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Abstract

Increasing demands for understanding the internal be-
havior of convolutional neural networks (CNNs) have led to
remarkable improvements in explanation methods. Particu-
larly, several class activation mapping (CAM) based meth-
ods, which generate visual explanation maps by a linear
combination of activation maps from CNNs, have been pro-
posed. However, the majority of the methods lack a clear
theoretical basis on how they assign the coefficients of the
linear combination. In this paper, we revisit the intrinsic
linearity of CAM with respect to the activation maps; we
construct an explanation model of CNN as a linear func-
tion of binary variables that denote the existence of the cor-
responding activation maps. With this approach, the ex-
planation model can be determined by additive feature at-
tribution methods in an analytic manner. We then demon-
strate the adequacy of SHAP values, which is a unique solu-
tion for the explanation model with a set of desirable prop-
erties, as the coefficients of CAM. Since the exact SHAP
values are unattainable, we introduce an efficient approxi-
mation method, LIFT-CAM, based on DeepLIFT. Our pro-
posed LIFT-CAM can estimate the SHAP values of the acti-
vation maps with high speed and accuracy. Furthermore, it
greatly outperforms other previous CAM-based methods in
both qualitative and quantitative aspects.

1. Introduction
Recently, convolutional neural networks (CNNs) have

achieved excellent performance in various real-world vision
tasks. However, it is difficult to explain their predictions
due to a lack of understanding of their internal behavior.
To grasp why a model makes a certain decision, numerous
saliency methods have been proposed. The methods gen-
erate visual explanation maps that represent pixel-level im-
portances for which regions in an input image are respon-
sible for the model’s decision and which are not. Towards
better comprehension of CNNs, class activation mapping
(CAM) based methods, which utilize the responses of a con-
volutional layer for explanations, have been widely used.

CAM-based methods [3, 4, 7, 14, 18, 20] (abbreviated
as CAMs in the remainder of this paper) linearly combine
activation maps to produce visual explanation maps. Since
the activation maps are fixed for a given input image and a
model pair, the coefficients of a linear combination govern
the performance of the methods. Therefore, it is critical to
design a reasonable method of determining the coefficients.
However, the majority of CAMs rely on heuristic conjec-
tures for coefficient assignment without a clear theoretical
basis. Specifically, the underlying linearity of CAM w.r.t.
the activation maps is not fully taken into account. In addi-
tion, they do not set rigorous standards of which properties
are expected to be satisfied in a good explanation model.

In this work, we leverage the linearity of CAM to ana-
lytically determine the coefficients beyond heuristics. Fo-
cusing on the fact that CAM defines an explanation map
using a linear combination of activation maps, we formu-
late an explanation model as a linear function of the binary
variables denoting the existence of the associated activa-
tion maps. Under this scheme, each activation map can
be seen as an individual feature in additive feature attri-
bution methods [2, 10, 12, 16]. Notably, SHapley Additive
exPlanations (SHAP) [10] provides SHAP values as a uni-
fied measure of feature importance that satisfies three de-
sirable properties (described in Sec. 2.2). Thus, the coef-
ficients can be determined by the SHAP values of the cor-
responding activation maps. However, the exact SHAP val-
ues are not computable. To solve this, we propose a novel
saliency method using Deep Learning Important FeaTures
(DeepLIFT) [16], called LIFT-CAM, which efficiently ap-
proximates the SHAP values of the activation maps. Our
contributions are summarized as follows:

• We propose a novel framework of determining a plau-
sible visual explanation map of CAM, by reframing
the problem as determining a reliable solution for the
explanation model using additive feature attribution
methods. The recent Ablation-CAM [4] can be rein-
terpreted by this framework.

• We formulate the SHAP values of the activation maps
as a unified solution for the proposed framework and
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verify their benefits in terms of generating faithful vi-
sual explanations.

• We introduce a new saliency method, LIFT-CAM,
based on DeepLIFT. It effectively estimates the SHAP
values of the activation maps with a single backward
propagation and outperforms the other previous CAMs
qualitatively and quantitatively.

