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Abstract

Rotation augmentations generally improve a model’s in-
variance/equivariance to rotation - except in object detec-
tion. In object detection the shape is not known, therefore
rotation creates a label ambiguity. We show that the de-
facto method for bounding box label rotation, the Largest
Box Method, creates very large labels, leading to poor per-
formance and in many cases worse performance than us-
ing no rotation at all. We propose a new method of rota-
tion augmentation that can be implemented in a few lines
of code. First, we create a differentiable approximation of
label accuracy and show that axis-aligning the bounding
box around an ellipse is optimal. We then introduce Ro-
tation Uncertainty (RU) Loss, allowing the model to adapt
to the uncertainty of the labels. On five different datasets
(including COCO, PascalVOC, and Transparent Object Bin
Picking), this approach improves the rotational invariance
of both one-stage and two-stage architectures when mea-
sured with AP, AP50, and AP75.

1. Introduction
It is desirable for object detectors to work when scenes

are rotated. But there is a problem: methods like Convo-
lutional Neural Networks (CNNs) may be scale and trans-
lation invariant but CNNs are not rotation invariant [15].
To overcome this problem, the training dataset can be ex-
panded to include data at new rotation angles. This is known
as rotation augmentation. In object detection, rotation aug-
mentation can be abstracted as follows: given an original
bounding box and any desired angle of rotation, how should
we determine the axis-aligned rotated bounding box label?
If the shape of the object is known, this is quite simple: we
rotate the object shape and re-compute the bounding box.
However in the case of object detection, the shape is un-
known.

The prevailing folk wisdom in the community is to se-
lect a label large enough to completely overlap the ro-
tated box [45]. In studying this problem, we find that

Figure 1: A method is proposed to properly rotate a
bounding box for rotation augmentation. The previ-
ous solution of largest box is an overestimate of the per-
fect bounding box for a rotated scene. See table for how
choice of rotation augmentation affects object detection per-
formance.

this method may hurt performance, and on COCO [22],
we find that every other prior we tried is better. Yet
somehow this “Largest Box” method is very prevalent
both in academia and in large scale object detection code-
bases [43, 4, 45, 37, 28, 26, 5, 7, 1, 17, 6, 40]. Indeed,
recent analysis has found that largest box is only robust to
about < 3◦ [16] of rotation.

In this paper, we propose an advance on the largest box
solution that achieves significantly better performance on
five object detection datasets; while retaining the simplicity
of a few lines of code implementation.

1.1. Contributions

In a nutshell, our solution has two aspects. First, we de-
rive an elliptical shape prior from first principles to deter-
mine the rotated box label. We compare it to many other
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novel priors and show this is optimal. Second, we introduce
a novel Rotation Uncertainty (RU) Loss function, which
allows the network to adapt the labels at higher rotations us-
ing priors from lower rotations based on label certainty. We
demonstrate the effectiveness of this solution by both im-
proving performance datasets where rotation is important
such as Pascal VOC [14] and Transparent Object Bin Pick-
ing [18] and generalizing to novel test time rotations on MS
COCO [22] (Figure 1).

1.2. Scope

Rotation data augmentation in object detection is not
new. This paper is not about finding the best overall way
to use a rotation data augmentation. For that - a brute
force search or papers like AutoAugment [45] might be
better examples. This paper focuses solely on methods to
perform a rotation augmentation on axis-aligned bounding
boxes. When implemented, these proposed modifications
boil down to a few lines of code and leave little reason to
use the current Largest Box method.

2. Related Work

Data Augmentations are an effective technique to boost
the performance of object detection. Data augmentation
increases the quantity and improves the diversity of data.
Data augmentations are of two types. Photo-metric trans-
forms modify the color channels such that the detector be-
comes invariant to change in lighting and color. Classi-
cal photometric techniques include adding Gaussian blur
or adding colour jitters. Modern photo-metric augmenta-
tions like Cutout [11] and CutMix [44], randomly remove
patches of the image. On the other hand, geometric trans-
forms modify the image’s geometry, making the detector
invariant to position and orientation. Geometric modifica-
tions require corresponding changes to the labels as well.
Geometric transforms are difficult to implement [5] and
contribute more towards accuracy improvements [38]. We
focus specifically on rotation augmentations and object de-
tection.

