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Figure 1: Results of our approach on identifying unexpected obstacles on roads. (a) Previous segmentation networks classify
the unexpected obstacles (e.g., dogs) as one of the pre-defined classes (e.g., road) which may be detrimental from the safety-
critical perspective. (b) Through our method, we detect the unexpected obstacles. (c) Finally, we can obtain the final prediction
of segmentation labels with unexpected obstacles (cyan-colored objects) identified.

Abstract
Identifying unexpected objects on roads in semantic seg-

mentation (e.g., identifying dogs on roads) is crucial in
safety-critical applications. Existing approaches use im-
ages of unexpected objects from external datasets or re-
quire additional training (e.g., retraining segmentation net-
works or training an extra network), which necessitate a
non-trivial amount of labor intensity or lengthy inference
time. One possible alternative is to use prediction scores of
a pre-trained network such as the max logits (i.e., maximum
values among classes before the final softmax layer) for de-
tecting such objects. However, the distribution of max logits
of each predicted class is significantly different from each
other, which degrades the performance of identifying un-
expected objects in urban-scene segmentation. To address
this issue, we propose a simple yet effective approach that
standardizes the max logits in order to align the different
distributions and reflect the relative meanings of max log-
its within each predicted class. Moreover, we consider the
local regions from two different perspectives based on the
intuition that neighboring pixels share similar semantic in-
formation. In contrast to previous approaches, our method
does not utilize any external datasets or require additional
training, which makes our method widely applicable to ex-

* indicates equal contribution

isting pre-trained segmentation models. Such a straightfor-
ward approach achieves a new state-of-the-art performance
on the publicly available Fishyscapes Lost & Found leader-
board with a large margin. Our code is publicly available
at this link1.

1. Introduction
Recent studies [7, 8, 18, 34, 36, 37, 11] in semantic

segmentation focus on improving the segmentation per-
formance on urban-scene images. Despite such recent ad-
vances, these approaches cannot identify unexpected ob-
jects (i.e., objects not included in the pre-defined classes
during training), mainly because they predict all the pixels
as one of the pre-defined classes. Addressing such an is-
sue is critical especially for safety-critical applications such
as autonomous driving. As shown in Fig. 1, wrongly pre-
dicting a dog (i.e., an unexpected object) on the road as
the road does not stop the autonomous vehicle, which may
lead to roadkill. In this safety-critical point of view, the dog
should be detected as an unexpected object which works as
the starting point of the autonomous vehicle to handle these
objects differently (e.g., whether to stop the car or circum-
vent the dog).

Several studies [3, 22, 21, 4, 29, 2, 13] tackle the problem
of detecting such unexpected objects on roads. Some ap-

1https://github.com/shjung13/Standardized-max-logits
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Figure 2: Box plots of MSP, max logit, and standardized max logit in Fishyscapes Static. X-axis denotes the classes which are
sorted by the occurrences of pixels in the training phase. Y-axis denotes the values of each method. Red and blue represent
the distributions of values in in-distribution pixels and unexpected pixels, respectively. The lower and upper limits of each
bar indicate the Q1 and Q3 while the dot represents the mean value of its predicted class. The gray indicates the overlapped
regions of the two groups. The opacity of the gray region is proportional to the FPR at TPR 95%. Standardizing the max
logits in a class-wise manner clearly reduces the FPR.

proaches [2, 4] utilize external datasets [30, 20] as samples
of unexpected objects while others [22, 33, 21, 27] leverage
image resynthesis models for erasing the regions of such
objects. However, such approaches require a considerable
amount of labor intensity or necessitate a lengthy inference
time. On the other hand, simple approaches which leverage
only a pre-trained model [16, 19, 17] are proposed for out-
of-distribution (OoD) detection in image classification, the
task of detecting images from a different distribution com-
pared to that of the train set. Based on the intuition that a
correctly classified image generally has a higher maximum
softmax probability (MSP) than an OoD image [16], MSP is
used as the anomaly score (i.e., the value used for detecting
OoD samples). Alternatively, utilizing the max logit [15]
(i.e., maximum values among classes before the final soft-
max layer) as the anomaly score is proposed, which out-
performs using MSP for detecting anomalous objects in se-
mantic segmentation. Note that high prediction scores (e.g.,
MSP and max logit) indicate low anomaly scores and vice
versa.

