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Abstract

Multi-modal reasoning systems rely on a pre-trained ob-
ject detector to extract regions of interest from the im-
age. However, this crucial module is typically used as a
black box, trained independently of the downstream task
and on a fixed vocabulary of objects and attributes. This
makes it challenging for such systems to capture the long
tail of visual concepts expressed in free form text. In this
paper we propose MDETR, an end-to-end modulated de-
tector that detects objects in an image conditioned on a
raw text query, like a caption or a question. We use a
transformer-based architecture to reason jointly over text
and image by fusing the two modalities at an early stage of
the model. We pre-train the network on 1.3M text-image
pairs, mined from pre-existing multi-modal datasets hav-
ing explicit alignment between phrases in text and objects
in the image. We then fine-tune on several downstream
tasks such as phrase grounding, referring expression com-
prehension and segmentation, achieving state-of-the-art re-
sults on popular benchmarks. We also investigate the util-
ity of our model as an object detector on a given label set
when fine-tuned in a few-shot setting. We show that our
pre-training approach provides a way to handle the long
tail of object categories which have very few labelled in-
stances. Our approach can be easily extended for visual
question answering, achieving competitive performance on
GQA and CLEVR. The code and models are available at
https://github.com/ashkamath/mdetr.

1. Introduction

Object detection forms an integral component of most
state-of-the-art multi-modal understanding systems [0, 24],
typically used as a black-box to detect a fixed vocabulary
of concepts in an image followed by multi-modal align-
ment. This “pipelined” approach limits co-training with
other modalities as context and restricts the downstream
model to only have access to the detected objects and not the
whole image. In addition, the detection system is usually

Figure 1: Output of MDETR for the query “A pink elephant”. The
colors are not segmentation masks but the real colors of the pixels.
The model has never seen a pink nor a blue elephant in training.

frozen, which prevents further refinement of the model’s
perceptive capability. In the vision-language setting, it im-
plies restricting the vocabulary of the resulting system to
the categories and attributes of the detector, and is often a
bottleneck for performance on these tasks [65]. As a re-
sult, such a system cannot recognize novel combinations of
concepts expressed in free-form text.

A recent line of work [59, 39, 12] considers the problem
of text-conditioned object detection. These methods extend
mainstream one-stage and two-stage detection architectures
to achieve this goal. However, to the best of our knowl-
edge, it has not been demonstrated that such detectors can
improve performance on downstream tasks that require rea-
soning over the detected objects, such as visual question an-
swering (VQA). We believe this is because these detectors
are not end-to-end differentiable and thus cannot be trained
in synergy with downstream tasks.

Our method, MDETR, is an end-to-end modulated de-
tector based on the recent DETR [2] detection framework,
and performs object detection in conjunction with natural
language understanding, enabling truly end-to-end multi-
modal reasoning. MDETR relies solely on text and aligned
boxes as a form of supervision for concepts in an image.
Thus, unlike current detection methods, MDETR detects
nuanced concepts from free-form text, and generalizes to
unseen combinations of categories and attributes. We show-
case such a combination as well as modulated detection in
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Figure 2: MDETR uses a convolutional backbone to extract visual features, and a language model such as RoOBERTa to extract text features.
The features of both modalities are projected to a shared embedding space, concatenated and fed to a transformer encoder-decoder that
predicts the bounding boxes of the objects and their grounding in text.

Fig. 1. By design, our predictions are grounded in text,
which is a key requirement for visual reasoning [58]. When

backbone (typically a convolutional residual network [11]),
followed by a Transformer Encoder-Decoder [51].

pre-trained using a dataset of 200,000 images and aligned
text with box annotations, we achieve best reported re-
sults on the Flickr30k dataset for phrase grounding, Re-
fCOCO/+/g datasets for referring expression comprehen-
sion, and referring expression segmentation on Phrase-
Cut, as well as competitive performance on the GQA and
CLEVR benchmarks for visual question answering.
Our contributions are as follows:

¢ We introduce an end-to-end text-modulated detection
system derived from the DETR detector.