Rotation Augmentation in Object Detection is cur-
rently done by the largest box method for major repositories
(e.g. [5, 7, 1, 17, 6, 40]) and publications (e.g. [43, 4, 45,
37, 28, 26]) that do bounding box rotation for deep learning
object detection. The largest box method does a great job
guaranteeing containment, but at large angles, it severely
overestimates the bounding box’s size. Figure 2 shows an
example of these over-sized bounding boxes. For that rea-
son, FastAI [16] recommends rotation of no more than 3
degrees. Some recent work, such as AutoAugment [45, 37],
use rotation as part of a complex learned data augmentation
scheme. While learning rotation augmentation directly is
interesting, it requires extensive computing resources. We

Rotation Method AP50 (Coarse) AP75 (Fine) Shape Label
No Rotation Med Med No
Largest Box (e.g. [1, 17, 5]) Med Low No
Ellipse + RU Loss (Ours) Very High High No
Perfect Box (Gold Std) Very High Very High Yes

Figure 2: Comparison between our method and other
methods. We show example predictions from models
trained with each rotation augmentation above. Our method
has comparable performance to using perfect segmentation
labels without requiring the extra shape information.

seek to achieve the simplicity of the largest box, with per-
formance improvements for larger angles.

Oriented Bounding Boxes, a sister of object detection,
is the task of predicting non-axis aligned bounding boxes,
also known as oriented bounding boxes. Several methods
like [12, 8, 25], aim to achieve rotation invariance when
predicting rotated bounding boxes. However, these methods
already have labelled rotated boxes as input and do not end
up with loose boxes when the input image is rotated. As this
is a different task, it is out of the scope of this paper. Our
paper focuses on axis-aligned bounding boxes only.

Rotational Invariance is an important problem to solve
in object detection. Classical computer vision methods
achieved rotational invariance by extracting features from
images [41, 23, 24, 34]. With the rise of neural net-
works, newer methods attempt to modify the architecture
to achieve rotation invariance [10, 9, 43]. These meth-
ods rotate the input images and add special layers that learn
the object’s orientation in the image. Our general-purpose
method can again aid these methods as well.

3. Background
3.1. Rotation Augmentation for Object Detection

An image is parameterized by x and y coordinates. Sup-
pose the image contains an object with shape S. Let S de-
note the shape set that describes all points in an object:

S = {(x, y) | ∀ (x, y) ∈ object}. (1)

In object detection, a bounding box is defined to be the
tightest fitting axis-aligned box around a shape. There-
fore a shape determines the coordinates of a bounding box,
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b = [xmin, ymin, xmax, ymax]
T . Each of the four edges of

the bounding box intersects at least one element of the shape
set. Let the operator B represent the perfect conversion of a
shape to a bounding box:

b ≜ B(S). (2)

The operator B extracts the bounding box b (tight-
est fitting axis aligned box) for S by taking the mini-
mum/maximum (x, y) coordinates of the shape. As S is not
unique, the same bounding box can be generated by many
shapes. For example, a square of side length d and a circle
of diameter d are just two of many unique shapes that gen-
erate the same bounding box. More formally, let Vb denote
the set of shapes that could possibly generate a bounding
box b, such that

Vb = {Si | B(Si) = b, ∀ Si ∈ P}. (3)

Where P is the dataset specific distribution of shapes.
Let us consider the problem of rotation augmentation where
an image and corresponding box label b is rotated by an-
gle θ. If the shape of the object is known, then we can
rotate the original shape by angle θ using a rotation opera-
tor: Rθ(S). In analogy to Equation 2, we can then use the
perfect method to obtain an axis-aligned bounding box for
the rotated image as:

bθ
perfect ≜ B(Rθ(Sperfect)), (4)

We call this method perfect labels, where Sperfect is the
actual shape of the object for a given bounding box b. How-
ever, this requires shape labels, which are not available for
object detection. In object detection, humans label boxes
by implicitly segmenting the shape. Without knowing the
shape labels, any shape S ∈ Vb could be Sperfect, leading to
many possible boxes bθ. This paper seeks a method to es-
timate the rotated bounding box when we do not know the
shape. We are only provided with the original bounding box
b, which we will hereafter write as b0 by making explicit
that θ = 0. The problem statement follows.

