sulting high-resolution 2D feature stacks, the method out-

performs existing methods especially at long ranges. Al-

though the proposed architecture is trained using only gated

images as input, it naturally supports fusion with other ex-

isting depth modalities, e.g. from RGB stereo or lidar depth

maps. The method runs at real-time frame rates and outper-

forms existing passive imaging methods, independent of the

ambient illumination – promising low-cost CMOS sensors

for 3D object detection in diverse automotive scenarios.

Specifically, we make the following contributions:

• We formulate the 3D object detection problem as a re-

gression from a frustum segment, computed using 2D

detection priors and the object dimension statistics.

• We propose a novel end-to-end deep neural network

architecture that solves this regression with depth cues

and semantic features from gated images.

• We validate the proposed method on real-world driv-

ing data acquired in challenging automotive scenarios.

The proposed approach detects objects with high ac-

curacy up to 80 m, outperforming existing monocular,

stereo and pseudo-lidar low-cost methods.

• We provide 3D annotations for gated data captured in

northern Europe, along with code and models.

As an example, Figure 1 shows experimental results of

the proposed method. The gated image contains dense in-

formation on objects further away in the scene. The advan-

tage of gated sensors for nighttime scenes is also demon-

strated in this example, where the pedestrians are not clearly

visible in the RGB image.

2. Related Work

Depth Sensing and Estimation. Passive acquisition meth-

ods for recovering depth from conventional intensity images

operate on single monocular images [8, 20, 32, 14, 48, 4],

temporal sequences of monocular images [28, 58, 59, 67],

or on multi-view stereo images [23, 51, 7, 44, 36]. These

methods all suffer in low-light and low-contrast scenes. Ac-

tive depth sensing overcomes these limitations by actively

illuminating the scene, and scanning lidar [50] has emerged

as an essential depth sensor for autonomous driving, inde-

pendent of ambient lighting. However, the spatial resolution

of lidar is fundamentally limited by the sequential point-by-

point scanning frame rate and the sensor cost is significantly

higher. Recently, gated cameras were proposed as an alter-

native for dense depth estimation [21]. Although promising

depth estimates have been demonstrated with gated cam-

eras, local artefacts and low-confidence regions in outputs

from Gruber et al. [21] call into question if its performance

for high-quality scene understanding tasks could surpass

that of recent monocular and stereo-based methods – a gap

addressed in this work in an end-to-end fashion by directly

processing the gated input slices.

CNN 2D Object Detection. Convolutional neural networks

(CNNs) for efficient 2D object detection have outperformed

classical methods that rely on hand-crafted features by a

large margin [47]. The key concept behind such learned ob-

ject detectors is the classification of image patches at vary-

ing positions and scales [52]. Discretized grid cells and pre-

defined object templates (anchor boxes) are regressed and

classified by fully-convolutional network architectures [40].

To this end, two popular directions of research have been

explored: single-stage [39, 46, 26, 38] and proposal-based

two-stage detectors [19, 18, 47]. Two-stage approaches

such as R-CNN [19] and Faster R-CNN [47] generate re-

gion proposals for objects in the first stage followed by ob-

ject classification and bounding box refinement in the sec-

ond stage [19]. Single-stage detectors such as SSD [39] and

YOLO [46] directly predict the final detections and are usu-

ally faster than two-stage detectors but with lower accuracy.

Recently, RetinaNet [38] proposed a focal loss that effec-

tively down-weights easily-classified background examples

and showed that single-stage detectors trained with this loss

can match two-stage detectors in terms of accuracy.
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3D Object Detection. A large body of work on 3D ob-

ject detection has explored different scene and measurement

representations. For lidar point cloud data, one direction is

to rely on voxel-based representations [60, 15, 68, 12, 53].

Unfortunately, the computational cost of the 3D convo-

lutions required for voxel-based approaches is prohibitive

for real-time processing [60, 15]. Alternatively, the height

dimension of the voxel grid can be collapsed into fea-

ture channels with 2D convolutions performed in the BEV

plane [64, 33, 41], trading off height information for com-

putational efficiency.

Although existing state-of-the-art methods rely on lidar,

recent work aims to close the performance gap with low-

cost passive sensors due to the limitations of scanning li-

dar, such as cost, size, low angular resolution and failure in

back-scatter.

Earlier work on monocular [9, 54, 4, 6, 31] and stereo

[36] methods leveraged convolutional architectures from

2D object detection, extracting depth information from

stereo disparity, geometric constraints, or object dimen-

sions [6, 31] in an end-to-end fashion. We integrate these

concepts into a frustum segment-based approach that im-

proves depth prediction.

More recently, pseudo-lidar [61] showed that point cloud

input representations can be used with passive imaging ap-

proaches by first estimating depth maps. Several methods

have since followed this approach with monocular [62, 43]

and stereo [65] depth estimation. PatchNet [42] proposed

that the advantage of pseudo-lidar is its explicit depth in-

formation in its input rather than the point cloud representa-

tion. Instead, PatchNet uses a 2D convolutional architecture

with the estimated (x,y,z) coordinates of each pixel as its

input. Estimating the depth prior to the detection network

effectively disentangles depth information from object ap-

pearance, improving the detection accuracy.