2. Related Work

2.1. Class Activation Mapping

Visual explanation map. Let f be an original prediction
model and c denote a target class of interest. CAMs [3, 4,
7, 14, 18, 20] aim to explain the target output of the model
for a specific input image x (i.e., f c(x)) through the visual
explanation map, which can be generated by:

Lc
CAM(A) = ReLU(

Nl∑
k=1

αkAk) (1)

with A = f [l](x), where f [l](·) denotes the output of the l-th
layer1. Ak is a k-th activation map of A and αk is the coeffi-
cient (i.e., the importance) of Ak, respectively. Nl indicates
the number of the activation maps of the l-th layer. This
concept of linearly combining activation maps was firstly
proposed by [20], leading to its variants.
Previous methods. Grad-CAM [14] decides the coefficient
of a specific activation map by averaging the gradients over
all activation neurons in that map. Grad-CAM++ [3], which
is a modified version of Grad-CAM, focuses on positive
influences of neurons considering higher-order derivatives.
However, the gradients of deep neural networks tend to di-
minish due to the gradient saturation problem. Hence, using
unmodified raw gradients induces failure of localization for
relevant regions.

To overcome this limitation, gradient-free CAMs have
been proposed. Score-CAM [18] overlaps normalized ac-
tivation maps to an input image and makes predictions to
acquire the coefficients. Ablation-CAM [4] defines a coeffi-
cient as the fraction of decline in the target output when the
associated activation map is removed. They are free from
the saturation issue, but time-consuming because they re-
quire Nl forward propagations to acquire the coefficients.

All the methods described above determine their coef-
ficients in a heuristic way. XGrad-CAM [7] addresses this
issue by suggesting two axioms. The authors derived the co-
efficients that satisfy the axioms as much as possible. How-
ever, their derivation is demonstrated only for ReLU-CNNs.

1Conventionally, the last convolutional layer is used for the layer l be-
cause it is expected to provide the best compromise between high-level
semantics and spatial information [14].

2.2. SHapley Additive exPlanations

Additive feature attribution method. SHAP [10] is a uni-
fied explanation framework for additive feature attribution
methods. The methods follow:

g(z
′
) = ϕ0 +

M∑
i=1

ϕiz
′

i (2)

where g is an explanation model of an original prediction
model f for a specific input x and a target class c. M is the
number of input features and z

′ ∈ {0, 1}M indicates a bi-
nary vector in which each entry represents the existence of
the corresponding original input feature; 1 for presence and
0 for absence. ϕi denotes an importance of the i-th feature
and ϕ0 is a baseline explanation. The methods are designed
to ensure g(z

′
) ≈ f c(hx(z

′
)) whenever z

′ ≈ x
′
, with

a mapping function hx that satisfies x = hx(x
′
). While

several existing attribution methods [2, 10, 12, 16] match
Eq. (2), only one explanation model satisfies three desir-
able properties: local accuracy, missingness, and consis-
tency [10].
SHAP values. A feature attribution of the explanation
model which obeys Eq. (2) while adhering to the above
three properties is defined as SHAP values [10] and can be
formulated by:

ϕi =
∑
z′⊂x′

(M − |z′ |)!(|z′ | − 1)!

M !
[f c(hx(z

′
))−f c(hx(z

′
\i))]

(3)
where |z′ | denotes the number of non-zero entries in z

′
and

z
′ ⊂ x

′
indicates all z

′
vectors, where the non-zero entries

are a subset of the non-zero entries in x
′
. In addition, z

′\i
means setting z

′

i = 0. This definition of the SHAP values
intimately aligns with the classic Shapley values [15].

2.3. Deep Learning Important FeaTures

DeepLIFT [16] focuses on the difference between an
original activation and a reference activation. It propagates
the difference through a network to assign the contribution
score to each input feature by linearizing non-linear compo-
nents in the network. Through this technique, the gradient
saturation problem is alleviated.