* We demonstrate that the modulated detection approach
can be applied seamlessly to solve tasks such as phrase
grounding and referring expression comprehension,
setting new state of the art performance on both these
tasks using datasets having synthetic as well as real
images.

* We show that good modulated detection performance
naturally translates to downstream task performance,
for instance achieving competitive performance on vi-
sual question answering, referring expression segmen-
tation, and on few-shot long-tailed object detection.

2. Method

In this section we first briefly summarize the object de-
tection pipeline [2] based on which we build our model in
§2.1 and then describe how we extend it for modulated de-
tection in §2.2.

2.1. Background

DETR Our approach to modulated detection builds on the
DETR system [2], which we briefly review here. We re-
fer the readers to the original paper for additional details.
DETR is an end-to-end detection model composed of a

The DETR encoder operates on 2D flattened image fea-
tures from the backbone and applies a series of transformer
layers. The decoder takes as input a set of N learned em-
beddings called object queries, that can be viewed as slots
that the model needs to fill with detected objects. All the
object queries are fed in parallel to the decoder, which uses
cross-attention layers to look at the encoded image and pre-
dicts the output embeddings for each of the queries. The
final representation of each object query is independently
decoded into box coordinates and class labels using a shared
feed-forward layer. The number of object queries acts as a
de facto upper-bound on the number of objects the model
can detect simultaneously. It has to be set to a sufficiently
large upper-bound on the number of objects one may expect
to encounter in a given image. Since the actual number of
objects in a particular image may be less than the number of
queries N, an extra class label corresponding to “no object”
is used, denoted by @. The model is trained to output this
class for every query that doesn’t correspond to an object.

DETR is trained using a Hungarian matching loss, where
a bipartite matching is computed between the N proposed
objects and the ground-truth objects. Each matched ob-
ject is supervised using the corresponding target as ground-
truth, while the un-matched objects are supervised to pre-
dict the “no object” label @. The classification head is su-
pervised using standard cross-entropy, while the bounding
box head is supervised using a combination of absolute er-
ror (L1 loss) and Generalized IoU [42].

2.2. MDETR
2.2.1 Architecture

We depict the architecture for MDETR in Fig. 2. As in
DETR, the image is encoded by a convolutional backbone
and flattened. In order to conserve the spatial information,
2-D positional embeddings are added to this flattened vec-
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tor. We encode the text using a pre-trained transformer lan-
guage model to produce a sequence of hidden vectors of
same size as the input. We then apply a modality depen-
dent linear projection to both the image and text features to
project them into a shared embedding space. These feature
vectors are then concatenated on the sequence dimension to
yield a single sequence of image and text features. This se-
quence is fed to a joint transformer encoder termed as the
cross encoder. Following DETR, we apply a transformer
decoder on the object queries while cross attending to the
final hidden state of the cross encoder. The decoder’s out-
put is used for predicting the actual boxes.

2.2.2 Training

We present the two additional loss functions used by
MDETR, which encourage alignment between the image
and the text. Both of these use the same source of annota-
tions: free form text with aligned bounding boxes. The first
loss function that we term as the soft token prediction loss is
a non parametric alignment loss. The second, termed as the
text-query contrastive alignment is a parametric loss func-
tion enforcing similarity between aligned object queries and
tokens.

Soft token prediction For modulated detection, unlike in
the standard detection setting, we are not interested in pre-
dicting a categorical class for each detected object. Instead,
we predict the span of tokens from the original text that
refers to each matched object. Concretely, we first set the
maximum number of tokens for any given sentence to be
L = 256. For each predicted box that is matched to a ground
truth box using the bi-partite matching, the model is trained
to predict a uniform distribution over all roken positions that
correspond to the object. Fig. 2 shows an example where
the box for cat is trained to predict a uniform distribution
over the first two words. In Fig. ??, we show a simplified
visualization of the loss for this example, in terms of a dis-
tribution over words for each box, but in practice we use
token spans after tokenization using a BPE scheme [44].
Any query that is not matched to a target is trained to pre-
dict the “no object” label @. Note that several words in
the text could correspond to the same object in the image,
and conversely several objects could correspond to the same
text. For example, “a couple” referred to by two boxes in
the image, could further be referred to individually in the
same caption. By designing the loss function in this way,
our model is able to learn about co-referenced objects from
the same referring expression.

