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Abstract

Self-supervised monocular depth estimation has been
widely studied, owing to its practical importance and re-
cent promising improvements. However, most works suffer
from limited supervision of photometric consistency, espe-
cially in weak texture regions and at object boundaries. To
overcome this weakness, we propose novel ideas to improve
self-supervised monocular depth estimation by leveraging
cross-domain information, especially scene semantics. We
focus on incorporating implicit semantic knowledge into ge-
ometric representation enhancement and suggest two ideas:
a metric learning approach that exploits the semantics-
guided local geometry to optimize intermediate depth rep-
resentations and a novel feature fusion module that judi-
ciously utilizes cross-modality between two heterogeneous
feature representations. We comprehensively evaluate our
methods on the KITTI dataset and demonstrate that our
method outperforms state-of-the-art methods. The source
code is available at https://github.com/hyBlue/
FSRE-Depth.

1. Introduction

Depth measurement is a critical task in various appli-
cations, including robotics, augmented reality, and self-
driving vehicles. It measures the distance from all or a part
of the pixels in the imaging device to target objects using ac-
tive/passive sensors. Equipping such devices requires high
cost and continuous operation, which makes its use limited.
Monocular depth estimation estimates the depth of pixels
in a given 2D image without additional measurement. It
facilitates the understanding of 3D scene geometry from a
captured image, which closes the dimension gap between
the physical world and an image.

Because of its importance and cost benefits, there have
been lots of studies [53, 35, 33, 48, 67] that have improved
depth estimation accuracy, temporal consistency and depth
ranges. Owing to the success of the convolutional neural
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Figure 1: Depth predictions and error maps of recent state-
of-the-arts [14, 24]. Apart from ours, both lack accuracy in
low-texture regions and object boundaries, owing to weak
supervision using contemporary self-supervised training.

network, it has also been adapted to monocular depth esti-
mation and has produced great improvements.

Many existing monocular depth estimation methods train
their networks with supervised depth labels computed via
synthetic data or estimated from depth sensor [30, 9, 28,
25]. Although such methods have provided significant im-
provements in depth estimation, they still have multiple
concerns related to the high cost of labeling and obtain-
ing the depth labels on pixels, the limited available ground-
truth depth data, the restricted depth range of sampled data,
and the noticeable noise in the depth values. To avoid
these shortcomings, self-supervised training methods have
recently been proposed.

Notably, the SfM-Learner [64] method utilizes the en-
sembles of consecutive frames in video sequences for joint
training depth and pose networks. It demonstrates compa-
rable performance to extant supervised methods; however,
recent works [69, 39, 12, 2] based on SfM-Learner mostly
rely on photometric loss [54] and smoothness constraints;
hence, they suffer from limited supervision of weak texture
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regions. Furthermore, moving objects and uncertainty in
the pose network destabilize training, leading to incorrect
depth values, especially on object boundaries (see Fig. 1).

Several recent methods have attempted to overcome this
weakness by employing cross-domain knowledge learning,
including leveraging scene semantics to improve monocu-
lar depth predictions [24, 27, 13, 3]. They remove dynamic
objects or explicitly model the object motion from the se-
mantic instances to incorporate them into the scene geom-
etry. In addition, a regularization of the depth smoothness
within corresponding semantic objects enforces consistency
between depth and semantic predictions [4, 38, 65].

In this study, we aim to improve self-supervised monoc-
ular depth estimation via the implicit use of semantic seg-
mentation. We do not explicitly identify moving objects
or regularize depth values in accordance with the semantic
labels. Instead, we focus on representation enhancement,
optimizing the depth network in the representation spaces,
to produce semantically consistent intermediate depth rep-
resentations.

Inspired by the recent use of deep metric learning [52,
44, 23], we suggest a novel semantics-guided triplet loss
to refine depth representations according to implicit seman-
tic guidance. Here, our goal is to take advantage of local
geometric information from the scene semantics. For ex-
ample, the adjacent pixels within each object have similar
depth values, whereas those that cross semantic boundaries
may have large differences. Combined with a simple but ef-
fective patch-based sampling strategy, our metric-learning
approach exploits the semantics-guided local geometry in-
formation to optimize pixel representations near the object
boundary, thereby yielding improved depth predictions.