In this work, we propose a method for 3D detection using

2D gated images, offering a low-cost solution comparable

to passive sensors with improved detection accuracy. This

input representation allows us to leverage the rich body of

efficient 2D convolutional architectures for the task of 3D

object detection, while the gated slices represent depth more

effectively than RGB images.

3. Gated Imaging

Gated imaging is an emerging sensor technology for self-

driving cars which relies on active flash illumination to al-

low for low-light imaging (e.g. night driving) while reduc-

ing back-scatter in adverse weather situations such as snow

or fog [21].

As shown in Figure 2, a gated imaging system consists

of a flood-illuminator and synchronized gated image sen-

sor that integrates photons falling in a window of round-trip

path-length ξc, where ξ is a delay in the gated sensor and

Pulsed Laser

Gated Sensor
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C
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Gated Slice 1 Gated Slice 2 Gated Slice 3

Figure 2: A gated system consists of a pulsed laser

source and a gated imager that are time-synchronized. The

range-intensity profile (RIP) Ci(r) describes the distance-

dependent illumination for a slice i. A car at a certain dis-

tance appears with a different intensity in each slice accord-

ing to the RIP.

c is the speed of light. Following [21], the range-intensity

profile (RIP) C(r) describes the distance-dependent inte-

gration, which is independent of the scene and given by

C (r) =

∞
∫

−∞

g (t− ξ) p

(

t−
2r

c

)

β (r) dt, (1)

where g is the temporally modulated camera gate, p the

laser pulse profile and β models atmospheric interactions.

Assuming now a scene with dominating lambertian reflec-

tor with albedo α at distance r̃, the measurement for each

pixel location is obtained by

z = αC(r̃) + ηp (αC(r̃)) + ηg, (2)

where ηp describes the Poissonian photon shot noise and ηg

the Gaussian read-out noise [16]. In this work, we capture

three images Zi ∈ N
height×width for i ∈ {1, 2, 3} with differ-

ent profiles Ci(r) that encode depth into these three slices.

4. 3D Object Detection from Gated Images

Next, we introduce Gated3D, a novel model for detect-

ing 3D objects from temporal illumination cues in gated im-

ages. Given three gated images, Gated3D determines the

3D object location, dimensions, orientation and class.

Architecture Overview The proposed architecture is il-

lustrated in Figure 3. Our model is composed of a 2D de-

tection network, based on Mask R-CNN [24], and a 3D de-

tection network designed to effectively integrate semantic,

contextual, and depth information from gated images. Our

model is trained end-to-end using only 3D bounding box

annotations with no additional depth supervision. However,

we also investigate the use of depth maps as a training sig-

nal. Although we focus on depth maps from gated-based

modality, depth maps can also be generated from RGB or

stereo images. Through this experimentation, we then show

how our model can potentially be integrated with modalities

that can add features orthogonal to gated cues.
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The 2D detector predicts bounding boxes that guide the

feature extraction with a FPN [37] backbone. These 2D

boxes are used to estimate frustum segments that constrain

the 3D location. In addition to these geometric estimates,

the 3D detection network receives the cropped and resized

regions of interest extracted from both the input gated slices

and the backbone features. To extract contextual, seman-

tic and depth information from the temporal intensity varia-

tions of the gated images, our 3D detection network applies

two separate convolution streams: one for the backbone fea-

tures and another for the gated input slices. The resulting

features are fed into a sequence of fully-connected layers

that predict 3D object location, dimensions, and orientation.

The remainder of this section details our proposed 2D

object detection network 4.1, 3D prediction network archi-

tecture 4.2 and the loss functions for training 4.3.

4.1. 2D Object Detection Network

The proposed 2D detection network uses a FPN [37] as

a backbone and RoIAlign for extracting crops of both the

features and input gated slices. We extract features maps

P2, P3, P4 and P5 of the backbone, as defined in [37].

Our 2D object detection network follows a two-stage ar-

chitecture, where the final 2D box detections are refined

from proposals output by a region proposal network (RPN).

In contrast to Mask RCNN [24], we use these 2D detec-

tions instead of the RPN proposals for 3D detection. Using

the refined 2D detections allows the 3D box prediction net-

work to obtain more precise region features, especially from

the input gated slices, and a more precise frustum segment,

which is essential for depth estimation.

4.2. 3D Object Detection Network

Our 3D prediction network fuses the extracted features

from both the input gated slices and the backbone features.