Contrastive alignment While the soft token prediction
uses positional information to align the objects to text, the
contrastive alignment loss enforces alignment between the
embedded representations of the object at the output of the
decoder, and the text representation at the output of the cross
encoder. This additional contrastive alignment loss ensures

that the embeddings of a (visual) object and its correspond-
ing (text) token are closer in the feature space compared to
embeddings of unrelated tokens. This constraint is stronger
than the soft token prediction loss as it directly operates on
the representations and is not solely based on positional in-
formation. More concretely, consider the maximum number
of tokens to be L and maximum number of objects to be N.
Let Tf be the set of tokens that a given object o; should be
aligned to, and O;‘ be the set of objects to be aligned with
a given token ¢;.

The contrastive loss for all objects, inspired by InfoNCE
[34] is normalized by number of positive tokens for each
object and can be written as follows:

N-1
1 exp(o, t;/7)

2 i ‘log( T (ol M
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k=0
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where 7 is a temperature parameter that we set to 0.07 fol-
lowing literature [56, 41]. By symmetry, the contrastive loss
for all tokens, normalized by the number of positive objects
for each token is given by:
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We take a the average of these two loss functions as our
contrastive alignment loss.

Combining all the losses In MDETR, a bipartite match-
ing is used to find the best match between the predictions
and the ground truth targets just as in DETR. The main dif-
ference is that there is no class label predicted for each ob-
ject - instead predicting a uniform distribution over the rele-
vant positions in the text that correspond to this object (soft
token predictions), supervised using a soft cross entropy.
The matching cost consists of this in addition to the L1 &
GlIoU loss between the prediction and the target box as in
DETR. After matching, the total loss consists of the box
prediction losses (L1 & GlIoU), soft-token prediction loss,
and the contrastive alignment loss.

3. Experiments

In this section we describe the data and training used for
pre-training MDETR, and provide details and results on the
tasks that we use to evaluate our approach. Results on the
CLEVR dataset are reported in Table 1. For a discussion on
the CLEVR results and further details on data preparation
and training, please see Appendix ??. Experimental details
for pre-training and downstream tasks on natural images are
detailed in §3.1 and §3.2.

3.1. Pre-training Modulated Detection

For pre-training, we focus on the task of modulated de-
tection where the aim is to detect all the objects that are re-
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CLEVR CLEVR-Hu CoGenT CLEVR-Ref+
Overall - FT +FT TestA TestB Acc

Method

MA(ttNet[62] - - - - - 60.9

MGA-Net[66] - - - - - 80.1
FiLM[36] 977 56.6 759 983 78.8 -
MAC [15] 989 574 815 - - -

NS-VQA[60]*  99.8 - 67.8 998 639 -

OCCAM [52] 994 - - - - -
MDETR 99.7 599 81.7 99.8 76.7 100

Table 1: Results on CLEVR-based datasets. We report accura-
cies on the test set of CLEVR. On CLEVR-Humans, we report
accuracy on the test set before and after fine-tuning. On CoGenT,
we report performance when the model is trained in condition A,
without finetuning on condition B. On CLEVR-Ref+, we report
the accuracy on the subset where the referred object is unique. *in-
dicates method uses external program annotations. Further details
in Appendix ??.

ferred to in the aligned free form text. We create a combined
dataset using images from the Flickr30k [40], MS COCO
[26] and Visual Genome (VG) [20] datasets. Annotations
from the referring expressions datasets, VG regions, Flickr
entities and GQA train balanced set are used for training.
An image may have several text annotations associated with
it. Details on the datasets can be found in Appendix ??.