However, directly using the MSP [16] or the max
logit [15] as the anomaly score has the following limita-
tions. Regarding the MSP [16], the softmax function has the
fast-growing exponential property which produces highly
confident predictions. Pre-trained networks may be highly
confident with OoD samples which limits the performance
of using MSPs for detecting the anomalous samples [19]. In
the case of the max logit [15], as shown in Fig. 2, the val-
ues of the max logit have their own ranges in each predicted
class. Due to this fact, the max logits of the unexpected ob-
jects predicted as particular classes (e.g., road) exceed those
of other classes (e.g., train) in the in-distribution objects.
This can degrade the performance of detecting unexpected
objects on evaluation metrics (e.g., AUROC and AUPRC)
that use the same threshold for all classes.

In this work, inspired by this finding, we propose stan-

dardizing the max logits in a class-wise manner, termed
standardized max logits (SML). Standardizing the max log-
its aligns the distributions of max logits in each predicted
class, so it enables to reflect the relative meanings of val-
ues within a class. This reduces the false positives (i.e.,
in-distribution objects detected as the unexpected objects,
highlighted as gray regions in Fig. 2) when using a single
threshold.

Moreover, we further improve the performance of iden-
tifying unexpected obstacles using the local semantics from
two different perspectives. First, we remove the false pos-
itives in boundary regions where predicted class changes
from one to another. Due to the class changes, the boundary
pixels tend to have low prediction scores (i.e., high anomaly
scores) compared to the non-boundary pixels [32, 1]. In
this regard, we propose a novel iterative boundary sup-
pression to remove such false positives by replacing the
high anomaly scores of boundary regions with low anomaly
scores of neighboring non-boundary pixels. Second, in or-
der to remove the remaining false positives in both bound-
ary and non-boundary regions, we smooth them using the
neighboring pixels based on the intuition that local consis-
tency exists among the pixels in a local region. We term this
process as dilated smoothing.

The main contributions of our work are as follows:

• We propose a simple yet effective approach for identi-
fying unexpected objects on roads in urban-scene se-
mantic segmentation.

• Our proposed approach can easily be applied to vari-
ous existing models since our method does not require
additional training or external datasets.

• We achieve a new state-of-the-art performance on the
publicly available Fishyscapes Lost & Found Leader-
board2 among the previous approaches with a large

2https://fishyscapes.com/
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Figure 3: Overview of our method. We obtain the max logits from a segmentation network and (a) standardize it using the
statistics obtained from the training samples. (b) Then, we iteratively replace the standardized max logits of boundary regions
with those of surrounding non-boundary pixels. (c) Finally, we apply dilated smoothing to consider local semantics in broad
receptive fields.

margin and negligible computation overhead while not
requiring additional training and OoD data.

2. Related Work
2.1. Semantic segmentation on urban driving scenes

Recent studies [7, 8, 18, 34, 36, 37, 11, 5, 28, 26] have
strived to enhance the semantic segmentation performance
on urban scenes. The studies [18, 34] consider diverse scale
changes in urban scenes or leverage the innate geometry and
positional patterns found in urban-scene images [8]. More-
over, several studies [5, 28, 26] have proposed more effi-
cient architectures to improve the inference time, which is
critical for autonomous driving. Despite the advances, unex-
pected objects cannot be identified by these models, which
is another important task for safety-critical applications.
Regarding the importance of such a task from the safety-
critical perspective, we focus on detecting unexpected ob-
stacles in urban-scene segmentation.

2.2. Detecting unexpected objects in semantic seg-
mentation

Several studies [2, 4, 3] utilize samples of unexpected
objects from external datasets during the training phase. For
example, by assuming that the objects cropped from the Im-
ageNet dataset [30] are anomalous objects, they are overlaid
on original training images [2] (e.g., Cityscapes) to provide
samples of unexpected objects. Similarly, another previous
work [4] utilizes the objects from the COCO dataset [20]
as samples of unexpected objects. However, such meth-
ods require retraining the network by using the additional
datasets, which hampers to utilize a given pre-trained seg-
mentation network directly.