Problem Statement: Given only an input bounding box
b0 and an angle θ by which the image should be rotated,
find the axis aligned bounding box b̂θ that: (1) has high
IoU with bθ

perfect; and (2) improves model performance on
rotated versions of vision datasets.

3.2. Largest Valid Box Method

Rotation augmentation without shape knowledge is not
a new problem statement. The de facto method in the
object detection community for determining the bounding

box post-rotation with no shape priors is the largest box
method. The largest box method is extremely prevalent
(e.g. [28, 26, 5, 7, 1, 17, 6, 40, 20, 19, 27, 33, 36, 39]). Just
like our proposed method, the largest box takes only the
original bounding box b0 and θ as input. From Equation 3
it is clear that several shapes could define b0. This creates
an ambiguity problem. The largest box method chooses the
single largest of these possible shapes in area, Slargest. This
shape is simply the box itself (Table 1). Treating this as the
object shape, Equation 4 can be adapted to obtain

bθ
largest ≜ B(Rθ(Slargest)). (5)

The benefit of this method is that it produces a box that is
guaranteed to contain the original object [45], and it is easy
to implement. The downside is that the method produces
oversized boxes [16, 45, 35, 2, 29, 3], and if used gener-
ously, hurts performance more than it helps (Table 9). Sur-
prisingly, to our best knowledge, including personal com-
munication with practitioners and posts on internet forums,
no alternatives have been adopted. We hope our method
will change that.

4. Proposed Solution
We now describe our solution to the problem: given b0

and desired rotation angle θ, find b̂θ. In a nutshell, our
solution estimates a rotated bounded box by assuming the
original shape is an ellipse (Table 1, Figure 3) and rotating
accordingly (Section 4.1). We then adapt the loss function
to account for error in the labels (Section 4.3).

4.1. Ellipse Method

In this section, we first derive the ellipse assumption
from first principles by trying to find the shape that is
most likely to have high overlap with potential ground truth
boxes. Then we discuss the implementation and intuition of
the ellipse method. Finally, we mention other novel meth-
ods we developed.

4.1.1 Ellipse from Maximizing Expect IoU

We start with a simple assumption: the optimal method
for determining a bounding box post-rotation augmentation
should maximize label accuracy, which in the case of object
detection is measured in IoU.

We define b̂θ as the optimal rotated bounding box. We
are provided the input angle θ and box b0. From Equa-
tion 3, this box could have been generated from any num-
ber of shapes: Vb0 = {Si}i=1,2,...,N . For each shape we
can use the “perfect method” from Equation 4 to obtain a
potential rotated bounding box. Since multiple shapes can
lead to the same rotated box, we obtain M ≤ N possible
bounding boxes, which we write as the set:
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Figure 3: Our Ellipse method leads to good initial training labels while the Largest Box overestimates the labels. From
left to right: (1) The original bounding box prior to rotation. (2) The oversized Largest Box estimate of the ground truth label
post rotation. (3) The tighter Ellipse estimate (Section 4.1). (4) The actual ground truth which we get from segmentation
shape labels. (5) The set of all possible ground truth boxes given a rotation and an initial box.

Qθ
b0 = unique{bθ

j = B(Rθ(Si)),∀Si ∈ Vb0} (6)

= {bθ
j}j=1,...,M . (7)

Hereafter, and without loss of generality, the paper will
assume that b0 is the input allowing notation to be simpli-
fied:

Qθ ≜ Qθ
b0 . (8)

Now the task becomes to pick the “best” of the M pos-
sible bounding boxes in Qθ. Recall that the de facto solu-
tion is to choose the largest box in Qθ. This largest box is
guaranteed to contain the object. However, optimizing for
containment does not seem like a good choice to directly
address the metric of AP because AP uses IoU to determine
true positives, not containment. A more relevant goal for
object detection is to select a box that maximizes:

b̂θ = argmax
b̂θ∈Qθ

IoU(b̂θ,bθ
perfect). (9)