The gated stream extracts depth cues from the cropped

gated input slices with a sequence of convolutions per slice,

without parameter sharing. These convolutions consist of

three layers with 3 × 3 × 16, 3 × 3 × 32 and 3 × 3 × 32
kernels. The network fuses the three gated features and the

backbone features by concatenating along the channel di-

mension and processing with 5 residual layers. Instead of

pooling or flattening the resulting features, an attention sub-

network produces softmax attention maps for each feature

channel which are used for a weighted sum over the height

and width of the features. The resulting feature vectors are

fed into two fully connected layers, followed by a final layer

that generates eight 3D bounding box coefficients.

We denote an object’s predicted 2D bounding box as

P = (c, u, v, wu, hv), where c is object’s class, (u, v) is

the bounding box center, and (wu, hv) define its height and

width, respectively. The 3D detection network takes P and

estimates a set of parameters Q, that define a 3D bounding

box whose projection is given by P . The problem of esti-

mating Q is ill-posed as given a specific 2D bounding box

P , there are an infinite number of 3D boxes that can be pro-

jected to P . However, we can restrict the range of locations

of Q to a segment of the 3D viewing frustum extracted from

P , using the object’s approximate dimensions and P . See

Figure 4 for an illustration.

Estimating the 3D location is aided by a frustum region

similar to [45]. For lidar data, a frustum suffices to define

an object in 3D space as lidar provides depth values. In our

case, we only have data in the image space, without abso-

lute depth value. Instead of considering the whole frustum

as in [45], we leverage the camera calibration and object di-

mensions in the training set to guide depth estimation. This

idea is illustrated in Figure 4, where a person is located at

different distances relative to the camera. Using the object

height and 2D bounding box projection, we can estimate

the distance to the camera through triangulation. Assuming

a bounded height, we can accurately estimate the segment

of the frustum where the object is located. In the example

in Figure 4 we define the minimum and maximum height

values to be 1.5m and 2m.

For each 2D bounding box P = (c, u, v, wu, hv) gen-

erated by the 2D detection network, our 3D bounding

box network is trained to estimate the parameters Q′ =
(δu′, δv′, δz′, δh′, δw′, δl′, θ′), which encode the location

(x, y, z), dimensions (h,w, l), and orientation (θ′) of a 3D

bounding box as follows

3D Location. We estimate the objects location (x, y, z)
using its projection over the image space, as well as a frus-

tum segment. Specifically, we define the target δu′, δv′ val-

ues as

δu′ = (Proj2du(x, y, z)− u)/wu (3)

δv′ = (Proj2dv(x, y, z)− v)/hv, (4)

where Proj2du(x, y, z), P roj2dv(x, y, z) represent the

u, v coordinates of the 2D projection of (x, y, z) over the

image space.

To define the target z, we first define a frustum segment

used as a reference for depth estimation. Given an object

with height h, we can estimate the object distance to the

camera with focal length fv as

f(hv, h) =
h

hv

fv. (5)

If we assume that h follows a Gaussian Distribution

with mean µh and standard deviation σh, given P =
(c, u, v, wu, hv) and fv , we can constrain the distance

from the object to the camera to a range of [f(hv, µh −
σh), f(hv, µh+σh)], or, more generally, we deduct that the

frustum segment has a length d

d = f(hv, µh + k ∗ σh)− f(hv, µh − k ∗ σh), (6)

where k is a scalar that adjusts the segment extent and is

inversely proportional to our prediction confidence.
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Figure 3: From three gated slices, the proposed Gated3D architecture detects objects and predicts their 3D location, dimen-

sion and orientation. Our network employs a 2D detection network to detect ROIs. The resulting 2D boxes are used to crop

regions from both the backbone network and input gated slices. Our 3D network estimates the 3D object parameters using a

frustum segment computed from the 2D boxes and 3D statistics of the training data. The network processes the gated slices

separately, then fuses the resulting features with the backbone features and estimates the 3D bounding box parameters. P,Q
denote ground-truth boxes, and P ′, Q′ denote predicted boxes.
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Figure 4: There is an infinite number of 3D cuboids that can

project to a given bounding box P . However, the object lo-

cation can be reasonably estimated using the object height,

its projected height, and the vertical focal length.

Following these observations, the z coordinate of the 3D

bounding box, δz′, is given as

δz′ =
z − f(hv, h)

d
. (7)

Thus, the model is trained to predict an offset δz′ between

the actual depth z and the approximate depth f(hv, h). Nor-

malization with depth d is key to estimate the absolute depth

of the objects. Intuitively, for higher distances z there is

greater localization uncertainty in the labels and as such, the

training loss needs to account for this proportionally. Note,

that this does not require the object to be inside the frustum

segment to be detected, but rather uses the frustum segment

length to scale the offset. There are no additional constraints

for different orientations or positions because the model can

learn these offset adjustments from data.

Analogous to 2D detectors, the frustum segment can be

considered as an anchor, except its position and dimen-

sions are not fixed, instead using the camera model and ob-

ject statistics to adjust accordingly. Note that other vehicle

types, such as buses, can be separate classes, as is conven-

tionally done in 2D object detection. We illustrate this point

and show generalization to different orientations and posi-

tions in the Supplemental Material.

