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Abstract

In semantic segmentation tasks, input images can often
have more than one plausible interpretation, thus allowing
for multiple valid labels. To capture such ambiguities, re-
cent work has explored the use of probabilistic networks that
can learn a distribution over predictions. However, these
do not necessarily represent the empirical distribution ac-
curately. In this work, we present a strategy for learning a
calibrated predictive distribution over semantic maps, where
the probability associated with each prediction reflects its
ground truth correctness likelihood. To this end, we propose
a novel two-stage, cascaded approach for calibrated adver-
sarial refinement: (i) a standard segmentation network is
trained with categorical cross entropy to predict a pixelwise
probability distribution over semantic classes and (ii) an
adversarially trained stochastic network is used to model
the inter-pixel correlations to refine the output of the first
network into coherent samples. Importantly, to calibrate
the refinement network and prevent mode collapse, the ex-
pectation of the samples in the second stage is matched to
the probabilities predicted in the first. We demonstrate the
versatility and robustness of the approach by achieving state-
of-the-art results on the multigrader LIDC dataset and on
a modified Cityscapes dataset with injected ambiguities. In
addition, we show that the core design can be adapted to
other tasks requiring learning a calibrated predictive dis-
tribution by experimenting on a toy regression dataset. We
provide an open source implementation of our method at
https://github.com/EliasKassapis/CARSSS.

1. Introduction
Real-world datasets are often riddled with ambiguities,

allowing for multiple valid solutions for a given input. These
can emanate from an array of sources, such as sensor noise,
occlusions, inconsistencies during manual data annotation,
or an ambiguous label space [38]. Despite the fact that the
empirical distribution can be multimodal, the majority of the
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Figure 1: Conceptual diagram of stochastic semantic seg-
mentation: blue and red pixels are separable by several differ-
ent vertical boundaries, resulting in multiple valid labels. F
is a network parametrising a factorised categorical likelihood,
which captures the pixelwise data ambiguity. Extracting the
mode via the argmax operation deterministically yields a
single coherent prediction, while direct sampling gives mul-
tiple incoherent ones. Instead, calibrated adversarial refine-
ment (CAR) uses a second stochastic adversarial network,G,
which refines the output of F into diverse, coherent labels.

research encompassing semantic segmentation focuses on
optimising models that assign only a single solution to each
input image [47, 26, 53, 9, 10, 11, 7, 8], and are thus often
incapable of capturing the entire empirical distribution.

These approaches typically model each pixel indepen-
dently with a factorised categorical likelihood, and there-
fore do not consider inter-pixel correlations during sampling
(see Fig. 13b in Appendix B.3). Further, since maximising
the likelihood on noisy datasets leads to unconfident pre-
dictions in regions of label inconsistencies, direct sampling
yields incoherent semantic maps. Alternatively, coherent
predictions can be obtained by applying the argmax func-
tion, essentially extracting the mode of the likelihood. This,
however, comes at the cost of limiting the model’s repre-
sentation capabilities to deterministic, one-to-one mappings
between inputs and outputs (see Fig. 1).
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Here we consider the problem of stochastic semantic seg-
mentation: the task of semantically segmenting ambiguous
images with an arbitrary number of valid labels, each with
a distinct probability of occurrence. To this end, an ideal
model should capture joint pixel dependencies and leverage
uncertainty information to sample multiple coherent hypothe-
ses. Further, it is important that the empirical occurrence
frequency of each sampled segmentation variant reflects its
ground truth correctness likelihood; that is, the predictive
distribution should be calibrated [17, 34]. Such a system
would be especially useful for semi-automatic safety-critical
applications, e. g. medical imaging and map making, where it
is crucial to identify ambiguous input and cross-examine all
possible interpretations and their corresponding likelihoods
before making an important decision [1, 42, 39].