We also design a cross-task attention module for refin-
ing depth features more semantically consistent. It com-
putes the similarity between the reference and target fea-
tures through multiple representation subspaces and effec-
tively utilizes the cross-modal interactions among the het-
erogeneous representations. As a result, we quantify the
semantic awareness of depth features as a form of attention
and exploit it to produce better depth predictions.

Our contributions are summarized as follows. First, we
present a novel training method that extracts semantics-
guided local geometry with patch-based sampling and uti-
lizes it to refine depth features in a metric-learning formu-
lation. Second, we propose a new cross-task feature fusion
architecture that fully utilizes the implicit representations
of semantics for learning depth features. Finally, we com-
prehensively evaluate the performances of these two meth-
ods using the KITTI Eigen split and demonstrate that our
method outperforms recent state-of-the-art self-supervised
monocular depth prediction works in every metric.

2. Related Work
2.1. Depth Estimation with Neural Network

The recent success of neural networks has stimulated sig-
nificant improvements to monocular depth estimation as a
supervised regression method [30, 9, 25]. Recently, unsu-
pervised training methods have been actively investigated.
[11] used predicted disparity to synthesize a virtual im-
age and minimized its photometric loss for training. [64]
trained the depth network jointly with an additional pose
network, requiring only monocular sequences. Based on
these approaches, they have widely been tackled [12, 2, 57].
Many researchers have made further improvements along
multiple lines, such as regularizing consistency with opti-
cal flow [47, 69, 39, 60] or functional geometric constraints
between feature maps [45, 43].

Several recent works have proposed self-supervised
depth prediction with semantics. They have enforced cross-
task consistency and smoothness [4, 38, 65] and removed
dynamic objects [24] or explicitly modeled object mo-
tions [27, 13, 3]. [15] targeted semantics-aware represen-
tations for depth predictions, enabling it via knowledge
transfer from a fixed teacher segmentation network with
pixel-adaptive convolution [46]. In contrast, we design a
multi-task network with cross-task multi-embedding atten-
tion and semantics-guided triplet loss to successfully pro-
duce semantics-aware representation.

2.2. Neural Attention Network

[50, 8] designed a self-attention scheme that captures
long-range dependencies to resolve the locality of recur-
rent operations. They proposed multi-head attention for uti-
lizing information from different representation subspaces.
Recently, cross-attention schemes have been utilized to ex-
tract features across heterogeneous representations, such as
image, speech, and text [17, 55, 61]. Additionally, for self-
supervised depth estimation, [22, 62] applied self-attention
to capture the global context for estimating depth and com-
bining multi-scale features from dual networks. In this
study, inspired by the use of multi-head attention and cross
attention, we propose a novel method of judiciously utiliz-
ing cross-task features across depth and segmentation.

2.3. Multi-task Architecture

The combination of features from multiple tasks has
been widely used in recent multi-task architectures. [56,
49, 20] applied a convolutional layer to extract local infor-
mation from the reference task feature for multimodal distil-
lation. [63, 59, 21, 5] adopted affinity-guided message pass-
ing to propagate the relationship of spatially different fea-
tures within the reference task to the target one. Instead, we
propose a cross-task attention to fully utilize cross-modal
interactions between geometry and semantics.
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2.4. Deep Metric Learning

Deep metric learning [52, 44, 23] has been widely ap-
plied in various fields, such as face recognition [41, 18] and
image ranking [51, 34, 1]. Inspired by recent successes, we
propose a semantics-guided triplet loss to refine feature rep-
resentations for improving depth predictions by exploiting
implicit geometry from semantic supervision.

3. Methods
Here, we review our baseline approach, Mon-

odepth2 [12], and present our current methodology in the
following subsections.