Other work [22, 33, 21, 27] exploits the image resynthe-
sis (i.e., reconstructing images from segmentation predic-
tions) for detecting unexpected objects. Based on the intu-
ition that image resynthesis models fail to reconstruct the
regions with unexpected objects, these studies use the dis-
crepancy between an original image and the resynthesized
image with such objects excluded. However, utilizing an ex-
tra image resynthesis model to detect unexpected objects
necessitates a lengthy inference time that is critical in se-

mantic segmentation. In the real-world application of se-
mantic segmentation (e.g., autonomous driving), detecting
unexpected objects should be finalized in real-time. Consid-
ering such issues, we propose a simple yet effective method
that can be applied to a given segmentation model without
requiring additional training or external datasets.

3. Proposed Method
This section presents our approach for detecting unex-

pected road obstacles. We first present how we standardize
the max logits in Section 3.2 and explain how we consider
the local semantics in Section 3.3.

3.1. Method Overview
As our method overview is illustrated in Fig. 3, we first

obtain the max logits and standardize them, based on the
finding that the max logits have their own ranges according
to the predicted classes. These different ranges cause unex-
pected objects (pixels in blue boxes) predicted as a certain
class to have higher max logit values (i.e., lower anomaly
scores) than in-distribution pixels in other classes. This is-
sue is addressed by standardizing the max logits in a class-
wise manner since it enables to reflect the relative meanings
within each predicted class.

Then, we remove the false positives (pixels in green
boxes) in boundary regions. Generally, false positives in
boundary pixels have lower prediction scores than neigh-
boring in-distribution pixels. We reduce such false posi-
tives by iteratively updating boundary pixels using anomaly
scores of neighboring non-boundary pixels. Additionally,
there exist a non-trivial number of pixels that have signif-
icantly different anomaly scores compared to their neigh-
boring pixels, which we term as irregulars (pixels in yellow
boxes). Based on the intuition that local consistency (i.e.,
neighboring pixels sharing similar semantics) exists among
pixels in a local region, we apply the smoothing filter with
broad receptive fields. Note that we use the negative value
of the final SML as the anomaly score.

The following describes the process of how we obtain
the max logit and the prediction at each pixel with a given
image and the number of pre-defined classes. Let X ∈
R3×H×W and C denote the input image and the number of
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pre-defined classes, where H and W are the image height,
and width, respectively. The logit output F ∈ RC×H×W

can be obtained from the segmentation network before the
softmax layer. Then, the max logit L ∈ RH×W and predic-
tion Ŷ ∈ RH×W at each location h, w are defined as

Lh,w = max
c

Fc,h,w (1)

Ŷ h,w = arg max
c

Fc,h,w, (2)

where c ∈ {1, ..., C}.

3.2. Standardized Max Logits (SML)

As described in Fig. 2, standardizing the max logits
aligns the distributions of max logits in a class-wise manner.
For the standardization, we obtain the mean µc and vari-
ance σ2

c of class c from the training samples. With the max
logit Lh,w and the predicted class Ŷ h,w from the Eqs. (1)
and (2), we compute the mean µc and variance σ2

c by

µc =

∑
i

∑
h,w 1(Ŷ

(i)

h,w = c) ·L(i)
h,w∑

i

∑
h,w 1(Ŷ

(i)

h,w = c)
(3)

σ2
c =

∑
i

∑
h,w 1(Ŷ

(i)

h,w = c) · (L(i)
h,w − µc)

2∑
i

∑
h,w 1(Ŷ

(i)

h,w = c)
, (4)

where i indicates the i-th training sample and 1(·) repre-
sents the indicator function.

Next, we standardize the max logits by the obtained
statistics. The SML S ∈ RH×W in a test image at each
location h, w is defined as

Sh,w =
Lh,w − µŶ h,w

σŶ h,w

. (5)

3.3. Enhancing with Local Semantics

We explain how we apply iterative boundary suppression
and dilated smoothing by utilizing the local semantics.