In this work, we introduce calibrated adversarial refine-
ment (CAR): a two-stage, cascaded framework for learning
a calibrated, multimodal predictive distribution. In the first
stage, we train a standard network with categorical cross en-
tropy to estimate pixelwise class probabilities, as well as the
associated aleatoric uncertainty estimates [28]. In the second,
an adversarial network, capable of modelling the inter-pixel
dependencies, is used to sample realistic, coherent predic-
tions (see bottom of Fig. 1). The sample diversity is then
calibrated relatively to the distribution predicted in the first
stage, via an additional loss term. Our key contributions are:

• We propose a novel cascaded architecture for adver-
sarial refinement that allows sampling of an arbitrary
number of coherent segmentation maps.
• We introduce a novel loss term, called the calibration

loss, that facilitates learning of calibrated stochastic
mappings and mitigates mode collapse in conditional
adversarial learning.
• Our model can be trained independently or used to

augment any black-box semantic segmentation model.

2. Related work
Straightforward strategies towards learning multiple pre-

dictions include ensembling [35, 27] or using multiple pre-
diction heads [49]. Even though these approaches can cap-
ture a diverse set of sampled predictions, they are limited to
only a fixed number of samples. Alternatively, a probability
distribution over the outputs can be induced by activating
dropout during test time [13]. This method does offer useful
uncertainty estimates over the pixel-space [45], however, it
has been demonstrated [25, 31] that it introduces only minor
stochasticity in the output and returns incoherent samples.

Bhattacharyya et al. (2018) [5] identify the maximum
likelihood learning objective as the cause for this issue in
dropout Bayesian neural networks [12]. They postulate that
under cross entropy optimisation, all sampled models are
forced to explain the entirety of the data, thereby converg-
ing to the mean solution. They propose to mitigate this

issue using variational inference and replacing cross entropy
with an adversarial loss term parametrising a synthetic likeli-
hood [48]. This renders the objective function conducive to
multimodality but, unlike our method, requires the specifica-
tion a weight prior and variational distribution family.

Kohl et al. (2018) [31] take an orthogonal approach in
combining a U-Net [47] with a conditional variational au-
toencoder (cVAE) [30] to learn a distribution over semantic
labels. Hu et al. (2019) [21] build on [31] by leveraging inter-
grader variability as additional supervision. Even though this
improves performance, a major limitation of this approach
is the requirement of a priori knowledge of all the modes in
the data distribution, often unavailable in real-world datasets.
Alternatively, subsequent work in [32] and [4] improve the
diversity of the samples of [31] by modelling the data on
several scales of the image resolution. In more recent work,
Monteiro et al. (2020) [44] take a different path, propos-
ing a single network to parametrise a low-rank multivariate
Gaussian distribution which models the inter-pixel and class
dependencies in the logit space. This method does improve
efficiency during inference, however, a low-rank parametri-
sation imposes a constraint on the sample complexity. In
contrast to all these methods, ours uses an adversarial loss
term which has been shown to elicit superior structural qual-
ities than cross entropy [41, 14, 50].

In the more general domain of image-to-image transla-
tion, hybrid models have been proposed using adversarially
trained cVAEs [58, 3] to learn a distribution over a latent
code that encodes multimodality, allowing sampling of di-
verse yet coherent predictions. A common hurdle in such
conditional generative adversarial networks (cGANs) is that
simply incorporating a noise vector as an additional input
often leads to mode collapse. This occurs due to the lack of
regularisation between noise input and generator output, al-
lowing the generator to learn to ignore the noise vector [25].
This is commonly resolved by using supplementary cycle-
consistency losses [23, 37, 58, 3], as proposed by Zhu et
al. (2017) [57], or with alternative regularisation losses on
the generator [55]. Nonetheless, these do not address the
challenge of calibrating the predictive distribution.