3.1. Depth Estimation and Semantic Segmentation

3.1.1 Self-supervised Monocular Depth Estimation

Given consecutive RGB images, It−1 and It, one can pre-
dict Zt, the depth of every pixel on It, and compute a six
degree-of-freedom relative pose, Tt→t−1, using a pose net-
work. With known camera intrinsics, K ∈ R3x3, we can
derive the projected pixel coordinates and use them from
It−1 as:

p′ = KTt→t−1ZtK
−1p Ît = Wt(It−1, p

′), (1)

where p is the homogeneous coordinates of the pixel in It,
and p′ is the transformed coordinates of p by Tt→t−1. W (·)
is a sub-differentiable bilinear sampler [19] that obtains
nearby pixels at p′ in It−1 and assigns the linearly interpo-
lated pixel at p in Ît. Ideally, It and Ît should be aligned if
both depth and pose networks are optimally trained. These
two networks are jointly optimized to minimize the discrep-
ancy between It and Ît. We utilize the structural similarity
index measure (SSIM) [54] combined with L1 loss as a pho-
tometric loss, Lph [11]:

Lph = α
1− SSIM(It, Ît)

2
+ (1− α)|It − Ît| (2)

We compute Lph for the two frame pairs, [It−1, It] and
[It, It+1] to deal effectively with occlusions. We apply the
minimum reprojection [12], which selects the pixel having a
smaller loss between the two reference frames [It−1, It+1],
and we apply an auto-mask [12]. The following edge-aware
smoothness loss [11], Lsm, is also added.

Lsm = |∂xdt|e−|∂xIt| + |∂ydt|e−|∂yIt| (3)

The loss function of our baseline is obtained as follows:

Lbaseline = Lph + β · Lsm (4)

where β controls the relative strength of the smoothness fac-
tor.

3.1.2 Supervised Semantic Segmentation

A typical network model for semantic segmentation has
an encoder-decoder architecture [40] for extracting features
and upsampling them for dense predictions. This structure
is similar to our baseline depth network [12], wherein basic
features are extracted first prior to being fed into the de-
coder. Therefore, we adopt a shared-encoder architecture to
reduce computations and benefit from both tasks.

In our proposed method, we train semantic segmentation
with a pseudo-label generated by an off-the-shelf segmenta-
tion model [66]. We do not require per-image ground-truth
of segmentation in the training dataset; thus, it is more prac-
tically applicable. We used the cross-entropy loss, LCE , for
training, and the training loss includes γLCE with the base-
line loss (Eqn. 4), where γ is a control parameter.

3.2. Semantics-guided Triplet Loss

Based on the local geometric relation from scene seman-
tics, adjacent pixels within each object instance have simi-
lar depth values, whereas those across semantic boundaries
may have large depth differences. Thus, we apply this in-
tuition through a representation learning problem inspired
by the recent usage of deep metric learning [52, 23]. We
first separate pixels of the local patch on the semantic la-
bel into triplets (i.e., anchor, positive, and negative), and
we then divide features from the lth layer of the depth de-
coder (F l

d) in accordance with the corresponding location of
those triplets. We aim to optimize the distance among these
triplets, following the intuition described above. However,
we do not directly optimize the depth value itself. Our key
idea is that the distance should be defined and optimized in
the representation space. Hence, the depth decoder can pro-
duce more discriminative features on the boundary regions
so that the output depth map becomes more aligned with the
semantic boundaries.

3.2.1 Patch-based Candidate Sampling

We first divide the semantic label into the K×K size of
image patches with a stride of one. For each patch, we se-
lected center of each patch as the anchor pixel and those that
have the same class as that of the anchor as positive pixels.
The negative pixels have different classes from those of the
anchor pixels. Subsequently, we define Pi

+ and Pi
−, the

sets of positive and negative pixels in the local patch Pi, of
which the spatial location of the anchor is i. We use Pi

+

and Pi
− to determine whether Pi intersects the semantic

borders. For example, |Pi
−| = 0 means that Pi is located

inside a specific object and does not cross the borders. On
the other hand, if |Pi

+| and |Pi
−| are both larger than zero,

it indicates that Pi intersects the boundaries across objects.
Additionally, the semantic labels may not be accurate or

consistent because they are predictions of pre-trained seg-
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Figure 2: Overview of our proposed architecture. We adopt a shared encoder and two separate decoders, each for depth and
segmentation, and we train both tasks jointly. The semantics-guided triplet loss (LSGT ) is calculated with the segmentation
pseudo-label (St), and it optimizes L2 normalized depth feature maps (F̂ l

d) with semantic guidance. The cross-task multi-
embedding attention module is located between the layers of each decoder, and it enables cross-modal interactions between
two task-specific decoders.