3.3.1 Iterative boundary suppression

To address the problem of wrongly predicting the bound-
ary regions as false positives and false negatives, we it-
eratively suppress the boundary regions. Fig. 4 illustrates
the process of iterative boundary suppression. We gradually
propagate the SMLs of the neighboring non-boundary pix-
els to the boundary regions, starting from the outer areas of
the boundary (green-colored pixels) to inner areas (gray-
colored pixels). To be specific, we assume the boundary
width as a particular value and update the boundaries by it-
eratively reducing the boundary width at each iteration. This
process is defined as follows. With a given boundary width
ri at the i-th iteration and the semantic segmentation output
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Figure 4: How iterative boundary suppression works. Af-
ter standardizing the max logits, we apply average pool-
ing by only using the SMLs of non-boundary pixels (i.e.,
boundary-aware average pooling) for several iterations. The
boundary mask is obtained from a prediction output of a
segmentation network.
Ŷ , we obtain the non-boundary mask M (i) ∈ RH×W at
each pixel h, w as

M
(i)
h,w =

{
0, if ∃h′, w′ s.t., Ŷ h,w 6= Ŷ h′,w′

1, otherwise
, (6)

for ∀h′, w′ that satisfies |h− h′|+ |w − w′| ≤ ri.
Next, we apply the boundary-aware average pooling on

the boundary pixels as shown in Fig. 4. This applies average
pooling on a boundary pixel only with the SMLs of neigh-
boring non-boundary pixels. With the boundary pixel b and
its receptive field R, the boundary-aware average pooling
(BAP) is defined as

BAP (S
(i)
R ,M

(i)
R ) =

∑
h,w S

(i)
h,w ×M

(i)
h,w∑

h,w M
(i)
h,w

, (7)

where S
(i)
R and M

(i)
R denote the patch of receptive field R

on S(i) and M (i), and (h,w) ∈ R enumerates the pixels
in R. Then, we replace the original value at the boundary
pixel b using the newly obtained one. We iteratively apply
this process for n times by reducing the boundary width by
∆r = 2 at each iteration. We also set the size of receptive
fieldR as 3× 3. In addition, we empirically set the number
of iterations n and initial boundary width r0 as 4 and 8.
3.3.2 Dilated smoothing
Since iterative boundary suppression only updates boundary
pixels, the irregulars in the non-boundary regions are not ad-
dressed. Hence, we address these pixels by smoothing them
using the neighboring pixels based on the intuition that the
local consistency exists among the pixels in a local region.
In addition, if the adjacent pixels used for iterative boundary
suppression do not have sufficiently low or high anomaly
scores, there may still exist boundary pixels that remain as
false positives or false negatives even after the process. In
this regard, we broaden the receptive fields of the smooth-
ing filter using dilation [35] to reflect the anomaly scores
beyond boundary regions.
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Models Additional training Utilizing
OoD Data mIoU FS Lost & Found FS Static

Seg. Network Extra Network AP ↑ FPR95 ↓ AP ↑ FPR95 ↓

MSP [16] 7 7 7 80.30 1.77 44.85 12.88 39.83
Entropy [16] 7 7 7 80.30 2.93 44.83 15.41 39.75

Density - Single-layer NLL [3] 7 X 7 80.30 3.01 32.90 40.86 21.29
kNN Embedding - density [3] 7 7 7 80.30 3.55 30.02 44.03 20.25
Density - Minimum NLL [3] 7 X 7 80.30 4.25 47.15 62.14 17.43

Density - Logistic Regression [3] 7 X X 80.30 4.65 24.36 57.16 13.39
Image Resynthesis [22] 7 X 7 81.40 5.70 48.05 29.60 27.13
Bayesian Deeplab [25] X 7 7 73.80 9.81 38.46 48.70 15.50

OoD Training - Void Class X 7 X 70.40 10.29 22.11 45.00 19.40
Ours 7 7 7 80.33 31.05 21.52 53.11 19.64