Data combination For each image, we take all annota-
tions from these datasets and combine the text that refers to
the same image while ensuring that all images that are in
the validation or testing set for all our downstream tasks are
removed from our train set. The combination of sentences
is done using a graph coloring algorithm which ensures that
only phrases having boxes with GIoU < 0.5 are combined,
and that the total length of a combined sentence is less than
250 characters. In this way, we arrive at a dataset having
1.3M aligned image - text pairs. This combination step is
important for two reasons: 1) data efficiency, by packing
more information into a single training example and 2) it
provides a better learning signal for our soft token predic-
tion loss since the model has to learn to disambiguate be-
tween multiple occurrences of the same object category, as
depicted in Fig 3. In the single sentence case, the soft to-
ken prediction task becomes trivial since it can always pre-
dict the root of the sentence without looking at the image.
Experimentally, we find that such dense annotations trans-
late to better grounding between text and image and subse-
quently to better downstream performance.

Model We use a pre-trained RoBERTa-base [27] as our
text encoder, having 12 transformer encoder layers, each
with hidden dimension of 768 and 12 heads in the multi-
head attention. We use the implementation and weights
from HuggingFace [54]. For the visual backbone, we ex-
plore two options. The first is a ResNet-101 [1 1] pretrained
on ImageNet with frozen batchnorm layers, taken from
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Figure 3: Our combination of annotations results in examples
such as the following: “the person in the grey shirt with a watch
on their wrist. the other person wearing a blue sweater. the third
person in a gray coat and scarf.” We show the predictions from our
model for this caption. It is able to pay attention to all the objects
in the image and then disambiguate between them based on the
text. The model is trained to predict the root of the phrase as the
positive token span, which as we can see in this figure, correctly
refers to the three different people.

Torchvision. This is to be comparable with current litera-
ture in the space of multi-modal understanding, where the
popular approach is to use the BUTD object detector with a
Resnet-101 backbone from [ 1] trained on the VG dataset. In
our work, we are not limited by the existence of pre-trained
detectors, and inspired by its success in object detection
[50], we choose to explore the EfficientNet family [49] for
our backbone. We use a model which was trained on large
amounts of unlabelled data in addition to ImageNet, using a
pseudo-labelling technique called Noisy-Student [57]. We
choose the EfficientNetB3, which achieves 84.1% top 1 ac-
curacy on ImageNet with only 12M weights and EfficientB5
which achieves 86.1% using 30M weights. We use the im-
plementation provided by the Timm library [53], and freeze
the batchnorm layers. We pre-train our model for 40 epochs
on 32 V100 gpus with an effective batch size of 64, which
takes approximately a week to train. Training hyperparam-
eters are detailed in Appendix ??.

3.2. Downstream Tasks

We evaluate our method on 4 downstream tasks: re-
ferring expression comprehension and segmentation, visual
question answering and phrase grounding. Training hyper-
prameters for all tasks can be found in Appendix ??.

Phrase grounding Given one or more phrases, which
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Method Detection Pre-training RefCOCO RefCOCO+ RefCOCOg
backbone image data val testA  testB val testA  testB val test
MAL(ttNet[62] R101 None 76.65 81.14 69.99 6533 71.62 56.02 66.58 67.27
VIiLBERT([28] R101 CC (3.3M) - - - 72.34  78.52 62.61 - -
VL-BERT_L [46] R101 CC (3.3M) - - - 72.59 7857 62.30 - -
UNITER_L[6]* R101 CC, SBU, COCO, VG (4.6M) 81.41 87.04 74.17 7590 8145 66.70 7486 75.77
VILLA_L[9]" R101 CC, SBU, COCO, VG (4.6M) 82.39 8748 74.84 76.17 81.54 66.84 76.18 76.71
ERNIE-ViIiL_L[61] R101 CC, SBU (4.3M) - - - 7595 82.07 66.88 - -
MDETR R101 COCO, VG, Flickr30k (200k) 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89
MDETR ENB3 COCO, VG, Flickr30k (200k) 87.51 90.40 82.67 81.13 85.52 7296 83.35 83.31

Table 2: Accuracy results on referring expression comprehension.