3. Method

3.1. Motivation

Semantic segmentation refers to the task of predicting a
pixelwise class label y ∈ {1, . . . ,K}H×W given an input
image x ∈ RH×W×C . For a dataset of N image and label
pairs, D = {xi, yi}Ni=1, the empirical distribution pD(y | x)
can be explicitly modelled through a likelihood qθ(y | x),
parametrised by a softmax-activated convolutional neural
network F with weights θ [47, 26]. One simple, yet ef-
fective way to learn the class probabilities is to express
y ∈ {0, 1}H×W×K in a one-hot encoded representation
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and set qθ as a pixelwise factorised categorical distribution:

qθ(y | x) =

H∏
i

W∏
j

K∏
k

Fθ(x)
yi,j,k
i,j,k . (1)

The parameters θ are then optimised by minimising the cross
entropy between pD and qθ, defined as:

Lce(D, θ) = −EpD(x,y)[log qθ(y | x)]. (2)

When trained with Eq. (2), Fθ learns an approximation
of EpD [y | x] [6], thereby capturing the per-pixel class prob-
abilities over the label that corresponds to a given input.
At this point, the aleatoric uncertainty can be obtained by
computing the entropy of the output of Fθ, H(Fθ(x)) [28].

As discussed in the introduction section and exemplified
in Fig. 1, neither sampling from the likelihood in Eq. (1),
nor extracting its mode are adequate solutions for stochastic
semantic segmentation, where multiple valid predictions are
sought. This issue can be partially addressed by adapting the
framework of generative adversarial networks (GANs) [15]
to the context of semantic segmentation, as proposed by [41].
Formally, this involves training a binary discriminator net-
work D to optimally distinguish between ground truth and
predictions, while concurrently training a conditional gener-
ative network G to maximise the probability that prediction
samples G(x) are perceived as real by D. Importantly, in
contrast to explicit pixelwise likelihood maximisation, the ad-
versarial setup learns an implicit sampler through G, capable
of modelling the joint pixel configuration of the synthesised
labels, and capturing both local and global consistencies
present in the ground truth [41].

In practice, the generator loss is often complemented with
the pixelwise loss from Eq. (2) to improve training stabil-
ity and prediction quality [41, 14, 50]. However, we argue
that the two objective functions are not well aligned in the
presence of noisy data. While categorical cross entropy
optimises for a single, mode averaging solution for each
input x, thus encouraging high entropy in qθ(y | x) within
noisy regions of the data, the adversarial term optimises for
low-entropy, label-like output, and allows multiple solutions.
Therefore combining these losses in an additive manner,
and enforcing them on the same set of parameters can be
suboptimal—this prompts the generator to collapse to a de-
terministic output, as we show in Section 4 experimentally
by using Lce-regularised baselines.

3.2. Calibrated adversarial refinement

In this work, we propose to avert potential conflict be-
tween the cross entropy and adversarial losses by decoupling
them in a two-stage, cascaded architecture. This consists of a
calibration network Fθ, optimised with Lce from Eq. (2), the
output of which is fed to a refinement network Gφ, optimised
with an adversarial loss, which is in turn parametrised by

an auxiliary discriminator Dψ trained with a binary cross
entropy loss.

To account for the multimodality in the labels, we con-
dition the refinement network on an additional extraneous
noise variable ε ∼ N (0, 1), as done in the original GAN
framework proposed by Goodfellow et al. [15]. In practice,
we also condition the refinement network and the discrimina-
tor on the inputs x, however, we do not show this explicitly
for notational convenience. More formally, using the non-
saturated version of the adversarial loss [15], the objectives
for the refinement and discriminator networks are given by:

Ladv(D, θ, φ) = −EpD,pε [logDψ(Gφ(Fθ(x), ε))], (3)

LD(D, θ, φ, ψ) = −EpD,pε [log (1−Dψ(Gφ(Fθ(x), ε)))]

− EpD [logDψ(y)].

(4)

To calibrate the predictive distribution, we impose diver-
sity regularisation on Gφ by introducing a novel loss term,
which we call the calibration loss, that encourages the sam-
ple average Gφ(Fθ(x)) := Ep(ε)[Gφ(Fθ(x), ε)] to match
the pixelwise class probabilities predicted by Fθ(x). Here,
Gφ(Fθ(x)) serves as a factorised approximation to the im-
plicit predictive distribution of the refinement network. To
this end, we define an auxiliary categorical likelihood qφ as:

qφ(y | Fθ(x)) =

H∏
i

W∏
j

K∏
k

Gφ(Fθ(x))
yi,j,k
i,j,k , (5)

and optimise φ using the proposed calibration loss, formu-
lated as:

Lcal(D, θ, φ) = EpD,qφ
[
log

qφ(y | Fθ(x))

qθ(y | x)

]
. (6)

This loss term expresses the the Kullback-Leibler divergence,
KL(qφ || qθ)1. Since both qφ and qθ are categorical distribu-
tions, the divergence can be computed exactly.