Discriminative Outlier Detection Head [2] X X X 79.57 31.31 19.02 96.76 0.29
Dirichlet Deeplab [24] X 7 X 70.50 34.28 47.43 31.3 84.60

Table 1: Comparison with previous approaches reported in Fishyscapes Leaderboard. Models are sorted by the AP scores in
Fishyscapes Lost & Found test set. We achieve a new state-of-the-art performance among the approaches that do not require
additional training on the segmentation network or OoD data on Fishyscapes Lost & Found dataset. Bold fonts indicate the
highest performance in its evaluation metric among approaches that do not 1) retrain segmentation networks, 2) train extra
networks, and 3) utilize OoD data.

For the smoothing filter, we leverage the Gaussian kernel
since it is widely known that the Gaussian kernel removes
noises [12]. With a given standard deviation σ and convolu-
tion filter size k, the kernel weight K ∈ Rk×k at location i,
j is defined as

Ki,j =
1

2πσ2
exp (−∆i2 + ∆j2

2σ2
), (8)

where ∆i = i− (k−1)
2 and ∆j = j− (k−1)

2 are the displace-
ments of location i, j from the center. In our setting, we set
the kernel size k and σ to 7 and 1, respectively. Moreover,
we empirically set the dilation rate as 6.

4. Experiments
This section describes the datasets, experimental setup,

and quantitative and qualitative results.

4.1. Datasets
Fishyscapes Lost & Found [3] is a high-quality image
dataset containing real obstacles on the road. This dataset
is based on the original Lost & Found [29] dataset. The
original Lost & Found is collected with the same setup as
Cityscapes [9], which is a widely used dataset in urban-
scene segmentation. It contains real urban images with
37 types of unexpected road obstacles and 13 different
street scenarios (e.g., different road surface appearances,
strong illumination changes, and etc). Fishyscapes Lost
& Found further provides the pixel-wise annotations for
1) unexpected objects, 2) objects with pre-defined classes
of Cityscapes [9], and 3) void (i.e., objects neither in
pre-defined classes nor unexpected objects) regions. This
dataset includes a public validation set of 100 images and a
hidden test set of 275 images for the benchmarking.

Fishyscapes Static [3] is constructed based on the valida-
tion set of Cityscapes [9]. Regarding the objects in the PAS-
CAL VOC [10] as unexpected objects, they are overlaid on

the Cityscapes validation images by using various blend-
ing techniques to match the characteristics of Cityscapes.
This dataset contains 30 publicly available validation sam-
ples and 1,000 test images that are hidden for benchmark-
ing.

Road Anomaly [22] contains images of unusual dangers
which vehicles confront on roads. It consists of 60 web-
collected images with anomalous objects (e.g., animals,
rocks, and etc.) on roads with a resolution of 1280 × 720.
This dataset is challenging since it contains various driving
circumstances such as diverse scales of anomalous objects
and adverse road conditions.

4.2. Experimental Setup
Implementation Details We adopt DeepLabv3+ [6] with
ResNet101 [14] backbone for our segmentation architecture
with the output stride set to 8. We train our segmentation
networks on Cityscapes [9] which is one of the widely used
datasets for urban-scene segmentation. We use the same
pre-trained network for all experiments.

Evaluation Metrics For the quantitative results, we com-
pare the performance by the area under receiver operating
characteristics (AUROC) and average precision (AP). In ad-
dition, we measure the false positive rate at a true positive
rate of 95% (FPR95) since the rate of false positives in high-
recall areas is crucial for safety-critical applications. For the
qualitative analysis, we visualize the prediction results us-
ing the threshold at a true positive rate of 95% (TPR95).