In which case b̂θ = bθ
perfect. Of course, we are not given

bθ
perfect. So for the moment, let us assume any of the bound-

ing boxes in Qθ has an equal chance of being the perfect
box. Then, it would make sense to optimize over:

b̂θ = argmax
b̂θ∈Qθ

Avg{IoU(b̂θ,bθ
j ) | ∀ bθ

j ∈ Qθ}. (10)

Now, let us break the assumption that each candidate box
in Qθ is equally likely to be the perfect box. Indeed, we
know that many shapes can produce the same box (since
M ≤ N ), so certain boxes are more likely than others. For
example, the only shape that can produce the largest box
is the original box itself, whereas other rotated boxes can

Method Shape Definition
Slargest {(x1, y1), (x2, y1), (x2, y2), (x1, y2)}

Sellipse (Ours)
{
(x, y)

∣∣∣ (x− xc)
2

(b0W/2)2
+

(y − yc)
2

(b0H/2)2
= 1

}
Table 1: Our method can be compared with the Largest
Box in the shape domain. The implementation difference
is one line of code.

be generated by multiple object shapes in the dataset. De-
note p(bθ

j ) as the probability that box bθ
j = bθ

perfect. Then
Equation 10 can be reformulated as:

b̂θ = argmax
b̂θ∈Qθ

M∑
i=1

p(bθ
j )IoU(b̂θ,bθ

j ). (11)

Readers may recognize this equation as being analogous
to an expectation. We refer to this in the paper as the Ex-
pected IoU. The expected IoU is not directly tractable: we
do not know p(bθ

j ) a priori. However, if we can sample
K random shapes from a dataset distribution over shapes
Sk ∼ P where bθ

k = B(Rθ(Sk)) we get the following op-
timization objective:

b̂θ = argmax
b̂θ∈Qθ

1

K

K∑
k=1

IoU(b̂θ,bθ
k). (12)

Since all object detection datasets do not have shape la-
bels, we sample P by generating random shapes that touch
each side of b0 once. This way we are not dataset-specific.
We analyze using COCO shapes in the supplement and
show the performance is extremely similar. The above
equation is fully differentiable, and so we can solve with
gradient ascent. The problem here is that we would then
have to solve this equation for every θ and every box b, and
this is not practical. Therefore we generalize this further to
a canonical shape.
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Label Method Slargest Sellipse (Ours) Ŝ (Ours)
Expected IoU 60.8 72.9 72.9

Figure 4: The optimal shape to maximize expected IoU
with potential ground truth boxes converges to an el-
lipse. Curve showing the progression of gradient ascent
starting from the largest box and converging to an ellipti-
cal shape. The final converged expected IoU for Ŝ matches
that of the largest inscribed ellipse Sellipse.

Optimizing Equation 12 via a canonical shape: Instead
of solving Equation 12 for every possible combination of
b0 and θ, we attempt to find a shape that is optimal across
different input bounding boxes. This way, we could solve
for some best shape Ŝ ∈ Vb0 , and solve for b̂θ as follows:

b̂θ ≜ B(Rθ(Ŝ)), (13)

To obtain the likely shape, we combine Equations 12 and
13 to optimize the quantity:

Ŝ = argmax
S∈Vb0

∑
θ

1

K

K∑
k=1

[
IoU(B(Rθ(S)),bθ

k)
]
. (14)

Note that we now optimize over all rotation angles and
aspect ratios simultaneously. This adds enough constraints
to find a unique shape. The goal is to find the shape Ŝ that
produces an augmented bounding box that has high IoU
with likely ground truth boxes. Since R and B are differen-
tiable operators, Equation 14 can be optimized through gra-
dient ascent to solve for Ŝ. We provide details and pseudo-
code and some analysis in the supplement. The stable solu-
tion found by gradient ascent is that of an elliptical shape.
We show the progression of gradient ascent in Figure 4 from
the largest box shape to a circle. If we change the aspect ra-
tio, it simply converges to the largest inscribed ellipse. Also
in Figure 4, we show the Expected IoU for the Largest Box
shape is much lower than the Ellipse, and in Figure 5 we
show that the resulting AP of the Ellipse labels is much bet-
ter. The elliptical solution is similar to the optimized shape

AP50 AP75
10◦ 20◦ 30◦ 40◦ 10◦ 20◦ 30◦ 40◦

Largest Box 98.2 93.79 86.31 82.9 59.2 25.6 19.9 17.3
Ellipse (Ours) 99.6 98.6 97.0 96.5 86.8 56.2 47.2 46.5

Figure 5: Comparing Label AP (assuming uniform con-
fidence) at different IOU thresholds for both methods at
a 15o − 30o rotation augmentation. Ours is significantly
better at AP50 and AP75.

for various tested distributions of P , including the random
model described in the previous paragraph.