*As mentioned in UNITER [6], methods using box proposals from

the BUTD detector [1] suffer from a test set leak, since the detector was trained on images including the validation and test set of the
RE comprehension datasets. We report numbers for these methods from their papers using these “contaminated features” but we would
like to stress that all of our pre-training excluded the images used in the val/test of any of the downstream datasets including for RE
comprehension. CC refers to Conceptual Captions [45], VG to Visual Genome [20], SBU refers to the SBU Captions[35] and COCO to

Micosoft COCO [26].

Method Val Test
R@] R@5 R@10 R@1 R@5 R@I10

ANY-BOX-PROTOCOL

BAN [19] - - - 69.7 842 864
VisualBert[22]  68.1 84.0 86.2 - - -
VisualBert[22] 70.4 845 863 713 850 86.5
MDETR-R101 789 88.8 90.8 - - -
MDETR-R101{+ 825 929 949 834 935 953
MDETR-ENB3tx 829 932 952 84.0 93.8 95.6
MDETR-ENB57* 83.6 934 951 843 939 958

MERGED-BOXES-PROTOCOL

CITE [37] - . - 619 - -
FAOG [59] - - - 687 - -
SimNet-CCA [39] - - - 719 - -
DDPN [64] 728 - 735 - -

MDETR-R101  79.0 86.7 88.6 - - -
MDETR-R101{+ 823 91.8 93.7 838 92.7 944

Table 3: Results on the phrase grounding task on Flickr30k enti-
ties dataset [40]. Models with | are pre-trained on COCO, mod-
els with * are also pre-trained on VG and Flickr 30k. Our mod-
els (MDETR) use a RoBERTa text encoder while other models
use RNNs, word2vec-based features, or BERT (comparable to
RoBERTa) text encoders. All models use a ResNet101 backbone,
except MDETR-ENB3 which uses EfficientNet-B3 and MDETR-
ENBS5 with an EfficientNet-B5.

may be inter-related, the task is to provide a set of bound-
ing boxes for each phrase. We use the Flickr30k entities
dataset for this task, with the train/val/test splits as provided
by [40] and evaluate our performance in terms of Recall @k.
For each sentence in the test set, we predict 100 bounding
boxes and use the soft token alignment prediction to rank
the boxes according to the score given to the token positions

that correspond to the phrase. We evaluate under two pro-
tocols which we name ANY-BOX [22, 19] and MERGED-
BOXES [38]. Please see Appendix ?? for a discussion on the
two protocols. We compare our method to existing state-of-
the-art results from two types of approaches - the text con-
ditioned detection models [39, 59] and a transformer based
vision-language pre-training model [22]. In the ANY-BOX
setting, we obtain a 8.5 point boost over current state of
the art on this task as measured in terms of Recall@1 on
the validation set, without using any pre-training (no ad-
ditional data). With pre-training, we further obtain a 12.1
point boost over the best model’s performance on the test
set, while using the same backbone.

Referring expression comprehension Given an image
and a referring expression in plain text, the task is to lo-
calize the object being referred to by returning a bound-
ing box around it. The approach taken by most prior work
[62, 28, 6, 61] on this task has been to rank a set of pre-
extracted bounding boxes associated with an image, that are
obtained using a pre-trained object detector. In this paper,
we solve a much harder task - we train our model to directly
predict the bounding box, given a referring expression and
the associated image. There are three established datasets
for this task called RefCOCO, RefCOCO+ [63] and Ref-
COCOg [30]. Since during pre-training we annotate every
object referred to within the text, there is a slight shift in
the way the model is used in this task. For example, dur-
ing pre-training, given the caption “The woman wearing a
blue dress standing next to the rose bush.”, MDETR would
be trained to predict boxes for all referred objects such as
the woman, the blue dress and the rose bush. However, for
referring expressions, the task would be to only return one
bounding box, which signifies the woman being referred to
by the entire expression. For this reason, we finetune the
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Method Backbone PhraseCut
M-IoU Pr@0.5 Pr@0.7 Pr@0.9
RMI[3] R101 21.1 22.0 11.6 1.5
HULANet[55] R101 41.3 42.4 27.0 5.7
MDETR R101 53.1 56.1 38.9 11.9