Baselines We compare ours with the various approaches
reported in the Fishyscapes leaderboard. We also report re-
sults on the Fishyscapes validation sets and Road Anomaly
with previous approaches that do not utilize external
datasets or require additional training for fair comparisons.
Additionally, we compare our method with approaches that
are not reported in the Fishyscapes leaderboard. Thus, we
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Models mIoU FS Lost & Found FS Static Road Anomaly
AUROC ↑ AP ↑ FPR95 ↓ AUROC ↑ AP ↑ FPR95 ↓ AUROC ↑ AP ↑ FPR95 ↓

MSP [16] 80.33 86.99 6.02 45.63 88.94 14.24 34.10 73.76 20.59 68.44
Max Logit [15] 80.33 92.00 18.77 38.13 92.80 27.99 28.50 77.97 24.44 64.85

Entropy 80.33 88.32 13.91 44.85 89.99 21.78 33.74 75.12 22.38 68.15
kNN Embedding - Density [3] 80.30 - 4.1 22.30 - - - - - -

†SynthCP∗ [33] 80.33 88.34 6.54 45.95 89.90 23.22 34.02 76.08 24.86 64.69
Ours 80.33 96.88 36.55 14.53 96.69 48.67 16.75 81.96 25.82 49.74

Table 2: Comparison with other baselines in the Fishyscapes validation sets and the Road Anomaly dataset. † denotes that
the results are obtained from the official code with our pre-trained backbone and ∗ denotes that the model requires additional
learnable parameters. Note that the performance of kNN Embedding - Density is provided from the Fishyscapes [3] team.

include the previous method using max logit [15] and Syn-
thCP [33] that leverages an image resynthesis model for
such comparison. Note that SynthCP requires training of
additional networks.

4.3. Evaluation Results
This section provides the quantitative and qualitative re-

sults. We first show the results on Fishyscapes datasets and
Road Anomaly, and then present the comparison results
with various backbone networks. Additionally, we report
the computational cost and the qualitative results by com-
paring with previous approaches.

4.3.1 Comparison on Fishyscapes Leaderboard

Table 1 shows the leaderboard result on the test sets of
Fishyscapes Lost & Found and Fishyscapes Static. The
Fishyscapes Leaderboard categorizes approaches by check-
ing whether they require retraining of segmentation net-
works or utilize OoD data. In this work, we add the Ex-
tra Network column under the Additional Training category.
Extra networks refer to the extra learnable parameters that
need to be trained using a particular objective function other
than the one for the main segmentation task. Utilizing extra
networks may require a lengthy inference time, which could
be critical for real-time applications such as autonomous
driving. Considering such importance, we add this category
for the evaluation.

As shown in Table 1, we achieve a new state-of-the-art
performance on the Fishyscapes Lost & Found dataset with
a large margin, compared to the previous models that do
not require additional training of the segmentation network
and external datasets. Additionally, we even outperform 6
previous approaches in Fishyscapes Lost & Found and 5
models in Fishyscapes Static which fall into at least one of
the two categories. Moreover, as discussed in the previous
work [3], retraining the segmentation network with addi-
tional loss terms impair the original segmentation perfor-
mance(i.e., mIoU) as can be shown in the cases of Bayesian
Deeplab [25], Dirichlet Deeplab [24], and OoD Training
with void class in Table 1. This result is publicly available
on the Fishyscapes benchmark website.

4.3.2 Comparison on Fishyscapes validation sets and
Road Anomaly

For a fair comparison, we compare our method on
Fishyscapes validation sets and Road Anomaly with pre-
vious approaches which do not require additional training
and OoD data. As shown in Table 2, our method outper-
forms other previous methods in the three datasets with a
large margin. Additionally, our method achieves a signifi-
cantly lower FPR95 compared to previous approaches.

4.3.3 Qualitative Analysis
Fig. 5 visualizes the pixels detected as unexpected objects
(i.e., white regions) with the TPR at 95%. While previous
approaches using MSP [16] and max logit [15] require nu-
merous in-distribution pixels to be detected as unexpected,
our method does not. To be more specific, regions that are
less confident (e.g., boundary pixels) are detected as un-
expected in MSP [16] and max logit [15]. However, our
method clearly reduces such false positives which can be
confirmed by the significantly reduced number of white re-
gions.

5. Discussion
In this section, we conduct an in-depth analysis on the

effects of our proposed method along with the ablation stud-
ies.