During training, we use h from ground-truth; during in-

ference, we use the network prediction.

3D Box Dimensions and Orientation. The target 3D box

dimensions are estimated using δh′, δw′, δl′, which are de-

fined as the offset between the mean of the objects dimen-

sions, per class, and the true dimensions.

δp′ =
p− µp

µp

, ∀p ∈ {h,w, l}. (8)

To learn the target orientation (observation angle) θ′, the

orientation is encoded as (sinθ′ , cosθ′), and the network is

trained to estimate each parameter separately.

Additional Depth Map Inputs. We also investigate the

use of dense depth estimation as an additional training sig-

nal. Depth maps are estimated using the network proposed

in [21] and are integrated into the Gated3D architecture

in the second stage after RoIAlign cropping. Following

the same architecture as the gated crop feature extractor,

the depth map crop features are then concatenated with the

gated and backbone features.

4.3. Loss Functions

Given a 3D box parameters ground-truth box Q =
(δu, δv, δz, δh, δw, δl, sinθ, cosθ), and its corresponding

prediction Q′ = (δu′, δv′, δz′, δh′, δw′, δl′, θ′), we define

our overall loss L3D(Q,Q′) as
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L3D(Q,Q′) = α ·
∑

l∈{u,v,z}

Lloc(δl − δl′) +
∑

d∈{h,w,l}

Ldim(δd− δd′)

+ β · Lori(sinθ, cosθ, θ
′),

(9)
where Lloc is the location loss, Ldim is the dimensions

loss, and Lori(θ, θ
′) is the orientation loss. We use α and

β to weight the location and orientation loss, and define

these values during training. We define Lloc and Ldim as

SmoothL1, and Lori(sinθ, cosθ, θ
′) as

Lori(sinθ, cosθ, θ
′) = (sinθ − sin(θ′))2+(cosθ − cos(θ′))2.

(10)

The method runs at approximately 10 FPS on an Nvidia

RTX 2080 GPU in TensorFlow without implementation op-

timization such as TensorRT. We refer to the Supplemental

Material for additional method and implementation details.

5. Datasets

In this section, we describe the 3D object detection

dataset we use to train and evaluate Gated3D.

Sensor Setup. Since existing automotive datasets [57, 13,

17, 66] do not include measurements from gated cameras,

we use the dataset from Bijelic et al. [3] who collected gated

images, along with RGB, lidar and FIR data during a large-

scale data acquisition in Northern Europe. We combine

this dataset with additional validation and test data acquired

with a test vehicle with the same gated system BrightEye

from BrightwayVision:

• A gated CMOS pixel array of resolution 1280 px ×
720 px with a pixel pitch of 10 µm. Using a focal

length of 23 mm provides a horizontal and vertical field

of view of 31.1◦ H × 17.8◦ V.

• Two repetitive pulsed vertical-cavity surface-emitting

laser (VCSEL) which act as a pulsed illumination

source at a wavelength of 808nm, not visible to hu-

mans. The peak power is within eye safety regulations.

The source is mounted below the bumper of the vehi-

cle, see Figure 5.

The gated images consist of three exposure profiles as

shown in Figure 2, see gate settings (delay, laser duration,

gate duration) in the Supplemental Document. For each sin-

gle capture, multiple laser flashes are integrated before read-

out in order to increase the measurement signal-to-noise.

For comparison with state-of-the-art 3D detection ap-

proaches, following Bijelic et al.[3], we equip the test ve-

hicle with a Velodyne HDL64 lidar scanner and a stereo

camera. The stereo system consists of two cameras with

OnSemi AR0230 sensors mounted at 20.3 cm baseline. All

sensor specifications are listed in Figure 5.

3D Annotation and Dataset Split In addition to the data

from Bijelic et al. [3], which contains 13k gated images,

we capture an additional 2.5k gated images. We use the

Stereo Camera Velodyne HDL64-S3

Laser Source

Gated Camera

Gated Camera Stereo Camera Lidar

Sensor
BrightwayVision

BrightEye

2x OnSemi

AR0230

Velodyne

HDL64-S3D

Resolution 1280px×720px 1920px×1080px 1440”×612”

Wavelength 808 nm Color 905 nm

Frame Rate 120 Hz 30 Hz 10 Hz

Bit Depth 10 bit uint 12 bit uint 32 bit float

Figure 5: Sensor setup for recording the dataset used for

training and evaluating the proposed method. We also

capture corresponding lidar point clouds and stereo image

pairs. The stereo camera is located at approximately the

same position of the gated camera in order to ensure a sim-

ilar viewpoint.

collected raw data and additional vehicle data with a sim-

ilar system described above, and annotate 3D boxes using

the time-synced lidar measurements. The annotation and

capture procedures for the dataset are detailed in the Sup-

plement Document. The gated images have been manually

labeled with human annotators matching lidar, gated and

RGB frames simultaneously. In total, more than 100,000

objects are labeled, which comprise 4 classes. The anno-

tations were done over 15k image examples in total. To

minimize annotation issues with temporal shift between the

gated images and RGB images, we refine the RGB boxes

projected into the gated frames for frames that are tempo-

rally offset.