MDETR ENB3 53.7 57.5 39.9 11.9

Table 4: Following [55], we report the mean intersection-over-
union (IoU) of our masks with the ground-truth masks. We also
report the precision Pr@1I of our model, where success is marked
when our proposed mask has an IoU with the ground-truth higher
than the threshold /. With a comparable ResNet backbone, we
observe consistent gains across all metrics over HULANet [55],
the current state-of-the-art. The EfficientNet backbone further im-
proves on those results.

model on the task specific dataset for 5 epochs. At inference
time, we use the & label to rank the 100 detected boxes. Let
P(2) be the probability assigned to the “no object” label,
we rank by decreasing order of 1 — P(&). We report results
in Table 2, showing large improvements over state-of-the-
art across all datasets.

Referring expression segmentation Similarly to
DETR, we show that our approach can be extended to
perform segmentation by evaluating on the referring
expression segmentation task of the recent PhraseCut [55]
dataset which consists of images from VG, annotated
with segmentation masks for each referring expression.
These expressions comprise a wide vocabulary of objects,
attributes and relations, making it a challenging bench-
mark. Contrary to other referring expression segmentation
datasets, in PhraseCut the expression may refer to several
objects. The model is expected to find all the corresponding
instances. Our training occurs in two stages. In the first
step, we take our pre-trained model after 40 epochs and
fine-tune it for 10 epochs on this dataset, supervising the
model to output correct boxes for the referred expressions.
We use the box AP on the validation set for early stopping.
In the second stage, following [2], we freeze the weights
of the network, and only train a segmentation head for 35
epochs, with a learning rate drop at 25 epochs, supervised
using a combination of the Dice/F1 loss[32] and the Focal
loss [25]. At inference-time, we assign a confidence to
each predicted box equal to 1 — P(@) where P(@) is
the probability assigned to the “no-object” token (see §2).
We then filter the boxes with a confidence lower than 0.7.
Finally, we merge the masks corresponding to each of these
boxes into one binary mask corresponding to this referring
expression. The results are collected in Table 4. Our model
is able to produce clean masks for a wide variety of long
tailed-concepts covered by PhraseCut. Example predictions
from our model on this dataset are given in Appendix 2?.

Visual Question Answering We evaluate our hypothesis
that modulated detection is a useful component for multi-

Method Pre-training img data Test-dev Test-std
MoVie [33] - - 57.10
LXMERTI[47] VG, COCO (180k) 60.0  60.33
VL-T5 [7] VG, COCO (180k) - 60.80
MMN [5] - - 60.83
VG, COCO,
OSCAR [24] Flickr, SBU (4.3M) 61.58 61.62
NSM [16] - - 63.17
VG, COCO, Objects365, SBU
VinVL [65] Flickr30k, CC, VQA, 6505 64.65

OpenlmagesVS5 (5.65M)

MDETR-R101 VG, COCO, Flickr30k (200k) 62.48  61.99
MDETR-ENB5 VG, COCO, Flickr30k (200k) 62.95 62.45

Table 5: Visual question answering on the GQA dataset.