Figure 3: Overview of proposed semantics-guided triplet
loss. We first divide K × K size local patch (Pi) of the
semantic label into triplets. Then, we optimize the distance
between normalized depth features (F̂ l

d ) following the cor-
responding pixel locations in the semantic patch.

mentation networks. To reduce misclassification caused by
these imperfect labels, we set a threshold, T , and determine
Pi intersects with the boundaries when |Pi

+| and |Pi
−| are

both larger than T .

3.2.2 Triplet Margin Loss

We grouped the features in each patch of the depth feature
map into three classes (i.e., anchor, positive, and negative)
following the corresponding pixel locations in the semantic
image patch. We define positive distance d+ and negative
distance d− as the mean of the Euclidean distance of the L2
normalized depth feature pairs.

d+(i) =
1

|P+
i |

∑
j∈P+

i

√
(F̂ l

d(i)− F̂ l
d(j))

2 (5)

d−(i) =
1

|P−
i |

∑
j∈P−

i

√
(F̂ l

d(i)− F̂ l
d(j))

2, (6)

where F̂ l
d = F l

d/∥F l
d∥.

We aim to reduce the distance between the anchor and
positive features, and increase the distance between the an-
chor and negative features. However, naively maximizing
d− as far as possible does not lead to our desired outcome
because the semantic border does not always guarantee that
the depth of two separate objects differs by a large amount.
Instead, we adopt the triplet loss [42, 51] with a margin so
that the distance is no longer optimized when the negative
distance exceeds a positive distance more than a specific
margin m, as a hyper-parameter.

LPi = max(0, d+(i) +m− d−(i)) (7)

The semantics-guided triplet loss LSGT is the average of
LPi

, only containing Pi satisfying the condition described
in Sec. 3.2.1.

LSGT =

∑
i 1[|Pi

+|, |Pi
−| > T ] · LPi∑

i 1[|Pi
+|, |Pi

−| > T ]
(8)

We sum over the LSGT of depth features across multiple
layers and include into the total loss the sum multiplied by
control parameter δ.

3.3. Cross-task Multi-embedding Attention (CMA)
Module

We propose a CMA module to produce semantics-aware
depth features through the representation subspaces and uti-
lize them to refine depth predictions. As illustrated in Fig. 2,
the CMA modules are located in the middle of each de-
coder layer and utilize the information from the other de-
coder. A single CMA module has uni-directional data flow,
e.g., a CMA module refines the target feature with the ref-
erence feature. We use two CMA modules simultaneously
to enable bidirectional feature enhancement, where depth
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(segmentation) becomes the target (reference) in one CMA
module while their roles change in the other. In the follow-
ing paragraphs, we only describe a single case where the
depth feature is the target for ease of explanation.

In our model, each decoder comprises five blocks (l =
0, 1, 2, 3, 4) and the spatial resolution of the feature map is
doubled for each. The depth (segmentation) decoder gener-
ates a feature map, F l

d (F l
s), which has a spatial resolution

of (H/24−l,W/24−l), where H and W are the height and
width of the input image, respectively. The CMA modules
can be attached to any of the five candidates.

The CMA module performs a pixel-wise operation on
the two feature maps, F l

d and F l
s, through several oper-

ations. It first computes the semantic awareness of the
depth features as a pixel-wise attention score through cross-
task similarity (Sec. 3.3.1). We then extend this computa-
tion with multiple linear projections so that the similarity
can be computed from different representation subspaces
(Sec. 3.3.2). This enables selective extraction of depth fea-
tures from multiple embeddings upon the corresponding
semantic awareness, maximizing the utilization of cross-
modality. Subsequently, the fusion function combines the
input feature map, F l

d, with the refined one, F l
d

′ (Sec. 3.3.3).
We explain the details in the following sections.