Let o represent the output of the target neuron and
x = (x1, . . . , xn) be inputs whose reference values are
r = (r1, . . . , rn). The contribution score of the i-th input
feature C∆xi∆o quantifies the influence of ∆xi = xi − ri
on ∆o = f c(x) − f c(r). In addition, DeepLIFT satisfies
the summation-to-delta property as below:

n∑
i=1

C∆xi∆o = ∆o. (4)

Note that if we set C∆xi∆o = ϕi and f c(r) = ϕ0, then Eq.
(4) matches Eq. (2). Therefore, DeepLIFT is also an addi-
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tive feature attribution method. It approximates the SHAP
values efficiently, satisfying the local accuracy and missing-
ness [10].

3. Methodology
In this section, we clarify the problem formulation of

CAM and suggest an approach to solve it analytically. First,
we propose a framework that defines a linear explanation
model and determines the coefficients of CAM based on the
model. Then, we formulate the SHAP values of the activa-
tion maps as a unified solution for the framework. Finally,
we introduce a fast approximation method for the SHAP
values of the activation maps: LIFT-CAM.

3.1. Problem formulation of CAM

As identified in Eq. (1), CAM produces a visual ex-
planation map Lc

CAM linearly w.r.t. the activation maps
A1, . . . , ANl

except for ReLU, which is applied for the pur-
pose of only considering the positive influence on the target
class c. In addition, the complete activation maps A does
not change for a given pair of the model f and the input
image x. Thus, the quality of Lc

CAM is controlled by the
coefficients α = (α1, . . . , αNl

), which represent the impor-
tance scores of the associated activation maps. In sum, the
purpose of CAM is to find α for a linear combination in or-
der to generate Lc

CAM, which can reliably explain the target
output f c(x).

3.2. Proposed framework

How can we acquire the desirable α in an analytic way?
To this end, we first consider each activation map as an indi-
vidual feature (i.e., we have Nl features) and define a binary
vector a

′ ∈ {0, 1}Nl of the features. In the vector, an en-
try a

′

k of 1 indicates that the corresponding Ak maintains
its original activation values, and 0 means that it loses the
values.

Next, we specify an explanation model gCAM to interpret
f c(x). Since the explanation map of CAM Lc

CAM is linear
w.r.t. the activation maps A1, . . . , ANl

by definition, it is
reasonable to assume that the explanation model gCAM is
also linear w.r.t. the binary variables of the activation maps
a

′

1, . . . , a
′

Nl
as follows:

gCAM(a
′
) = α0 +

Nl∑
k=1

αka
′

k. (5)

Under this assumption, the problem of determining α in Eq.
1 can be reformulated into the problem of determining gCAM
that follows Eq. 5.

Eq. 5 matches Eq. 2 exactly. Furthermore, each individ-
ual feature of Eq. 5 (i.e., each activation map) is expected to
represent distinct high-level semantic information. There-
fore, in this work, we determine gCAM using additive feature

Figure 1. Proposed framework for determining the coefficients of
CAM. First, we build a linear explanation model. Next, we deter-
mine the importance scores of the activation maps by optimizing
the explanation model, using additive feature attribution methods.
Last, we use the scores as the coefficients of CAM.

attribution methods ([10] in Sec. 3.3, [16] in Sec. 3.4, [2]
and [12] in Supplementary Material). Once we obtain α on
the basis of gCAM, we can use the values to generate Lc

CAM.
Figure 1 shows our proposed framework which is described
in this section.

3.3. SHAP values of activation maps

SHAP [10] is a model-agnostic method and the local ac-
curacy, missingness, and consistency [10] are still desirable
in Eq. 5. Accordingly, we adopt the SHAP values of the ac-
tivation maps as a unified solution for our framework. Let
F be a latter part of the original model f , from layer l+1 to
layer L− 12, where L represents the total number of layers
in f . Namely, we have F (A) = f [L−1](x). Additionally,
we define a mapping function hA that converts a

′
into the

embedding space of A; it satisfies A = hA(A
′
), where A

′
is

a vector of ones. Specifically, a
′

k = 1 is mapped to Ak and
a

′

k = 0 to 0, which has the same dimension as Ak. Note that
this is reasonable because Ak exerts no influence on Lc

CAM
when it has values of 0 for all activation neurons in Eq. (1).