modal reasoning by fine-tuning our pre-trained model on
the GQA dataset. To train MDETR, we use the scene graph
provided in GQA to obtain the alignment between question
words and the boxes. Our model architecture is depicted
in Fig 4. Object queries are learned embeddings input to
the decoder, each of which can be used to a detect an ob-
ject. Apart from the 100 queries that are used for detec-
tion, we use additional queries that specialize in the type of
question as well as one that is used to predict the type of
question, where the types are defined in the GQA annota-
tions as REL, OBJ, GLOBAL, CAT and ATTR. We take our
pre-trained model trained for 40 epochs on our combined
dataset, and initialise these queries as well as the heads for
each of them randomly, and fine-tune first for 125 epochs
on the unbalanced all GQA split, followed by 10 epochs
on the balanced split similar to what is done in prior work
[24, 5]. During the first 125 epochs, we train the modulated
detection losses along with the question answering, but put
a weight on question answering loss that encourages the
model to focus more on this task. For the balanced split fine-
tuning, we only use the question answering loss. During
inference, the type head predicts the type of question and
the answer is taken from that head. Using our model with
a Resnet-101 backbone, we not only outperform LXMERT
[47] and VL-TS [7] which use comparable amount of data,
but also OSCAR [24] which uses magnitude more data in
their pre-training. MDETR with the EfficientNet-B5 back-
bone is able to push performance even higher as reported in
Table 5. The NSM model makes use of an external scene
graph generation model, while the MMN model makes use
of the scene graph and functional programs during training.

3.2.1 Few-shot transfer for long-tailed detection

Inspired by the success of CLIP [41], on zero-shot trans-
fer for image classification, we explore the opportunity to
construct a useful detector over a given label set from a pre-
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Figure 4: During MDETR pre-training, the model is trained to detect all objects mentioned in the question. To extend it for question
answering, we provide QA specific queries in addition to the object queries as input to the transformer decoder. We use specialized heads

for different question types.

Figure 5: MDETR provides interpretable predictions as seen here.
For the question “What is on the table?”’, MDETR fine-tuned on
GQA predicts boxes for key words in the question, and is able to
provide the correct answer as “laptop”. Image from COCO val set.

trained MDETR model. Unlike CLIP, we do not ensure our
pre-training dataset contains a balanced representation of all
the target classes. By construction, our dataset has no train-
ing instances where there are zero boxes aligned to the text,
biasing the model to always predict boxes for a given text.
This prevents evaluating in a true zero-shot transfer setting,
so we turn instead to a few-shot setting, where the model
is trained on a fraction of the available labelled data. We
conduct our experiments on the LVIS dataset [10], a detec-
tion dataset with a large vocabulary of 1.2k categories, with
a long-tail that contains very few training samples, making
it a challenging dataset for current approaches. Federated
datasets often pose problems to standard detectors, and re-
quire developing specific loss functions [48]. However this

Method Data AP AP50 AP, AP. APs

Mask R-CNN 100% 333 51.1 263 340 339
DETR 1% 42 7.0 19 1.1 73
DETR 10% 1377 21.7 41 132 159
DETR 100% 17.8 275 32 129 248

MDETR 1% 16,7 258 112 14.6 195
MDETR 10% 242 38.0 209 249 243
MDETR 100% 225 352 74 227 250

Table 6: Box AP fixed results on LVIS-v1. Since the validation
set of LVIS contains some training images from MSCOCO, we re-
port results on the subset of 5k validation images that our model
has never seen during training. We call this subset minival. All
models use a Resnet 101 as backbone. Mask-RCNN can be re-
garded as a strong representative of the detection performance of
current approaches on this dataset, using bells and whistles such
as Repeat Factor Sampling (RFS) to address class imbalance. We
use a vanilla DETR pretrained on MSCOCO as a few-shot transfer
baseline, and show that our pre-training on natural text improves
performance significantly, especially on rare categories.

property makes it well suited to train MDETR: for each pos-
itive category, we create a training instance composed of the
image and a text version of the class name, and provide as
annotations all the instances of this category. For each neg-
ative category, we provide the class name and an empty set
of annotations. For inference on a given image, we query
each possible class name, then merge the sets of boxes de-
tected on each of the text prompts. This inference scheme
costs about 10s/image on a GPU.