Notice that Lcal optimises through an approximation of
the expectation Gφ(Fθ(x)), rather than a single sampled
prediction, therefore the model is not restricted to learning
a mode-averaging solution for each input x. Consequently,
Lcal is more compatible with Ladv than Lce when a multi-
modal predictive distribution is desired. The total loss for
the refinement network then becomes:

LG(D, θ, φ) = Ladv(D, θ, φ) + λLcal(D, θ, φ), (7)

where λ ≥ 0 is a hyperparameter. Fig. 2 shows the interplay
of Fθ, Gφ and Dψ and the corresponding loss terms.

Intuitively, the calibration network Fθ serves three main
purposes: (i) it sets a calibration target used by Lcal to regu-
larise the predictive distribution of Gφ, (ii) it provides Gφ

1The choice of divergence is heuristically motivated and can be changed
to fit different use-case requirements.
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Figure 2: CAR model diagram based on the example in Fig. 1. First, the calibration network maps the input to a pixelwise
distribution over the labels. This is then fed into the refinement network which samples an arbitrary number of diverse, crisp
label proposals y1ref, . . . , y

M
ref . To ensure calibration, the average of the final predictions is matched with the calibration target

from the first stage through the Lcal loss. Additionally, the aleatoric uncertainty can be readily extracted from the calibration
target, e. g. by computing the entropy H(Fθ(x)).

with an augmented representation of x enclosing probabilis-
tic information about y, (iii) it accommodates the extraction
of sample-free aleatoric uncertainty maps. The refinement
network can therefore be interpreted as a stochastic sam-
pler, modelling the inter-pixel dependencies to draw realistic
samples from the explicit likelihood provided by the cali-
bration network. Thus both the pixelwise class probability
and object coherency are preserved. This approach leads to
improved mode coverage, training stability and increased
convergence speed, as demonstrated in Section 4.

3.3. Practical considerations

The gradients generated from the refinement network’s
loss function LG are prevented from flowing into the calibra-
tion network, to ensure that Fθ learns an unbiased estimate of
EpD [y | x]. As a consequence the weights of Fθ can be kept
fixed, while the adversarial pair Gφ and Dψ is being trained.
This allows Fθ to be pretrained in isolation, thereby lowering
the overall peak computational and memory requirements
and improving training stability (see Algorithms 1 and 2
in Appendix A.1 for an outline of the training and infer-
ence procedures). Further, computing Lcal requires a Monte
Carlo estimation ofGφ(Fθ(x)), where the quality of the loss
feedback increases with the sample count. This introduces a
trade-off between training speed and prediction quality, how-
ever, modern deep learning frameworks allow for the sam-
ples to be subsumed in the batch dimension, and can there-
fore be efficiently computed on GPUs. Finally, our method

can augment any existing black-box model B for semantic
segmentation, furnishing it with a calibrated multimodal pre-
dictive distribution. This can be done by conditioning Fθ on
the output of B, as we demonstrate in Section 4.2.2.

4. Experiments
4.1. 1D bimodal regression

We give intuitive insight into the mechanics of the pro-
posed calibration loss by designing and experimenting on
a simple one-dimensional regression task. To create the
dataset, an input x ∈ [0, 1] is mapped to y ∈ R as follows:

y =


0.5− b+ ε, x ∈ [0, 0.4)

(−1)b(−1.25x+ 1) + ε, x ∈ [0.4, 0.8)

ε, x ∈ [0.8, 1]

(8)

where b ∼ Bernoulli(π) and ε ∼ N (0, σ). We generate 9
different scenarios by varying the degree of mode selection
probability π ∈ {0.5, 0.6, 0.9} and the mode noise σ ∈
{0.01, 0.02, 0.03}.