Now, the SHAP values of the activation maps w.r.t. the
class c are formulated by:

αshap
k =

∑
a′⊂A′

(Nl − |a
′ |)!(|a′ | − 1)!

Nl!
[F c(hA(a

′
))−F c(hA(a

′
\k))]

(6)
where αshap

k is the SHAP value of Ak and F c denotes the tar-
get output of F . The above equation implies that αshap

k can
be obtained by averaging marginal prediction differences
between presence and absence of Ak across Πtotal that de-
notes a set of all possible feature orderings of {1, . . . , Nl}.

To reduce the computational burden, we suggest to use
a subset Π ⊊ Πtotal instead of Πtotal to estimate αshap =
(αshap

1 , . . . , αshap
Nl

), as described in Algorithm 1. We refer

2It represents the logit layer which precedes the softmax layer.
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Figure 2. Overview of LIFT-CAM. First, we apply DeepLIFT from the target output up to the activation maps and acquire the contribution
score maps, in which each pixel represents C∆Ak(i,j)∆Fc . Next, we quantify the importance of each activation map by summing all the
contribution scores of itself. Then, we perform a linear combination of (αlift

1 , . . . , αlift
Nl

) and A1, . . . , ANl . Finally, we rectify the resulting
map, upsample the map to the original image dimension, and normalize the map using the min-max normalization function.

to the algorithm of using |Π| orderings as SHAP-CAM|Π|
throughout the paper. The higher |Π|, the α from SHAP-
CAM|Π| converges to αshap by the law of large numbers.
We validate the benefits of these SHAP attributions in terms
of the faithfulness of Lc

CAM in Sec. 4.1. Analyses for
acknowledged approximation methods for SHAP values,
DeepSHAP [10] and KernelSHAP [10], are provided in
Supplementary Material.

Algorithm 1 SHAP-CAM|Π|

Input : F , c, hA, and a subset Π ⊊ Πtotal
Output: α = (α1, . . . , αNl

)
Initialize: α←− 0
for each ordering π in Π do

a
′ ←− 0

for i = 1, ..., Nl do
a

′

π(i) ←− 1

απ(i) ←− απ(i) + F c(hA(a
′
))− F c(hA(a

′\π(i)))
end

end
α←− α/|Π|

3.4. Efficient approximation: LIFT-CAM

Through the experiment in Sec. 4.1, we demonstrate that
a faithful Lc

CAM can be achieved by αshap. However, calcu-
lating the exact αshap is almost impossible. Therefore, we
need to consider an approximation approach. In this study,
we propose a novel method, LIFT-CAM, that efficiently ap-

proximates αshap using DeepLIFT3 [16].
First, we calculate the contribution score for every acti-

vation neuron at layer l using DeepLIFT through a single
backward pass. Considering the summation-to-delta prop-
erty of DeepLIFT, we define the contribution score of a spe-
cific activation map as the summation of the contribution
scores of all neurons in that activation map, as follows:

αlift
k = C∆Ak∆F c =

∑
(i,j)∈Λ

C∆Ak(i,j)∆F c (7)

where Λ = {1, . . . ,H} × {1, . . . ,W} is a discrete acti-
vation dimension and Ak(i,j) is an activation value at the
(i, j) location of Ak. Note that ∆ denotes the difference-
from-reference and the reference values (i.e., the values
corresponding to the absent feature) of all activation neu-
rons are set to 0, aligning with SHAP. By this definition,
αlift = (αlift

1 , . . . , αlift
Nl
) becomes a reliable solution for Eq.

(5) while satisfying the local accuracy4 of SHAP as below:

Nl∑
k=1

αlift
k = F c(A)− F c(0). (8)

Consequently, LIFT-CAM can estimate αshap with a sin-
gle backward pass while alleviating the gradient saturation
problem [16]. Figure 2 shows an overview of our proposed

3DeepLIFT-Rescale is used for approximation because the method can
be easily implemented by overriding gradient operators. This convenience
enables LIFT-CAM to be easily applied to a large variety of tasks.