4.1.2 The Ellipse Method

When we model the shape as an ellipse, we can find the
estimated bounding box as:

b̂θ = B(Rθ(Sellipse)), (15)

where Sellipse is the largest inscribed ellipse inside b0, ex-
pressed as:

Sellipse =
{
(x, y)

∣∣∣ (x− xc)
2

(b0W/2)2
+

(y − yc)
2

(b0H/2)2
= 1

}
, (16)

where (xc, yc) is the location of the center of b0 and b0W , b0H
are the width and height of b0 respectively.

This equation is fast, simple to implement, and high-
performing on modern vision datasets. The elliptical ap-
proximation can be implemented in the same line of code
as the largest box method (cf. Appendix A), yet it greatly
improves performance. We see in Figure 5 the ellipse labels
are far more accurate than the largest box labels. However,
one disadvantage with the proposed elliptical box method
is that the elliptical box can underestimate the object size
or aspect ratio. This still causes some noise in the labels,
especially at large rotations. We mitigate this by allowing
the model to adapt labels at higher rotations based on priors
from lower rotations in Section 4.3.
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C(θ) = max
(
0.5, 1 + 1−cos(4θ)

2 cos(4δ)−2

)

Figure 6: Rotational certainty used by RU Loss as a func-
tion of theta plotted for different hyper-parameters δ where
δ is the angle at which C(θ) = 0.5.

4.2. Other Methods

We do not limit our analysis to the ellipse method. To
perform a complete study we came up with an additional 4
methods. To conserve space, full details and results of these
novel methods are available in the supplement Appendix B,
we provide a quick summary for these methods here.

• Scaled Octagon: We use an octagon with a scaling fac-
tor (s) to interpolate between the largest box shape and
a diamond shape.

• Random Boxes: We sample random valid boxes and
use those as ground truth labels.

• RotIoU: We select the label that has the maximum IoU
with the rotated ground truth box rather than the ex-
pected axis-aligned ground truth box.

• COCO Shape: Rather than using random shapes for
the optimization, we use the shapes from the COCO
dataset. We keep results from this to the supplement
since the performance between this and the ellipse
method is negligible and we want this paper to be
dataset independent and easy to implement.

4.3. Rotation Uncertainty Loss

As shown in Figure 4 the expected IoU with random
shapes is 72.9. This means attaining good performance at
the higher APs, like AP75, will be very difficult using just
these labels. To tackle this problem, we create a custom
loss function that adapts the regression loss to account for
the uncertainty of the rotation. The idea is simple - if we
are uncertain of the label, we turn off the regression loss if
the model is close enough. The labels are more uncertain

Figure 7: The Expected IoU of a rotation method is heav-
ily correlated with performance. Our final Ellipse is opti-
mal for both.

COCO val2017 Ablations 0◦ 10◦ 20◦ 30◦

(a) Previous method
Largest Box(e.g. [4, 45, 37]) 35.20 28.37 22.34 18.47
(b) Our Rotation Label Methods (Section 4.2)
Random 37.39 35.59 32.22 28.33
Octagon s = 0.1 35.82 31.64 27.16 23.54
Octagon s = 0.2 36.52 34.57 31.65 28.15
Octagon s = 0.5 (Diamond) 38.36 35.39 28.76 22.92
RotIoU 38.32 36.48 32.68 28.94
Ellipse (Section 4.1.2) 38.21 36.83 33.59 29.95
(c) With Our Loss (Section 4.3)
Ellipse + RU Loss δ = 45◦ 38.54 37.45 34.56 31.26
Ellipse + RU Loss δ = 30◦ 39.09 37.99 35.45 32.25
Ellipse + RU Loss δ = 15◦ 39.14 38.19 35.78 32.50
Ellipse + RU Loss δ = 10◦ (Final) 39.33 38.31 36.00 32.72