The dataset is randomly split into a training set of 10k

frames, a validation set of 1,000 frames and a test set of

4,441 frames. In addition to the gated images, our pro-

posed dataset contains corresponding RGB stereo images

captured by the stereo camera system described in the pre-

vious paragraph. We note that, in contrast to popular au-

tomotive datasets, including Waymo [57], KITTI [17] and

Cityscapes [13], our dataset is significantly more challeng-

ing as it also includes many nighttime images and captures

under adverse weather conditions such as snow and fog.

6. Assessment
Evaluation Setting. The BEV and 2D/3D detection met-

rics as defined in the KITTI evaluation framework are used

for evaluation, as well as the ones described by [64], which
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Table 1: Object detection performance over the experimental dataset (test split). Our method outperforms monocular and

stereo methods (bottom part of the table) over most of the short (0-30m), middle (30-50m) and long (50-80m) distance ranges,

as well as Pseudo-Lidar based methods trained over gated images. Interestingly, our model even outperforms PointPillars

lidar reference for Pedestrian detection at long distance ranges.

(a) Average Precision on Car class.

Method Modality

Daytime Images Nighttime Images

2D object detection 3D object detection BEV detection 2D object detection 3D object detection BEV detection

0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m

POINTPILLARS [33] Lidar 90.12 82.83 56.63 91.51 84.63 54.28 91.59 86.54 54.71 90.73 84.88 54.22 90.29 87.40 52.32 90.29 87.51 52.60

M3D-RPN [4] RGB 90.44 89.29 62.76 53.21 13.26 10.52 60.80 16.16 10.52 90.85 80.64 59.76 51.18 20.76 2.73 52.53 21.39 2.74

STEREO-RCNN [36] Stereo 81.56 81.07 78.08 54.17 17.16 6.17 57.92 17.69 6.26 81.73 81.03 70.85 47.36 17.21 13.02 53.81 18.34 13.08

PSEUDO-LIDAR Gated 81.74 81.33 80.88 26.17 16.06 10.27 26.94 17.26 10.87 89.35 89.02 88.31 36.58 23.05 19.88 39.50 28.68 22.82

PSEUDO-LIDAR++ [65] Gated 81.74 80.29 81.59 30.44 15.47 11.76 32.49 16.97 12.83 90.21 81.75 81.78 36.36 21.93 22.39 37.46 23.12 23.63

PATCHNET [42] Gated 90.46 81.74 89.78 23.91 10.86 7.34 24.87 11.33 7.84 90.87 89.86 88.89 23.74 16.79 7.16 25.15 17.76 8.29

Gated3D Gated 90.91 90.88 90.85 58.55 27.50 17.59 59.05 32.37 18.74 90.91 81.82 90.85 57.18 29.97 17.93 57.99 30.36 18.49

Gated3D w/ dense depth Gated 90.91 81.82 90.88 56.69 24.77 15.66 57.79 24.86 15.74 90.63 81.82 90.65 54.74 26.43 14.1 56.31 30.35 15.44

(b) Average Precision on Pedestrian class.

Method Modality

Daytime Images Nighttime Images

2D object detection 3D object detection BEV detection 2D object detection 3D object detection BEV detection

0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m

POINTPILLARS [33] Lidar 70.08 49.03 0.00 69.71 45.24 0.00 70.53 48.07 0.00 69.97 43.32 0.00 71.25 41.21 0.00 70.99 43.61 0.00

M3D-RPN [4] RGB 79.08 66.41 36.98 26.20 14.50 9.84 30.68 17.47 10.07 78.36 62.99 36.76 25.09 6.43 2.07 26.42 7.69 2.74

STEREO-RCNN [36] Stereo 88.57 75.63 59.82 48.58 23.26 7.77 50.11 25.10 8.38 80.38 69.13 60.94 46.09 21.63 11.57 47.58 25.47 11.84

PSEUDO-LIDAR Gated 77.87 78.38 69.11 6.19 4.59 2.15 10.28 9.14 4.13 80.34 78.61 67.78 7.53 9.58 1.62 14.27 15.72 5.55

PSEUDO-LIDAR++ [65] Gated 77.89 77.95 60.88 9.19 2.36 3.30 14.32 5.66 4.10 79.84 79.57 54.42 7.37 7.21 2.06 12.92 11.99 5.64

PATCHNET [42] Gated 90.48 80.75 69.56 32.88 18.05 5.62 39.45 20.27 9.77 81.50 88.62 65.43 15.37 13.37 6.75 21.60 18.15 8.46

Gated3D Gated 89.72 81.47 86.73 50.94 20.59 14.14 53.26 22.15 16.51 81.52 81.23 80.18 48.53 23.99 14.98 49.82 25.57 15.46

Gated3D w/ dense depth Gated 90.32 81.42 79.87 48.35 25.77 12.28 55.41 26.73 13.66 81.77 81.26 79.97 48.72 17.35 13.16 50.28 22.63 14.09

calculate the metrics with respect to distance ranges. Fol-

lowing Simonelli et al. [54], average precision (AP) is based

on 40 recall positions to provide a fair comparison. We con-

sider Pedestrian and Car as our target detection classes.