3.3.1 Cross-task Similarity

We define cross-task similarity as F l
d(i)

TF l
s(i), where i

is the spatial index of each feature map, and F l(i) is a
C-dimensional feature vector. This indicates quantitative
amounts of semantic representation that each depth feature
implicitly refers to. However, direct computation with raw
feature vectors is infeasible, owing to the different nature of
the tasks. We apply a linear projection, ϕ, that transforms
the input feature from the original dimension, C, to C ′.
This indirectly computes the cross-task similarity through
the representation subspace. The refined feature is com-
puted as follows:

F l
d(i)

′
= ρ(A(i))× ϕv(F

l
d(i)), (9)

where A(i) =
ϕk(F

l
d(i))

Tϕq(F
l
s(i))√

C ′
(10)

Here, ρ is a normalization factor scaling the input. We ap-
ply three separate linear embeddings, and each acts as query
(ϕq), key (ϕk), and value (ϕv) functions. The target feature
map, F l

d, becomes the input for the key and value embed-
dings, and the reference feature map, F l

s, becomes the input
for the query embedding.

For depth prediction, this imposes large attention scores
(A(i)) on the specific depth features which are consistent
with semantics, so that it can implicitly utilize semantic re-
gion information. As mentioned above, this module is bidi-
rectional, and the semantic feature F l

s acts as the target si-

Figure 4: Architecture of the cross-task multi-embedding
attention module. The feature map from the lth layer of
the depth decoder, F l

d, acts as a target in this case, and the
segmentation feature, F l

s, acts as a reference. The CMA
module refines the target feature with the reference feature,
and produces the output feature F l

od
.

multaneously. At this time, the depth feature is used to learn
the features for semantic prediction so that backpropagation
from the segmentation loss (LCE) optimizes depth layers
while offering more semantics-aware representations.

Compared with the affinity matrix for cross-task feature
fusion [63, 59, 21, 5], which is computed solely based on
features from a single task, the CMA module computes the
attention score based on features from both tasks. Hence,
it can effectively handle cross-modal interactions for multi-
task predictions.

3.3.2 Multi-embedding Attention

Inspired by multi-head attention [50, 8], we adopt multiple
linear projections to compute the similarity between feature
vectors through different representation subspaces. This re-
fines depth features with implicit semantic representations
more effectively, as verified in Sec. 4. We use H distinct
projection functions, ϕh(h = 1, ...,H); hence, the queries,
keys, and values are mapped to H independent subspaces.
The cross-task similarity in Eqs. 9-10 can be directly ex-
tended to a multi-embedding scheme as follows:

F l
d

h
(i)

′
= ρ(Ah(i))× ϕh

v (F
l
d(i)), (11)

where ρ(Ah(i)) =
eA

h(i)∑
h′∈H eAh′ (i)

, (12)

and Ah(i) =
ϕh
k(F

l
d(i))

T · ϕh
q (F

l
s(i))√

C ′
(13)

The refined feature, F l
d(i)

′, is the summation of the fea-
ture maps refined from each embedding function:

F l
d(i)

′
=

∑
h

F l
d

h
(i)

′
(14)
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In the above equations, h represents the index of multiple
linear embeddings. We adopted softmax as a normaliza-
tion function, ρ, to compute the importance of each em-
bedding. Thus, we can selectively exploit the outputs from
multiple attentions. This process is illustrated in Fig. 4.

In contrast to the original multi-head attention where the
results from each embedding head are concatenated and
equally handled, we compute the attention score among
multiple heads and measure the significance of results from
each embedding on the corresponding attention scores.

3.3.3 Fusion Layer

Finally, the refined feature map, F l
d

′, is projected to the
original dimension C (ϕw in Fig. 4) and fused with the ini-
tial feature map, F l

d, to produce final output, F l
od

. We ap-
ply two convolution layers to concatenated feature maps,
[ϕw(F

l
d

′
), F l

d], to produce F l
od

. F l
od

becomes the input of
l + 1th layer of the depth decoder.

4. Experiments
4.1. KITTI Dataset

The KITTI dataset [10] has been widely adopted for
depth prediction benchmarks. We used the Eigen split [9]
for this purpose, and preprocessing was performed to re-
move static frames, as in [12, 64]; thus, 39,910 and 4,424
images were used for training and validation, respectively,
and 697 images were used for evaluation.