4∑Nl
k=1 α

shap
k = F c(A)− F c(0).
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LIFT-CAM. Additionally, the following rationale motivates
us to employ DeepLIFT for this problem.

DeepLIFT linearizes non-linear components to estimate
the SHAP values [10]. Therefore, DeepLIFT attributions
tend to deviate from the true SHAP values when passed
through many overlapping non-linear layers during back-
propagation (see Supplementary Material for details). How-
ever, for CAM, only the non-linearities in F matter. Since
CAM usually uses the outputs of the last convolutional layer
as its activation maps, almost all F of state-of-the-art archi-
tectures contain few non-linearities (e.g., the VGG family),
or are even fully linear (e.g., the ResNet family). Thus,
the SHAP values of the activation maps can be approxi-
mated with high precision by LIFT-CAM. Particularly, we
can acquire the exact SHAP values using LIFT-CAM (i.e.,
αlift = αshap) for the architectures of linear F . The proof of
this statement is provided in Supplementary Material.

3.5. Rethinking Ablation-CAM

The recently proposed Ablation-CAM [4] can be reinter-
preted by our framework. Ablation-CAM defines the coef-
ficients as below:

αablation
k =

F c(hA(A
′
))− F c(hA(A

′\k))
F c(hA(A

′))
. (9)

Since Ablation-CAM uses this specific marginal difference
as the coefficient, it can be deemed as another approx-
imation method for αshap. However, Ablation-CAM is
computationally expensive requiring Nl forward simula-
tions. In addition, the method does not satisfy the local
accuracy of SHAP (i.e.,

∑Nl

k=1 α
ablation
k ̸= F c(A)−F c(0)).

This mismatch leads to less precise approximations com-
pared to LIFT-CAM, resulting in less reliable explanations.

4. Experiments and Results
We now describe our experiments and show the results.

In Sec. 4.1, we first validate the superiority of αshap by
evaluating the faithfulness of Lc

CAM generated by SHAP-
CAM. Then, we demonstrate how closely LIFT-CAM can
estimate αshap in Sec. 4.2. These two experiments provide
justification to opt for LIFT-CAM as a responsible method
of determining α of CAM. We then evaluate the perfor-
mance of LIFT-CAM on the object recognition task in the
context of image classification, comparing it with the other
CAMs: Grad-CAM, Grad-CAM++, XGrad-CAM, Score-
CAM, and Ablation-CAM in Sec. 4.3. Finally, we apply
LIFT-CAM to the visual question answering (VQA) task in
Sec. 4.4 to check the scalability of the method.

For all experiments except VQA, we employ the pub-
lic classification datasets: ImageNet [13] (ILSVRC 2012
validation set), PASCAL VOC [5] (2007 test set), and MS

COCO [9] (2014 validation set). In addition, the VGG16
network trained on each dataset is analyzed for the experi-
ments (see Supplementary Material for the experiments of
the ResNet50). We refer to the pretrained models from the
torchvision5 package for ImageNet and the TorchRay pack-
age6 for VOC and COCO. For VQA, we use the fundamen-
tal architecture7 proposed by [1] and the VQA v2.0 dataset
[8].

4.1. Validation of SHAP values

Faithfulness evaluation metrics. Intuitively, an explana-
tion image w.r.t. the target class c can be generated using an
original image x and a related visual explanation map Lc

CAM
as below:

ec = s(u(Lc
CAM)) ◦ x (10)

where u(·) indicates the upsampling operation into the orig-
inal image dimension and s(·) denotes the min-max nor-
malization function. The operator ◦ refers to the Hadamard
product. Hence, ec preserves the information of x only in
the region which Lc

CAM considers important.
In general, Lc

CAM is expected to recognize the regions
which contribute the most to the model’s decision. Thus, we
can evaluate the faithfulness of Lc

CAM on the object recog-
nition task via the two metrics proposed by [3]: Increase in
Confidence (IC) and Average Drop (AD), which are defined
as:

IC =
1

N

N∑
i=1

1[Y c
i <Oc

i ]
× 100, (11)

AD =
1

N

N∑
i=1

max(0, Y c
i −Oc

i )

Y c
i

× 100, (12)

where Y c
i and Oc

i are the model’s softmax outputs of an i-
th input image xi and the associated explanation image eci ,
respectively. N denotes the number of images and 1[·] is an
indicator function. Higher is better for the IC and lower is
better for the AD.