For every data configuration, we use a 4-layer MLP for
each of Fθ, Gφ and Dψ, and train with and without cali-
bration loss by setting the coefficient λ in Eq. (7) to 1 and
0, respectively. Note that unlike the categorical likelihood
used in semantic segmentation tasks, we employ a Gaussian
likelihood with fixed scale of 1. This changes the formula-
tion of both Eqs. (2) and (6) to mean squared error losses
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Figure 3: (a) Median and interquartile range (iqr) over the data log-likelihood, averaged over all 9×5×2 experiments. (b)
High bias and noise configuration (π = 0.9, σ = 0.03) with calibration loss. The ground truth target is shown as black dots
and the predicted samples as light blue dots. The predictions average in dark blue matches the calibration target in red. The
discriminator output is shown in the background in shades of red (real) and blue (fake). (c) The same experiment configuration
but without the proposed calibration loss, resulting in a mode collapse.

between ground truth labels y and predictions ŷ for Lce, and
between the output of the calibration network Fθ(x) and the
average of multiple predictions Gφ(Fθ(x)) for Lcal (see Ap-
pendix A.2). Finally, all runs are trained with a learning rate
of 1e−4 and each experiment is repeated five times.

The results, depicted in Fig. 3, illustrate that when using
calibration loss, the optimisation process shows improved
training stability, converges faster, and results in better cal-
ibrated predictions in comparison to the non-regularised
baseline. Notice that Lcal also serves as an effective mecha-
nism against mode collapse. This effect is more pronounced
in data configurations with higher bias. More plots of the
individual experiments are shown in Appendix B.1.

4.2. Stochastic semantic segmentation

In this section we examine the capacity of our model to
learn shape and class multimodality in real-world segmenta-
tion datasets. We begin by sharing essential implementation
details below.

Network architectures For the calibration network Fθ,
we use the SegNet [2] encoder-decoder architecture. For Gφ,
we designed a U-Net-style [47] architecture with 4 down-
and upsampling blocks, each consisting of a convolutional
layer, followed by a batch normalisation layer [24], a leaky
ReLU activation, and a dropout layer [51] with 0.1 dropout
probability. We use a base number of 32 channels, doubled
or halved at every down- and upsampling transition. To
propagate the sampled noise vector ε to the output, we inject
it into every upsampling block of the network in a linear
manner. To do so, we project ε using two fully connected

layers into scale and residual matrices with the same number
of channels as the feature maps at the points of injection,
and use these matrices to adjust the channel-wise mean and
variance of the activations. This is similar to the mechanism
used for adaptive instance normalisation [22]. We base the
architecture for Dψ on that used in DC-GAN [46] except
that we remove batch normalisation. Any deviations from
this setup are described in the corresponding sections.

Training details We utilise the Adam optimiser [29] with
an initial learning rate of 2e−4 for Fθ and Gφ, and 1e−5 for
Dψ. The learning rates are linearly decayed over time and
we perform scheduled updates to train the networks. Addi-
tionally, the discriminator loss is regularised by using the R1

zero-centered gradient penalty term [43]. For a detailed list
of hyperparameter values, see Appendix A.1.

Metrics Following [31, 32, 23, 4], we use the Generalised
Energy Distance (GED) [52] metric:

D2
GED(pD, qφ) = 2Es∼qφ,y∼pD [d(s, y)]− Es,s′∼qφ [d(s, s′)]

− Ey,y′∼pD [d(y, y′)],
(9)

where d(s, y) = 1 − IoU(s, y). As an additional metric,
we follow [32] in using the Hungarian-matched IoU (HM-
IoU) [33]. In contrast to GED, which naively computes
diversity as 1 − IoU between all possible pairs of ground
truth or sampled predictions, HM-IoU finds the optimal 1:1
matching between all labels and predictions, and therefore
is more representative of how well the learnt predictive dis-
tribution fits the ground truth.
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All experiments are performed in triplicate and we report
results as mean and standard deviation. Further details re-
garding the exact implementation of the GED and HM-IoU
metrics for each experiment can be found in Appendix A.3.