For training semantic segmentation, we generated
pseudo-labels using an off-the-shelf network [66]. To eval-
uate the segmentation performance, we used 200 images
and labels provided in the training set of the KITTI se-
mantic segmentation benchmark corresponding to KITTI
2015 [32].

4.1.1 Evaluation

To evaluate the capability of depth prediction, we conducted
per-image median-scaling with ground-truth following the
evaluation protocol in [12]. The maximum depth is 80 m,
as in recent studies [12, 36, 24]. We evaluated semantic
segmentation in the mean intersection over union (mIoU).

4.2. Implementation Details

4.2.1 Network Architecture

The depth and segmentation network has a standard
encoder-decoder architecture [40] with skip connections,
as in Monodepth2 [12]. The shared encoder and the pose
network encoder are ResNet-18 [16], pre-trained on Ima-
geNet [7]. For the CMA module, we adopt four (H = 4)
embeddings of the multi-embedding scheme. The dimen-
sion ratio between the original feature and the embedded

feature is two, such that C ′ = 2 ∗ C. Thus, the projected
vectors have twice the dimensions of the the correspond-
ing input features. The normalization factor, ρ, is the iden-
tity function when H = 1 (without multi-embedding) and
softmax when H > 1 (w/ multi-embedding). We apply
CMA module to three of decoder layers, l = 0, 1, 2.

4.2.2 Training Details

For training, we resized the original image into a resolution
of 192 × 640 and used a batch size of 12. The Adam opti-
mizer was used with an initial learning rate of 1.5e-4, and
we trained for 20 epochs while the learning rate was de-
cayed by 0.1 twice, after 10 and 15 epochs of training. We
used SSIM [54] with L1 loss for Lph, with α = 0.85 fol-
lowing the previous work [12]. We set the loss parameters
as follows: β = 0.001, γ = 0.3, and δ = 0.1. The local
patch size, K, is set to five, and the margin, m, is set to 0.3
for LSGT . This loss is applied to features from three layers,
l = 1, 2 and 3. The threshold T is set to K − 1.

4.3. Quantitative Results and Ablation Study

Table 1a compares our proposed method with recent
works. Ours achieves state-of-the-art results on the KITTI
Eigen test split and outperforms previous works in every
metric. Our network adopts ResNet-18 as a backbone, but
we also use ResNet-50 and compare it with others adopt-
ing ResNet-50. Ours (ResNet-50) also achieved the best
results. Note that the PackNet versions of [15] adopted a
significantly large backbone (> 10× larger than ResNet-
18). Therefore, we compare the ResNet-18 and ResNet-50
versions of [15] and show that our method outperforms it
by a large margin. Additionally, in our multi-task network,
semantic information is required only for training. In con-
trast, [15] and [29] require the semantics for both training
and testing. [15] requires a teacher segmentation network
for feature distillation during inference and [29] requires
semantic label or pre-computed segmentation results as the
network input. Finally, our network is highly compatible
with more advanced networks [31, 14] which have archi-
tectural differences from our baseline, Monodepth2. This
indicates the potential for further improvement.

In Table 1b, we also evaluate the effectiveness of each
proposed method. The addition of semantic segmenta-
tion to depth (LCE) via shared encoder shows an improve-
ment. Applying the semantics-guided triplet loss and the
CMA module further improves the baseline. This verifies
that more semantics-aware representation improvements of
depth predictions are produced. Finally, the combination of
both methods significantly improves the performance. Both
techniques are designed to refine the depth representation
via semantic knowledge, and they offer highly synergistic
improvements.
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Lower is better Higher is better
Method Backbone Sem AbsRel SqRel RMS RMSlog < 1.25 < 1.252 < 1.253

SceneNet [4] DRN [58] ✓ 0.118 0.905 5.096 0.211 0.839 0.945 0.977

Monodepth2 [12] * ResNet18 0.114 0.864 4.817 0.192 0.875 0.959 0.981
Zou et al. [68] ResNet18 0.115 0.871 4.778 0.191 0.874 0.963 0.984