However, both IC and AD evaluate the performance of
the explanations via the preservation perspective; the region
which is considered to be influential is maintained. We can
also evaluate the performance through the opposite perspec-
tive (i.e., deletion); if we mute the region which is responsi-
ble for the target output, the softmax probability is expected
to drop significantly. From this viewpoint, we suggest the
Average Drop in Deletion (ADD) which can be defined as
below:

ADD =
1

N

N∑
i=1

(Y c
i −Dc

i )

Y c
i

× 100 (13)

5https://github.com/pytorch/vision/blob/master/torchvision
6https://github.com/facebookresearch/TorchRay
7https://github.com/tbmoon/basic vqa
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Increase in Confidence (%) Average Drop (%) Average Drop in Deletion (%)

ImageNet VOC COCO ImageNet VOC COCO ImageNet VOC COCO
∗SHAP-CAM1 25.9 37.4 35.2 28.16 22.93 23.98 32.64 17.35 24.07
∗SHAP-CAM10 26.2 42.7 40.1 27.54 17.53 19.07 32.99 19.95 27.50
∗SHAP-CAM100 26.4 43.6 41.4 27.48 16.71 18.27 33.03 20.64 27.65

Table 1. Faithfulness evaluation on the object recognition task for SHAP-CAM1, SHAP-CAM10, and SHAP-CAM100. The symbol *
denotes averaging for 10 runs. We analyze 1,000 randomly selected images for each dataset. Higher is better for the IC and ADD. Lower
is better for the AD.

where Dc is the softmax output of the inverted explanation
image ecinv = (1−s(u(Lc

CAM)))◦x. Higher is better for this
metric.
Faithfulness evaluation. Table 1 presents the comparative
results of the IC, AD, and ADD between SHAP-CAM1,
SHAP-CAM10, and SHAP-CAM100. Each case is aver-
aged for 10 simulations. We discover two important im-
plications from Table 1. First, as |Π| increases, the IC and
ADD increase and the AD decreases, showing performance
improvement. This result indicates that the closer the im-
portances of the activation maps are to αshap, the more ef-
fectively the distinguishable region of the target object is
found. Second, even compared to the other CAMs (see Ta-
ble 3), SHAP-CAM100 shows the best performances for all
cases. It reveals the adequacy of αshap as the coefficients
of CAM. However, this approach of averaging the marginal
contributions of multiple orderings is impractical due to the
significant computational burden. Therefore, we propose a
cleverer approximation method: LIFT-CAM.

4.2. Approximation performance of LIFT-CAM

In this section, we quantitatively assess how precisely
LIFT-CAM estimates αshap. Since the exact αshap is
unattainable, we regard α from SHAP-CAM10k as αshap for
comparison (see Supplementary Material for the justifica-
tion of this assumption). Table 2 shows the cosine sim-
ilarities between α from state-of-the-art CAMs, including
LIFT-CAM, and α from SHAP-CAM10k.

As shown in Table 2, LIFT-CAM presents the highest
similarities for all datasets (greater than 0.9), which in-
dicates high relevance between αlift and αshap. Even if
Ablation-CAM also exhibits high similarities, the method
falls behind LIFT-CAM due to dissatisfaction of the local
accuracy. The other CAMs cannot approximate αshap, pro-
viding consistently low similarities.