4.2.1 Learning shape diversity on the LIDC dataset

To assess the accuracy and diversity of samples generated
by our model, we use the Lung Image Database Consortium
(LIDC) [1] dataset which consists of 1018 thoracic CT scans
from 1010 lung cancer patients, graded independently by
four expert annotators. We use the 180×180 crops from the
preprocessed version of the LIDC dataset used and described
in [31]. The dataset is split in 8882, 1996 and 1992 images in
the training, validation and test sets respectively. All models
are trained on lesion-centered 128×128 crops where at least
one of the four annotations indicates a lesion. The final
evaluation is performed on the provided test set.

In this task, we pretrain Fθ(x) withLce in isolation, fix its
weights, and then train Gφ with LG, estimating Lcal with 20
samples from Gφ. Note that we disclose further experiments
with varying sample size in Table 3 in Appendix B.2. As
a control, we train using the same architecture but replace
Lcal in the refinement network loss function with a cross
entropy lossLce, as done in [41, 14]. We denote this baseline
throughout the manuscript as cGAN+Lce.

Our results show that the CAR model performs on par
with other state-of-the-art methods w. r. t. the GED score,
and outperforms them on the HM-IoU score (only available
for [31, 32]). Numerical results are summarised in Table 1
and the diversity and fidelity of sampled predictions are
illustrated in Fig. 4. In contrast, the Lce-regularised baseline
collapses the predictive distribution, showing no perceptible
diversity between samples (see Fig. 11b in Appendix B.2.3),
which results in a stark increase in the mean GED score, and
decrease in the HM-IoU score.

Method GED ↓ (16) GED ↓ (50) GED ↓ (100) HM-IoU ↑ (16)

Kohl et al. (2018) [31] 0.320± 0.030 — 0.252± N/A1 0.500± 0.030
Kohl et al. (2019) [32] 0.270± 0.010 — — 0.530± 0.010

Hu et al. (2019) [21] — 0.267± 0.012 — —
Baumgartner et al. (2019) [4] — — 0.224±N/A2 —
Monteiro et al. (2020) [44] — — 0.225± 0.0022 —

cGAN+Lce 0.639± 0.002 — — 0.477± 0.004
CAR (ours) 0.264± 0.002 0.248± 0.004 0.243± 0.0042 0.592± 0.005

1 This score is taken from [4].
2 Note that when following the data split methodology used in [4, 44] and computing the GED (100) metric, we achieve a score of 0.228± 0.009 instead

of 0.243± 0.004 (see Appendix A.3).

Table 1: Mean GED and HM-IoU scores on LIDC. Top section: approaches using the original data splits defined by [31],
which we also adhere to; middle: approaches using random data splits; bottom: the Lce-regularised baseline and our CAR
model. The three central columns show the GED score computed with 16, 50 and 100 samples, respectively. The rightmost
column shows the HM-IoU score, computed with 16 samples. The arrows ↑ and ↓ indicate if higher or lower score is better.
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Figure 4: LIDC validation samples. From left to right: an input image x, followed by the four ground truth annotations
y1gt . . . y

4
gt, the mean of the labels ygt, the output of the calibration network Fθ(x), the mean of the six refinement network

samples yref, shown in columns y1ref . . . y
6
ref.
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4.2.2 Learning a calibrated distribution on a multi-
modal Cityscapes dataset

The Cityscapes dataset contains 1024×2048 RGB images of
urban scenes, and corresponding segmentation maps. It con-
sists of 2975 training, 500 validation and 1525 test images.
Following [31], we use a stochastic version of the Cityscapes
dataset with 19 semantic classes, downsample images and
segmentation maps to a spatial resolution of 256×512, and
report results on the validation set. Controlled multimodality
is established by augmenting the dataset with 5 new classes:
sidewalk2, person2, car2, vegetation2 and road2, introduced
by flipping their original counterparts with probabilities 8/17,
7/17, 6/17, 5/17 and 4/17, respectively (see Fig. 5a), giving the
dataset a total of 24 semantic classes.