Table 2: The AP at different test rotations on the COCO
val2017 set for different methods. (a) The previous method
of largest box leads to the worst performance - every other
idea we had was better. (b) The Ellipse is the best of all the
label generation methods. (c) Our RU Loss with δ = 10◦

leads to the best AP across all rotations and therefore we use
this as our final method. Note: We bold within 0.2 of best
result.

as the rotation approaches 45◦, 135◦, 225◦, 315◦. and per-
fectly certain at 0◦, 90◦, 180◦ and 270◦. We formalize on
the concept of certainty (Figure 6) as a function of θ:

α = 2 cos(4δ), (17)

C(θ) = 1 +
1

α− 2
(1− cos(4θ)). (18)

This function maps a rotation θ to an IoU threshold C(θ).
We use this IoU threshold to serve as an indicator for ap-
plying regression loss. If the predicted box is greater than
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Figure 8: Example bounding box predictions for Largest Box model (top row) and Ellipse model (bottom row) for all
5 datasets. We can see that ours produces tighter bounding boxes overall.

Datasets (At 0◦ Test Rotation) Pascal VOC [14] Transparent Bin Picking [18] Synthetic Fruit Dataset [13] Oxford Pets [30]
Methods AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75
No Rotation 51.94 80.91 56.54 48.53 79.14 54.3 84.3 95.07 92.6 80.70 92.80 88.76
Largest Box(e.g. [4, 45, 37]) 50.23 81.31 54.3 37.49 79.09 28.45 83.47 95.05 92.24 79.54 94.20 90.03
(relative improvement) -3.29% 0.49% -3.96% -22.7% -0.06% -47.6% -0.98% -0.02% -0.39% -1.43% 1.56% 1.43%
Ellipse + RU Loss (Ours) 52.89 81.57 57.97 50.36 81.78 56.76 84.83 95.83 93.17 81.28 94.37 91.09
(relative improvement) 1.84% 0.82% 2.53% 3.78% 3.35% 4.53% 1.05% 0.80% 0.62% 0.72% 1.69% 2.63%

Table 3: Across four separate datasets we show that our method of rotation augmentation leads to an improved perfor-
mance where the previous method hurts performance. Especially in the case of transparent object bin picking where the
largest box is almost 50% worse and ours is 4.5% better AP75.

max(0.5, C(θ)), it uses the regression loss, otherwise, it
does not and assumes the model’s prediction is correct. We
parameterize C with δ. δ is the angle at which C(θ) = 0.5.
We visualize C in Figure 6. We bound it by 0.5 since that is
the threshold for anchor-matching in standard object detec-
tion architectures [21].

This function allows the model to take the priors it learns
at the confident rotations and apply them to the higher rota-
tions, preventing it from overfitting to poor labels. We show
in Table 2.

5. Results
5.1. Setup

Our hardware setup contains only a single P100 GPU for
training, and all our code is implemented in Detectron2 [42]
with Pytorch [31]. We use the default training pipeline for
both Faster-RCNN [32] and RetinaNet [21]. We conduct
most of our experiments on the standard COCO benchmark
since it contains a variety of objects with many different
shapes - making it a challenging test set.

Training Since we have only a single GPU, we can only
fit a batch size of 3. To account for this, we increase the
training time by around 5x from the default configurations.
This allows us to match online available pre-trained base-
lines for RetinaNet [21] and Faster-RCNN [32]. Since most

datasets are right-side-up images, we train with a normal
distribution with a mean of 0 and a standard deviation of 15
degrees for all experiments. Since this paper aims to find the
optimal rotation augmentation method, not the strategy for
applying rotation augmentation, we do not try other combi-
nations. This may be left for future work.

Testing: For all datasets except COCO we do not have
complete segmentation labels, so we only test on the stan-
dard test set (0◦). For COCO we generate our test set by
taking the COCO val2017 set and rotating it from 0◦-40◦ to
simulate out-of-distribution rotations. We then bucket these
rotations in intervals of 10 and evaluate using segmentation
labels to generate ground truth. We leave COCO results for
Faster-RCNN to supplement because they are similar to the
results for RetinaNet shown below.