We fine-tune MDETR on three subsets of the LVIS train
set, each containing respectively 1%, 10% and 100% of
the images. We ensure a balanced sampling of the cate-
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gories, such that our 1% set contains at least one positive
and one negative examples from each category. We com-
pare to two baselines: the first one is Mask-RCNN trained
exclusively on the full training set of LVIS. The other is a
DETR model pre-trained on MSCOCO then fine-tuned on
the various subsets of the LVIS training set. Our results are
shown in Table 6. Following recent recommendation [§]
on AP evaluation in the context of large vocabulary, we re-
port the box AP fixed, obtained by limiting the number of
detections per category instead of per image. Even with
as little as 1 example per class, MDETR leverages the text
pre-training and outperforms a fully fine-tuned DETR on
rare categories. We note however that under full fine-tuning
on the whole training set, the performance on rare objects
drops significantly from 20.9 AP with 10% data to 7.5 with
100%, likely due to the extreme class imbalance. We expect
that common techniques such as Repeat Factor Sampling
will improve the situation in future work.

4. Related work

The CLEVR dataset [17] is a popular vision-language
benchmark for reasoning on objects, their relations, and the
composition of such relations. A prominent line of work
[18, 60,31, 13] makes use of the functional programs anno-
tations that are part of the CLEVR dataset. Such approaches
tend to dominate on the question answering benchmark, but
fail to generalize beyond synthetic data. Conversely, many
approaches [36, 43, 52, 15] learn directly from images or
pre-detected objects, with varying amounts of inductive bias
tailored to the QA task. Our method can be seen as an
in-between: while not explicitly using the program super-
vision, it is trained to detect objects that are required for
performing intermediate reasoning steps.

Recent progress in multi-modal understanding has been
mainly powered by pre-training large transformer models
to learn generic multi-modal representations from enor-
mous amounts of aligned image-text data [45], then fine-
tuning them on downstream tasks. These methods can be
divided into single stream [6, 24, 65, 22] and two-stream
[47, 28,29, 46] architectures depending on whether the text
and images are processed by a single combined transformer
or two separate transformers followed by some cross atten-
tion layers. For both these types, the prevalent approach is
to extract visual and textual features independently and then
use the attention mechanism of the transformers to learn an
alignment between the two. While this approach has im-
proved state of the art results on a wide variety of tasks
such as image-text retrieval [65], phrase grounding [22], im-
age captioning [24] and visual question answering [21], it
leaves opportunity for a more tightly knit architecture, such
as MDETR, in which information flows between the two
modalities at an even earlier stage of the model. Some pre-
vious attempts at achieving this using modulated architec-

tures such as [36] and [33] show improvements on counting
tasks and visual question answering.

The visual features used by the current state-of-the-art
models are extracted using an external pre-trained detec-
tor [1], which outputs regions that are noisy, often over-
sampled and ambiguous. [24] attempts to alleviate the prob-
lem of noisy image features by using tags as anchors be-
tween the text and images. This is still a weaker form of
supervision than in MDETR where we have explicit align-
ment between words or phrases in text and the objects in
the images. To alleviate the constraints implied by fixed
vocabulary of concepts, [65] trains on a collection of much
larger object detection datasets in pursuit of better coverage.
[9] conduct adversarial training on top of existing high per-
forming models pushing performance even higher. Other
approaches [61] attempt to incorporate scene graph predic-
tion as part of their pre-training to learn more robust repre-
sentations. Some recent work also attempts to build multi-
purpose multi-modal architectures that are able to tackle a
variety of vision-language [7] as well as pure language tasks
in a single architecture [14]. A separate line of work that at-
tacks a similar problem to ours but with a much more task
specialized model architectures are the single [59, 4, 23] and
two stage [39, 12] referring expression segmentation and
phrase detection models which are designed specifically for
this task.

5. Conclusion

We presented MDETR, a fully differentiable modulated
detector. We established its strong performance on multi-
modal understanding tasks on a variety of datasets, and
demonstrated its potential in other downstream applications
such as few-shot detection and visual question answering.
We hope that this work opens up new opportunities to de-
velop fully integrated multi-modal architectures, without re-
lying on black-box object detectors.
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