Guizilini et al. [15] ResNet18 ✓ 0.117 0.854 4.714 0.191 0.873 0.963 0.981
SGDepth [24] ResNet18 ✓ 0.113 0.835 4.693 0.191 0.879 0.961 0.981
Lee et al. [27] ResNet18 ✓ 0.112 0.777 4.772 0.191 0.872 0.959 0.982

Poggi et al. [37] ResNet18 0.111 0.863 4.756 0.188 0.881 0.961 0.982
Patil et al. [36] ResNet18 0.111 0.821 4.650 0.187 0.883 0.961 0.982
SAFENet [5] ResNet18 ✓ 0.112 0.788 4.582 0.187 0.878 0.963 0.983
HRDepth [31] ResNet18 0.109 0.792 4.632 0.185 0.884 0.962 0.983

Ours ResNet18 ✓ 0.105 0.722 4.547 0.182 0.886 0.964 0.984

SGDepth [24] ResNet50 ✓ 0.112 0.833 4.688 0.190 0.884 0.961 0.981
Monodepth2 [12] ResNet50 0.110 0.831 4.642 0.187 0.883 0.962 0.982

Guizilini et al. [15] ResNet50 ✓ 0.113 0.831 4.663 0.189 0.878 0.971 0.983
FeatDepth [43] ResNet50 0.104 0.729 4.481 0.179 0.893 0.965 0.984

Li et al [29] ResNet50 ✓ 0.103 0.709 4.471 0.180 0.892 0.966 0.984
Ours ResNet50 ✓ 0.102 0.675 4.393 0.178 0.893 0.966 0.984

Johnston et al [22] ResNet101 0.106 0.861 4.699 0.185 0.889 0.962 0.982

PackNet-SfM [14] PackNet 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Guizilini et al. [15] PackNet ✓ 0.102 0.698 4.381 0.178 0.896 0.964 0.984

* We re-implemented Monodepth2 and the result has slightly improved from the original paper.
(a)

LCE LSGT CMA module HR AbsRel SqRel RMS RMSlog < 1.25 < 1.252 < 1.253

0.114 0.864 4.817 0.192 0.875 0.959 0.981
✓ 0.112 0.823 4.705 0.189 0.879 0.961 0.982
✓ ✓ 0.108 0.755 4.618 0.186 0.882 0.962 0.983
✓ ✓ 0.107 0.741 4.586 0.184 0.884 0.962 0.983
✓ ✓ ✓ 0.105 0.722 4.547 0.182 0.886 0.964 0.984

✓ ✓ ✓ ✓ 0.102 0.687 4.366 0.178 0.895 0.967 0.984

(b)
Table 1: (a) Comparison of self-supervised monocular depth estimation with recent works on KITTI Eigen split. All methods
are trained with monocular images with size of 192×640, except SceneNet. Sem denotes training with semantic information.
(b) Ablation of the proposed methods in depth predictions. HR denotes training with high-resolution images (320×1024).

Method Train MIoU
SceneNet [4] CS 37.7
SGDepth [24] CS 51.6

Ours K 56.6
Ours (HR) K 60.6

Ours w/o CMA K 56.1
Ours w/o CMA (HR) K 59.1

Table 2: Semantic segmentation results on KITTI 2015
training set. CS denotes Cityscapes, and K represents
KITTI. HR refers to training using high-resolution image.

In Table 2, we also evaluate the semantic segmenta-
tion performance on KITTI 2015 [32]. Though the pro-
posed method outperforms others, it is not fair to com-
pare with the works that trained semantic segmentation
with Cityscapes [6] ground-truth (they trained depth on
KITTI.). Hence, we focus more on how segmentation ben-
efits from depth estimation via CMA rather than the final

performance. As shown in the last two rows, the proposed
CMA module also improves the segmentation performance.
Thanks to its bi-directional flow, the CMA module also re-
fines semantic features as a target with reference to depth
representations. Additionally, it is more effective when the
resolution is high.