5.2. Ablation Studies

In Figure 7 and the accompanying table, we conduct a
thorough ablation study on both the method for choosing
the label and the impact of the RU Loss function.

Justifying EIoU Optimization: In Section 4.1.1 we as-
sumed that the optimal method for label rotation should
maximize label accuracy, which we approximated as Ex-
pected IoU (Eq. 14). In Figure 7 we demonstrate a
strong correlation between Expected IoU and performance
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COCO val2017 Results AP AP50 AP75
0◦ 10◦ 20◦ 30◦ 0◦ 10◦ 20◦ 30◦ 0◦ 10◦ 20◦ 30◦

No Rotation 39.26 37.54 33.68 29.19 59.68 56.88 51.35 45.37 41.69 40.14 35.63 30.39
Largest Box (e.g. [4, 45, 37]) 35.20 28.37 22.34 18.47 58.79 56.31 51.49 46.30 36.00 25.37 14.95 10.91
(relative improvement) -10.3% -24.4% -33.7% -36.7% -1.48% -1.01% 0.27% 2.04% -13.6% -36.8% -58.1% -64.1%
Ellipse + RU Loss (Ours) 39.33 38.31 36.00 32.72 60.08 58.66 55.73 51.60 41.74 40.71 38.05 33.97
(relative improvement) 0.17% 2.05% 6.88% 12.1% 0.67% 3.12% 8.54% 13.7% 0.13% 1.42% 6.79% 11.8%
Perfect Labels 39.66 39.17 37.24 34.08 60.28 58.89 55.91 51.83 42.05 41.73 39.61 36.02
(relative improvement) 1.02% 4.36% 10.6% 16.7% 1.00% 3.53% 8.88% 14.2% 0.88% 3.94% 11.2% 18.5%

Figure 9: Our method of Ellipse + RU Loss performs close to perfect labels for AP50 and performs better than No
Rotation and Largest Box for AP and AP75 - demonstrating the first reliable rotation augmentation without shape labels.

on COCO at 10◦ across all methods, proving the effective-
ness of our first principles derivation. We see similar corre-
lations at other angles as well.

Justifying the Ellipse: In Section 4.1 we introduced
many potential methods for rotating a box label. In the abla-
tion Table 2b we show that the Ellipse leads to the best per-
formance across all rotations except 0◦ where it is within
a small noise tolerance. It is also important to note that
all methods we tried perform significantly better than the
Largest Box - showing the importance of fixing this issue.

RU Loss Ablation: In Section 4.3 we introduce a hyper-
parameter δ in our final method. We ablate over that in Ta-
ble 2 and demonstrate that 10◦ is optimal. We found this
to be true on COCO, however, on simpler datasets we use
larger values of δ for optimal performance.

5.3. Overall Performance

Our best performing method consists of using both
Ellipse-based label rotation and RU Loss. In this section,
we show it leads to much better performance across multi-
ple datasets and approximates segmentation-based rotation
augmentations on COCO.

5.3.1 Object Detection Datasets

In Table 3, we provide four datasets where our method of
rotation augmentation improves performance while the pre-
vious one (Largest Box) hurts performance. We notice this

to be especially bad at higher APs, such as AP75. The gap
is also larger in complex datasets such as transparent object
bin picking where the largest box reduces performance by
almost 50% and ours increases it by 4.5%.

5.3.2 Generalizing to new Rotation Angles

Our method significantly outperforms the original largest
box method and also outperforms not using rotation for AP,
AP50, and AP75 across all new angles from [0o − 30o] on
COCO in Figure 1 and Figure 9. In the case of AP50,
we show very similar improvements compared to using
segmentation-based labels. This is a huge improvement
since the largest box method hurts rotation performance.

6. Conclusion
The widespread Largest Box method (e.g. [43, 4, 45, 37,

28, 26]) is based on the folk wisdom of maximizing overlap.
Instead, we show that by maximizing Expected IoU and ac-
counting for label certainty in the loss, we can completely
match the performance of perfect “segmentation-based” la-
bels at AP50 while also achieving significant gains for AP
and AP75. These results represent a step toward achiev-
ing rotation invariance for object detection models, while
adding only a few lines of complexity to object detection
codebases.
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