The 3D metrics are based on intersection over union

(IoU) between cuboids [11], which has the disadvantage of

equally penalizing completely wrong detections and detec-

tions with IoU below the threshold. Due to the emphasis

on challenging scenarios in the dataset, as well as imperfect

sensor synchronization, the dataset has notably more label

noise than typical public 3D object datasets. This problem

is mitigated by using lower IoU thresholds than in KITTI:

0.2 for Car and 0.1 for Pedestrian. To focus on detection

at different depth ranges, metrics based on difficulty as de-

fined in KITTI are provided in the Supplemental Document.

Baselines. We compare our approach to monocular,

stereo, lidar, and pseudo-lidar methods. As monocular

baseline, we evaluate M3D-RPN [4], which performs 3D

object detection from a single RGB image by “depth-aware”

convolution, where weights in one branch of the network

are shared across rows only, assuming objects higher up in

the image tend to be further away. As stereo method, we

evaluate STEREO-RCNN [36], which utilizes stereo image

pairs to predict left-right 2D bounding boxes and keypoints

that are then used to infer 3D bounding boxes using geo-

metric constraints. Recent pseudo-lidar methods allow us

to compare our method with recent state-of-the-art meth-

ods using the depth map as input, and therefore more di-

rectly assess the effectiveness of our model architecture in

extracting information from gated images. To this end, we

use the method from Gruber et. al. [21] to first generate

dense depth maps from gated images, back-project all the

pixels of the depth maps into 3D coordinates, and follow

[61] to perform 3D object detection using Frustum Point-

Net [45]. We also evaluate Pseudo-Lidar ++ [65] depth cor-

rection method from sparse lidar, downsampled from our 64

layered lidar to four lidar rays. Furthermore, we evaluate

PatchNet [42], which implements a pseudo-lidar approach

based on 2D image-based representation. As a lidar refer-

ence method for reference with known (measured) depth,

we evaluate POINTPILLARS [33].

We use the corresponding open source repositories and

tune the hyperparameters of each baseline model during

training over our dataset.

Experimental Validation. As described in Section 4, we

also experiment with the use of depth maps as a training

signal to our Gated3D model. In this experiment, we train

the Gated2Depth model in our dataset, extract and feed

the estimated depth maps from these trained models to our

Gated3D network. The Gated3D network then crops the re-

gions of interest from the depth maps, and fuses the features

with the gated and backbone features through an attention

mechanism, as illustrated in Figure 3.

Tables 1a and 1b, respectively, show Car and Pedestrian

AP for 2D, 3D and BEV detection on the test set. Overall,

our Gated3D model by itself obtains more robust perfor-

mance over the different category and daytime evaluation

settings, and using depth maps as an additional training sig-

nal slightly improves accuracy at near distances. Consistent

with prior work [36] both the monocular and stereo base-

lines show a drop in performance with distance. Monocular

and stereo cues for a small automotive baseline of 10 - 30cm

are challenging to find with increasing range.

The proposed GATED3D method offers a new im-
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Figure 6: Qualitative comparisons on the test dataset. Bounding boxes from the proposed method are tighter and more

accurate than the baseline methods. This is seen in the second image with the other methods showing large errors in pedestrian

bounding box heights. The BEV lidar overlays show our method offers more accurate depth and orientation than the baselines.

For example, the car in the intersection of the fourth image has a 90 degree orientation error in the pseudo-lidar and stereo

baselines, and is missed in the monocular baseline. The advantages of our method are most noticeable for pedestrians, as

cars are easier for other methods due to being large and specular (please zoom in on the electronic version for details).

age modality between monocular, stereo and lidar mea-

surements. The results demonstrate improvement over

intensity-only methods, especially for pedestrians and at

night. GATED3D excels at detecting objects at long dis-

tances or in low-visibility situations. Note that pseudo-lidar

and stereo methods can be readily combined with the pro-

posed method — a gated stereo pair may capture stereo

cues orthogonal to the gated cues exploited by the proposed

method. For additional ablation studies on the components

of Gated3D, please refer to the Supplemental Document.

Figure 6 shows qualitative examples of our proposed

method and state-of-the-art methods. The color-coded

gated images illustrate the semantic and space information

of the gated data (red tones for closer objects and blue for

farther away ones). Our method accurately detects objects

at both close and large distances, whereas other methods

struggle, particularly in the safety-critical application of de-

tecting pedestrians at night or in adverse weather.