4.4. Qualitative Evaluation

We qualitatively compare our method with recent meth-
ods, SGDepth [24] and PackNet-Sfm [14], as shown in
Figs. 1 and 5. In Fig. 1, we compare the depth predic-
tions and error distributions1, fixing AbsRel between 0 and
1. Similar to ours, [24] also adopted multi-task training
with semantic segmentation via a shared encoder. However,
only enhancing the encoder in a multi-task setting cannot
fully exploit the semantic information. As shown in both
figures, our method captures fine-grained detail, leading to

1Owing to the sparsity of depth ground-truth, we computed the mis-
match with top-performing supervised depth network [26].
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Image Ours SGDepth [24] PackNet-Sfm [14]
Figure 5: Qualitative comparison of the depth predictions with recent works.

l AbsR SqR <1.25 K AbsR SqR <1.25

0-3 0.108 0.757 0.882 3 0.109 0.757 0.878
1-3 0.108 0.755 0.882 5 0.108 0.755 0.882
1-4 0.108 0.742 0.879 7 0.110 0.776 0.880

(a) (b)

Table 3: Ablations of semantics-guided triplet loss with (a)
different layers of depth decoder the loss is applied, (b) the
size of local patch K.

more accurate depth predictions compared with others, es-
pecially at object borders. This verifies the effectiveness of
the proposed fine-grained semantics-aware enhancement of
representation.

4.5. Further Analysis

Table 3a shows the results of varying layers (l =
0, 1, 2, 3, 4) to which semantics-guided triplet loss is ap-
plied. We selected layers l = 1, 2 and 3 because it showed
the best results. Applying LSGT to l = 4 degrades the
performance as it has a significantly low channel dimen-
sion (16); hence, the distance cannot be properly computed.
In Table 3b, we compare the effect of the patch size, K.
Because separating a local patch into triplets relies on se-
mantic labels from the off-the-shelf network, there must be
noisy labels. When K is small (i.e., K = 3), the number of
samples |P+,−| decreases, and each noisy label contributes
more to the mean distance, d+,−. When K is large (i.e.,
K = 7), each local patch contains more non-boundary pix-
els and the negative distance can easily exceed the margin.
In other words, the loss is computed from more easy sam-
ples, and the improvements are limited. In our experiments,
K = 5 was the balanced point, which was the best option.
We further compare the results of different margins, m, in
the supplement.

Table 4 lists the results of the CMA module with varying
parameters. As shown in Table 4a, our bidirectional CMA
provides better results than the unidirectional CMA. This
confirms that, to benefit from cross-modal representation,
it is more beneficial to simultaneously improve both depth
and semantics features than to improve just one.

Table 4b shows the effectiveness of the proposed multi-
embedding scheme. It can fully utilize cross-modality as the
number of embeddings grows. As shown in Fig. 6, the more

Figure 6: Comparison among baseline (+LCE), and CMA
module applied (H = 1, 2, 4) from left to right.

T AbsR SqR <1.25 H AbsR SqR <1.25

D 0.108 0.759 0.882 1 0.108 0.762 0.881
S 0.111 0.797 0.877 2 0.107 0.749 0.882

D,S 0.107 0.741 0.884 4 0.107 0.741 0.884
(a) (b)

Table 4: Ablations of CMA module with (a) different target
task features and (b) the number of embedding functions. T
denotes the target task, D denotes the depth, and S denotes
segmentation.

embeddings used, the more precise the object boundary of
the depth network, and the depth prediction becomes more
aligned to semantics. This demonstrates that the depth net-
work can have more semantics-aware representations, ow-
ing to our proposed multi-embedding scheme.

5. Conclusion
This paper proposed novel methods for accurate monoc-

ular depth prediction (i.e., semantics-guided triplet loss and
cross-task multi-embedding attention) to make the best use
of semantics-geometry cross-modality. Semantics-guided
triplet loss offered a new and effective supervisory signal
for optimizing depth representations. The CMA module
allowed us to utilize rich and spatially fine-grained rep-
resentations for multi-task training of depth prediction
and semantic segmentation. The enhanced representation
from these two methods exhibited a highly synergistic
performance boost. Our extensive evaluation on the KITTI
dataset demonstrates that the proposed methods outper-
formed extant state-of-the-art methods, including those that
use semantic segmentation.
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