4.3. Performance evaluation of LIFT-CAM

The experimental results from Secs. 4.1 and 4.2 moti-
vate us to generate visual explanations using LIFT-CAM.
We verify the effectiveness of our LIFT-CAM by compar-
ing the performances of the method with those of previous
state-of-the-art saliency methods in terms of the quality of

ImageNet VOC COCO

Grad-CAM 0.489 0.404 0.441
Grad-CAM++ 0.385 0.329 0.412
XGrad-CAM 0.406 0.327 0.350
Score-CAM 0.195 0.181 0.157
Ablation-CAM 0.972 0.888 0.908
LIFT-CAM 0.980 0.918 0.924

Table 2. Cosine similarities between the coefficients from various
CAMs and those from SHAP-CAM10k. We analyze 500 randomly
selected images for each dataset.

visualization, faithfulness, and localization.

4.3.1 Qualitative evaluation

Figure 3 provides qualitative comparisons between various
saliency methods via visualization. Each row represents the
visual explanation maps for each dataset. When compared
to the other methods, our proposed method, LIFT-CAM,
yields visually interpretable explanation maps for all cases.
It clearly pinpoints the essential parts of the specific objects
which are responsible for the classification results. This can
be observed in the notebook case (row 1), for which the
other visualizations cannot decipher the lower part of the
notebook. Furthermore, LIFT-CAM alleviates pixel noise
without highlighting trivial evidence. In the sheep case
(row 2), the artifacts of the image are eliminated by LIFT-
CAM and the exact location of the sheep is captured by the
method. Last, the method successfully locates multiple ob-
jects in the apple case (row 3) by providing the clear object-
focused map.

4.3.2 Faithfulness evaluation

IC, AD, and ADD. Table 3 shows the results of the IC, AD,
and ADD for various CAMs. The three metrics can rep-
resent the object recognition performances of the saliency
methods in a complementary way. LIFT-CAM provides
the best results in most cases, with an exception of the
ADD in COCO, where Ablation-CAM outperforms LIFT-
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Figure 3. Visual explanation maps of state-of-the-art saliency methods and our proposed LIFT-CAM. Note that we apply a smoothing
technique to Gradient [17] to acquire comparable visual explanation maps to those of CAMs, referring to [6].

Increase in Confidence (%) Average Drop (%) Average Drop in Deletion (%)

ImageNet VOC COCO ImageNet VOC COCO ImageNet VOC COCO

Grad-CAM 24.0 32.7 31.9 31.89 30.73 30.74 30.60 17.43 25.66
Grad-CAM++ 23.1 33.8 33.5 30.53 17.20 20.87 27.98 15.85 24.16
XGrad-CAM 25.0 30.5 31.3 31.36 30.04 29.92 30.48 17.09 24.95
Score-CAM 22.8 29.4 23.9 29.91 17.49 23.66 27.52 14.12 17.35
Ablation-CAM 24.1 34.4 35.0 29.41 25.49 23.99 32.52 19.42 26.75
LIFT-CAM 25.2 38.7 39.3 29.15 17.15 18.65 32.95 20.09 26.34

Table 3. Comparative evaluation of faithfulness on the object recognition task between various CAMs. We analyze 1,000 randomly selected
images for each dataset (the same image samples as Table 1). Higher is better for the IC and ADD. Lower is better for the AD.

CAM. However, LIFT-CAM also provides a comparable
result, showing that the difference is negligible. In addi-
tion, it should be noted that LIFT-CAM is much faster than
Ablation-CAM since it requires only a single backward pass
to calculate the coefficients. Thus, LIFT-CAM can deter-
mine which object is responsible for the model’s prediction,
accurately and efficiently.
Area under probability curve. The above three metrics
tend to be advantageous for methods which provide ex-
planation maps of large magnitude. To exclude the influ-
ence of the magnitude, we can binarize the explanation map
with two opposite perspectives: insertion and deletion [11].
First, we threshold s(u(Lc

CAM)) with δ ∈ [0 : 0.025 : 1]
(i.e., 1 for top 100 × δ percentile pixels and 0 for the oth-
ers) and acquire the corresponding target softmax outputs
Oc for the insertion and Dc for the deletion. Using the soft-
max outputs, we can draw a probability curve as a function
of δ. Finally, we can calculate the area under the probability
curve (AUC).