7. Conclusions and Future Work
This work presented the first 3D object detection method

for gated images. As a low-cost alternative to lidar,

Gated3D outperforms recent stereo and monocular detec-

tion methods, including state-of-the-art pseudo-lidar ap-

proaches. We expand on CMOS sensor arrays used in pas-

sive imaging approaches by flood-illuminating the scene

and capture the temporal intensity variation in coarse tem-

poral gates. Gated images allow us to leverage existing 2D

feature-extraction architectures. We distribute the result-

ing features in the camera frustum along the correspond-

ing gate – a representation that naturally encodes geometric

constraints between the gates. The proposed method runs at

real-time rates and we validate the method experimentally,

demonstrating higher 3D object detection accuracy than ex-

isting monocular or stereo detection methods, including re-

cent stereo and monocular pseudo-lidar methods with simi-

lar cost to the proposed system.

We envision our work as a first step towards gated imag-

ing as a new sensing modality, beyond lidar, radar and cam-

era, for a broad range of tasks in robotics and autonomous

driving, including tracking, motion planning, SLAM, visual

odometry, and large-scale scene understanding.

Acknowledgements

Felix Heide was supported by NSF CAREER Award

(2047359) and a Sony Faculty Innovation Award. The work

received funding under the AI-SEE project which is a co-

labeled PENTA and EURIPIDES2 project endorsed by EU-

REKA. National Funding Authorities: Austrian Research

Promotion Agency (FFG), Business Finland, Federal Min-

istry of Education and Research (BMBF), National Re-

search Council of Canada Industrial Research Assistance

Program (NRC-IRAP).

2945



References

[1] Amit Adam, Christoph Dann, Omer Yair, Shai Mazor, and

Sebastian Nowozin. Bayesian time-of-flight for realtime

shape, illumination and albedo. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 39(5):851–864,

2017. 1

[2] Pierre Andersson. Long-range three-dimensional imaging

using range-gated laser radar images. Optical Engineering,

45(3):034301, 2006. 1

[3] Mario Bijelic, Tobias Gruber, Fahim Mannan, Florian Kraus,

Werner Ritter, Klaus Dietmayer, and Felix Heide. Seeing

through fog without seeing fog: Deep multimodal sensor fu-

sion in unseen adverse weather. CVPR, 2020. 1, 6

[4] Garrick Brazil and Xiaoming Liu. M3d-rpn: Monocular 3d

region proposal network for object detection. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 9287–9296, 2019. 1, 2, 3, 7

[5] Jens Busck. Underwater 3-D optical imaging with a gated

viewing laser radar. Optical Engineering, 2005. 1

[6] Yingjie Cai, Buyu Li, Zeyu Jiao, Hongsheng Li, Xingyu

Zeng, and Xiaogang Wang. Monocular 3d object detection

with decoupled structured polygon estimation and height-

guided depth estimation. Proceedings of the AAAI Con-

ference on Artificial Intelligence, 34(07):10478–10485, Apr.

2020. 3

[7] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo

matching network. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5410–

5418, 2018. 1, 2

[8] Richard Chen, Faisal Mahmood, Alan Yuille, and Nicholas J

Durr. Rethinking monocular depth estimation with adversar-

ial training. arXiv preprint arXiv:1808.07528, 2018. 2

[9] Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma,

Sanja Fidler, and Raquel Urtasun. Monocular 3d object de-

tection for autonomous driving. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2147–2156, 2016. 1, 3

[10] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Huimin Ma,

Sanja Fidler, and Raquel Urtasun. 3d object proposals us-

ing stereo imagery for accurate object class detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

40(5):1259–1272, 2017. 1

[11] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.

Multi-view 3d object detection network for autonomous

driving. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 1907–1915,

2017. 1, 7

[12] Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast

point r-cnn. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 9775–9784, 2019. 3

[13] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016. 6

[14] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map

prediction from a single image using a multi-scale deep net-

work. In Advances in Neural Information Processing Sys-

tems, pages 2366–2374, 2014. 1, 2

[15] Martin Engelcke, Dushyant Rao, Dominic Zeng Wang,

Chi Hay Tong, and Ingmar Posner. Vote3deep: Fast ob-

ject detection in 3d point clouds using efficient convolutional

neural networks. In 2017 IEEE International Conference on

Robotics and Automation (ICRA), pages 1355–1361. IEEE,

2017. 1, 3

[16] Alessandro Foi, Mejdi Trimeche, Vladimir Katkovnik, and

Karen Egiazarian. Practical poissonian-gaussian noise mod-

eling and fitting for single-image raw-data. IEEE Transac-

tions on Image Processing, 17(10):1737–1754, 2008. 3

[17] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3354–3361, 2012. 6

[18] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1440–1448,

2015. 2

[19] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

580–587, 2014. 2

[20] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2017. 1, 2

[21] Tobias Gruber, Frank D. Julca-Aguilar, Mario Bijelic,

Werner Ritter, Klaus Dietmayer, and Felix Heide.

Gated2depth: Real-time dense lidar from gated images.