Models AUROC ↑ AP ↑ FPR95 ↓

Max Logit 92.00 18.77 38.13
SML 96.54 27.61 15.46

SML + B Supp. 96.82 31.63 14.58
SML + D. Smoothing 96.70 36.00 15.65

SML + B Supp. + D. Smoothing 96.89 36.55 14.53

Table 3: Ablation study on our proposed methods. B Supp.
and D. Smoothing refer to iterative boundary suppression
and dilated smoothing, respectively.

5.1. Ablation Study
Table 3 describes the effect of each proposed method

in our work with the Fishyscapes Lost & Found validation
set. SML achieves a significant performance gain over us-
ing the max logit [15]. Performing iterative boundary sup-
pression on SMLs improves the overall performance (i.e.,
4% increase in AP and 1% decrease in FPR95). On the
other hand, despite the increase in AP, performing dilated
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Figure 5: Unexpected objects detected with TPR95. We compare our method with MSP [16] and max logit [15]. White pixels
indicate objects which are identified as unexpected objects. Our method significantly reduces the number of false positive
pixels compared to the two approaches.
smoothing on SMLs without iterative boundary suppres-
sion results in an unwanted slight increase in FPR95. The
following is the possible reason for the result. When di-
lated smoothing is applied without iterative boundary sup-
pression, the anomaly scores of non-boundary pixels may
be updated with those of boundary pixels. Since the non-
boundary pixels of in-distribution objects have low anomaly
scores compared to the boundaries, it may increase false
positives. Such an issue is addressed by performing itera-
tive boundary suppression before applying dilated smooth-
ing. After the boundary regions are updated with neighbor-
ing non-boundary regions, dilated smoothing increases the
overall performance without such error propagation.
5.2. Analysis

This section provides an in-depth analysis on the ef-
fects on segmentation performance, comparison with var-
ious backbones, and comparison on computational costs.

Model Original MSP Max Logit Ours

mIoU (%) 80.33 19.22 26.19 68.65

Table 4: mIoU on the Cityscapes validation set with
the unexpected obstacle detection threshold at TPR95 on
Fishyscapes Lost & Found validation set.

5.2.1 Effects on the segmentation performance
Table 4 shows the mIoU on the Cityscapes validation set
with the detection threshold at TPR95. By applying the de-
tection threshold, the segmentation model predicts a non-
trivial amount of in-distribution pixels as the unexpected

ones. Due to such false positives, the mIoU of all meth-
ods decreased from the original mIoU of 80.33%. To be
more specific, using MSP [16] and max logit [15] result
in significant performance degradation. On the other hand,
our approach maintains a reasonable performance of mIoU
even with outstanding unexpected obstacle detection perfor-
mance. This table again demonstrates the practicality of our
work since it both shows reasonable performance in the seg-
mentation task and the unexpected obstacle detection task.

Backbone Models mIoU AUROC ↑ AP ↑ FPR95 ↓

MobileNet
V2 [31]

MSP
75.70

86.00 2.60 48.05
Max Logit 91.89 7.15 36.24

Ours 96.18 16.95 16.63

ShuffleNet
V2 [23]

MSP
72.71

86.33 4.06 45.68
Max Logit 90.06 8.67 45.36

Ours 95.26 14.42 23.17

ResNet50
[14]

MSP
77.76

86.25 3.50 45.03
Max Logit 89.47 8.95 48.99

Ours 95.24 18.54 19.57

Table 5: Comparison with MSP and max logit on
Fishyscapes Lost & Found dataset. The backbone networks
are trained with the output stride of 16.

5.2.2 Comparison with various backbones
Since our method does not require additional training or
extra OoD datasets, our method can be adopted and used
easily on any existing pre-trained segmentation networks.
To verify the wide applicability of our approach, we re-
port the performance of identifying anomalous objects with
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various backbone networks including MobileNetV2 [31],
ShuffleNetV2 [23], and ResNet50 [23]. As shown in Ta-
ble 5, our method significantly outperforms the other ap-
proaches [16, 15] using the same backbone network with a
large improvement in AP. This result clearly demonstrates
that our method is applicable widely regardless of the back-
bone network.