As shown in Table 4, LIFT-CAM provides the most re-
liable results, presenting the highest insertion AUC and the
lowest deletion AUC. Through this experiment, we demon-

Insertion Deletion

Grad-CAM 0.4427 0.0891
Grad-CAM++ 0.4350 0.0969
XGrad-CAM 0.4457 0.0883
Score-CAM 0.4345 0.1002
Ablation-CAM 0.4685 0.0873
LIFT-CAM 0.4712 0.0866

Table 4. AUC results in terms of the insertion and deletion. The
values are averaged for 1,000 randomly selected images from Im-
ageNet. Higher is better for the insertion and lower is better for
the deletion.

strate that LIFT-CAM succeeds in sorting the pixels accord-
ing to the contributions to the target result.

4.3.3 Localization evaluation

It is reasonable to expect that a dependable explanation map
overlaps with a target object. Therefore, we can also as-
sess the reliability of the map via localization ability in ad-
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Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM Ablation-CAM LIFT-CAM

Proportion (%) 47.76 49.14 47.91 51.14 51.87 52.43

Table 5. Proportions of energy located in bounding boxes for various CAMs. The values are averaged for 1,000 randomly selected images
from ImageNet. Higher is better.

dition to the softmax probability. [18] newly proposed an
improved version of a pointing game [19], named as an
energy-based pointing game. This gauges how much energy
of the explanation map interacts with the bounding box of
the target object. For this, an evaluation metric can be for-
mulated as follows:

Proportion =

∑
(i,j)∈bbox s(u(L

c
CAM))(i,j)∑

(i,j)∈Λ′ s(u(Lc
CAM))(i,j)

(14)

where Λ
′
= {1, . . . ,H ′} × {1, . . . ,W ′} is an original im-

age dimension and s(u(Lc
CAM))(i,j) denotes a min-max nor-

malized importance at pixel location (i, j). Higher is better
for this metric.

The proportions of various methods are reported in Table
5. LIFT-CAM shows the highest proportion compared to
the other methods. This implies that LIFT-CAM produces
a compact explanation map which focuses on the essential
parts of the images without trivial noise.

4.4. Application to VQA

We also apply LIFT-CAM to VQA to demonstrate the
applicability of the method. We consider the standard VQA
model [1] which consists of a CNN and a recurrent neu-
ral network in parallel. They function to embed images
and questions, respectively. The two embedded vectors are
fused and entered into a classifier to produce an answer.

Figure 4 illustrates the explanation maps of Grad-CAM
and LIFT-CAM for VQA. LIFT-CAM highlights the re-
gions in the given images that are more relevant to the ques-
tion and answer pairs than those identified with Grad-CAM.
Additionally, since this is a classification problem, the IC,
AD, and ADD can be evaluated with fixed question em-
beddings. Table 6 shows the comparison results between
Grad-CAM and LIFT-CAM in terms of those metrics. As
demonstrated in the table, LIFT-CAM outperforms Grad-
CAM for all of the metrics. This indicates that LIFT-CAM
is better at figuring out the essential parts of images, which
can serve as evidences for the answers to the questions.

5. Conclusion

In this work, we propose a novel analytic framework
which determines the coefficients of CAM by optimizing
a linear explanation model, using additive feature attribu-
tion methods. As desirable solutions for the explanation

Figure 4. Visual explanation maps of Grad-CAM and LIFT-CAM
for VQA.

Grad-CAM LIFT-CAM

Increase in Confidence (%) 41.95 43.39
Average Drop (%) 16.71 14.14
Average Drop in Deletion (%) 9.09 9.58

Table 6. Faithfulness evaluation for the VQA task. The values are
averaged for the complete validation set. Higher is better for the
IC and ADD. Lower is better for the AD.

model, we introduce several approaches including LIFT-
CAM, throughout this paper and Supplementary Material.
In addition, we show that Ablation-CAM can also be uni-
fied into this framework.

Our proposed LIFT-CAM approximates the SHAP val-
ues of the activation maps, which is a unified solution for
the explanation model, with a single backward pass. The
method provides qualitatively enhanced visual explanations
compared with the other CAMs. Furthermore, it achieves
state-of-the-art results on various quantitative evaluation
metrics.
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