CoRR, abs/1902.04997, 2019. 1, 2, 3, 5, 7

[22] Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Patrice

Horaud. Time-of-flight cameras: principles, methods and

applications. Springer Science & Business Media, 2012. 1

[23] Richard Hartley and Andrew Zisserman. Multiple view ge-

ometry in computer vision. Cambridge university press,

2003. 2

[24] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.

In 2017 IEEE International Conference on Computer Vision

(ICCV), pages 2980–2988, 2017. 3, 4

[25] Paul Heckman and Robert T. Hodgson. Underwater opti-

cal range gating. IEEE Journal of Quantum Electronics,

3(11):445–448, 1967. 1

[26] Lichao Huang, Yi Yang, Yafeng Deng, and Yinan Yu. Dense-

box: Unifying landmark localization with end to end object

detection. arXiv preprint arXiv:1509.04874, 2015. 2

[27] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter

Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.

End-to-end learning of geometry and context for deep stereo

regression. In Proceedings of the IEEE International Con-

ference on Computer Vision, 2017. 1

[28] Jan J. Koenderink and Andrea J. Van Doorn. Affine structure

from motion. Journal of the Optical Society of America A,

8(2):377–385, Feb 1991. 2

2946



[29] Andreas Kolb, Erhardt Barth, Reinhard Koch, and Rasmus

Larsen. Time-of-flight cameras in computer graphics. In

Computer Graphics Forum, volume 29, pages 141–159. Wi-

ley Online Library, 2010. 1

[30] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh,

and Steven L Waslander. Joint 3d proposal generation and

object detection from view aggregation. In IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, pages 1–8. IEEE,

2018. 1

[31] Jason Ku, Alex D. Pon, and Steven L. Waslander. Monoc-

ular 3d object detection leveraging accurate proposals and

shape reconstruction. 2019 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 11859–

11868, 2019. 3

[32] Yevhen Kuznietsov, Jörg Stückler, and Bastian Leibe. Semi-

supervised deep learning for monocular depth map predic-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2215–2223, 2017. 2

[33] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,

Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders

for object detection from point clouds. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 12697–12705, 2019. 1, 3, 7

[34] Robert Lange. 3D time-of-flight distance measurement

with custom solid-state image sensors in CMOS/CCD-

technology. 2000. 1

[35] Bo Li. 3d fully convolutional network for vehicle detection

in point cloud. In IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems, pages 1513–1518. IEEE, 2017. 1

[36] Peiliang Li, Xiaozhi Chen, and Shaojie Shen. Stereo r-cnn

based 3d object detection for autonomous driving. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2019. 1, 2, 3, 7

[37] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S.

Belongie. Feature pyramid networks for object detection.

In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 936–944, 2017. 4

[38] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2980–2988, 2017. 2

[39] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In Proceedings

of the IEEE European Conf. on Computer Vision, pages 21–

37. Springer, 2016. 2

[40] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3431–3440, 2015. 2

[41] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furious:

Real time end-to-end 3d detection, tracking and motion fore-

casting with a single convolutional net. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3569–3577, 2018. 3

[42] Xinzhu Ma, Shinan Liu, Zhiyi Xia, Hongwen Zhang, Xingyu

Zeng, and Wanli Ouyang. Rethinking pseudo-lidar represen-

tation. arXiv preprint arXiv:2008.04582, 2020. 3, 7

[43] Xinzhu Ma, Zhihui Wang, Haojie Li, Pengbo Zhang, Wanli

Ouyang, and Xin Fan. Accurate monocular 3d object detec-

tion via color-embedded 3d reconstruction for autonomous

driving. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 6851–6860, 2019. 3

[44] Andrea Pilzer, Dan Xu, Mihai Puscas, Elisa Ricci, and Nicu

Sebe. Unsupervised adversarial depth estimation using cy-

cled generative networks. In International Conference on

3D Vision (3DV), pages 587–595, 2018. 2

[45] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J

Guibas. Frustum pointnets for 3d object detection from rgb-d

data. pages 918–927, 2018. 4, 7

[46] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 779–788, 2016. 2

[47] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in Neural Information Pro-

cessing Systems, pages 91–99, 2015. 2

[48] Ashutosh Saxena, Sung H. Chung, and Andrew Y. Ng.

Learning depth from single monocular images. In Advances

in Neural Information Processing Systems, pages 1161–

1168, 2006. 2

[49] Michael Schober, Amit Adam, Omer Yair, Shai Mazor, and

Sebastian Nowozin. Dynamic time-of-flight. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 6109–6118, 2017. 1

[50] Brent Schwarz. Lidar: Mapping the world in 3D. Nature

Photonics, 4(7):429, 2010. 1, 2

[51] Steven M. Seitz, Brian Curless, James Diebel, Daniel

Scharstein, and Richard Szeliski. A comparison and evalua-

tion of multi-view stereo reconstruction algorithms. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 519–528, 2006. 2

[52] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Math-
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