Models GFLOPs Infer. Time (ms)

ResNet-101 [14] 2139.86 60.54
Ours (SML) 2139.86 61.41

Ours (SML + B Prop.) 2140.01 74.66
Ours (SML + B Prop. + D. Smoothing) 2140.12 75.02

SynthCP [33] 4551.11 146.90

Table 6: Comparison of computational cost. Metrics are
measured with the image size of 2048 × 1024 on NVIDIA
GeForce RTX 3090 GPU. The inference time is averaged
over 100 trials.
5.2.3 Comparison on computational cost
To demonstrate that our method requires a negligible
amount of computation cost, we report GFLOPs (i.e., the
number of floating-point operations used for computation)
and the inference time. As shown in Table 6, our method
requires only a minimal amount of computation cost re-
garding both GFLOPs and the inference time compared to
the original segmentation network, ResNet-101 [14]. Also,
among several studies which utilize additional networks, we
compare with a recently proposed approach [33] that lever-
ages an image resynthesis model. Our approach requires
substantially less amount of computation cost compared to
SynthCP [33].

Models ∆AUROC ↑ ∆AP ↑ ∆FPR95 ↓

MSP + B. Supp. + D. S. -0.60 1.08 3.24
Max Logit + B. Supp. + D. S. -0.51 -1.45 2.60

SML + B. Supp. + D. S. 0.35 8.95 -0.93

Table 7: Comparison of metric gains after iterative bound-
ary suppression and dilated smoothing on MSP, max logit,
and SML. B Supp. and D. S refer to iterative boundary sup-
pression and dilated smoothing, respectively.

5.3. Effects of Standardized Max Logit
Table 7 describes how SML enables applying iterative

boundary suppression and dilated smoothing. Applying iter-
ative boundary suppression and dilated smoothing on other
approaches does not improve the performance or even ag-
gravates in the cases of MSP [16] and max logit [15]. On the
other hand, it significantly enhances the performance when
applied to SML. The following are the possible reasons for
such observation. As aforementioned, the overconfidence of
the softmax layer elevates the MSPs of anomalous objects.
Since the MSPs of anomalous objects and in-distribution
objects are not distinguishable enough, applying iterative
boundary suppression and dilated smoothing may not im-
prove the performance.

Additionally, iterative boundary suppression and dilated
smoothing require the values to be scaled since it performs
certain computations with the values. In the case of using
max logits, the values of each predicted class differ accord-
ing to the predicted class. Performing the iterative bound-
ary suppression and dilated smoothing in such a case aggra-
vates the performance because the same max logit values in
different classes represent different meanings according to
their predicted class. SML aligns the differently formed dis-
tributions of max logits which enables to utilize the values
of neighboring pixels with certain computations.
6. Conclusions

In this work, we proposed a simple yet effective method
for identifying unexpected obstacles on roads that do not re-
quire external datasets or additional training. Since max log-
its have their own ranges in each predicted class, we aligned
them via standardization, which improves the performance
of detecting anomalous objects. Additionally, based on the
intuition that pixels in a local region share local seman-
tics, we iteratively suppressed the boundary regions and re-
moved irregular pixels that have distinct values compared
to neighboring pixels via dilated smoothing. With such a
straightforward approach, we achieved a new state-of-the-
art performance on Fishyscapes Lost & Found benchmark.
Additionally, extensive experiments with diverse datasets
demonstrate the superiority of our method to other previous
approaches. Through the visualizations and in-depth analy-
sis, we verified our intuition and rationale that standardizing
max logit and considering the local semantics of neighbor-
ing pixels indeed enhance the performance of identifying
unexpected obstacles on roads. However, there still remains
room for improvements; 1) dilated smoothing might remove
unexpected obstacles that are as small as noises, and 2) the
performance depends on the distribution of max logits ob-
tained from the main segmentation networks.

We hope our work inspires the following researchers to
investigate such practical methods for identifying anoma-
lous objects in urban-scene segmentation which is crucial
in safety-critical applications.
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