To demonstrate that our approach can be easily integrated
on top of any existing black-box segmentation model B,
we employ the network from [54], trained on the official
Cityscapes dataset, achieving a mIoU of 0.79 on the test set.
We utilise its predictions as input to a smaller version of our
calibration network Fθ comprising 5 convolutional blocks,
each composed of a 3×3 convolutional layer followed by
batch normalisation, a leaky ReLU activation, and a dropout
layer with 0.1 dropout rate. We pretrain the calibration
network in isolation, and subsequently apply it in inference
mode while adversarially training the refinement network.
We use a batch size of 16, and train with LG, estimating
Lcal with 7 samples from Gφ. The same baseline from the
LIDC experiment is employed, where Lcal is replaced with
Lce. As a second control experiment, we completely omit
the calibration network and instead condition the refinement
network on the known ground truth pixelwise categorical
distribution over the label, representing the ideal output of
Fθ. This baseline allows us to directly evaluate the quality
of sampling administered from the refinement network, and
we denote it as cGAN+Lcal (ground truth).

When training the refinement network with a cross en-
tropy loss instead of the calibration loss Lcal, the predictive
distribution collapses, making the output deterministic. Con-
versely, when we train our refinement network with Lcal, the
learnt predictive distribution is well adjusted, with high diver-
sity and reconstruction quality, significantly outperforming
the current state-of-the-art, as shown in Table 2. Fig. 5b
displays representative sampled predictions from our model
for three input images and Fig. 5c illustrates the correspond-
ing aleatoric uncertainty maps extracted from Fθ(x). The
learnt multimodality and noise in the dataset are reflected by
regions of high entropy, where objects belonging to the dif-
ferent stochastic classes consistently display distinct shades
of red, corresponding to their respective flip probabilities. Fi-
nally, we show that when using the ground truth distribution
as the input and calibration target to the refinement network,
we attain an almost perfect GED score (0.038 ± 0.00).

Since we manually set the flip probabilities for each
stochastic class in this dataset, we can directly assess the
calibration of our model by comparing the ground truth prob-
abilities to the predicted probabilities from the calibration
or refinement network. For Fθ we use the mean confidence
values for each class, and for Gφ we obtain the empirical
mean class probabilities via Gφ(Fθ(x)), computed from 16
samples (see Appendix A.4 for more details). The ensuing
results are shown graphically in Fig. 6, which illustrates the
calibration of our models on the stochastic classes, evaluated
over the entire dataset. This demonstrates that our models are
well calibrated, with the calibration offset, computed as the
absolute difference between the ground truth and predicted
probabilities, being approximately 6% in the worst case
(class "car2" for the calibration network). Note that the aver-
age calibration offset for Fθ(x) across the stochastic classes
is 1.6%. Further, the ground truth conditioned baseline is al-
most perfectly calibrated, in accord to the near-optimal GED
score reported in Table 2. Thus, we demonstrate that Gφ
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Figure 5: (a) Input images overlaid with the corresponding labels. (b) Samples obtained from the refinement network. (c)
Aleatoric uncertainty computed as the entropy of the calibration output.
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Figure 6: Calibration of the pixelwise probabilities of the
five stochastic classes. Note that the calibration network (in
orange) is conditioned on black-box predictions.

Method GED

Kohl et al. (2018) [31] 0.206± N/A

cGAN+Lce 0.632± 0.07
CAR (ours) 0.164± 0.01

cGAN+Lcal (ground truth) 0.038± 0.00

Table 2: Mean GED scores on the modified Cityscapes. Top
section: competing model; middle: Lce-regularised baseline
and CAR model; bottom: ground truth calibrated refine-
ment network (cGAN). GED scores are computed using 16
samples.

successfully learns calibrated refinement of the predictions
from Fθ, where the quality of the final predictive distribution
depends on the quality of Fθ(x).

In order to further scrutinise the calibration quality of
Fθ(x), we construct a reliability diagram and compute the
corresponding expected calibration error (ECE), follow-
ing [17]. To create the diagram, each pixel is considered
independently, and the class confidences are binned into 10
equal intervals of size 0.1. We then compute the accuracy
for all predictions in each bin. Fig. 7 shows the reliability
diagram for the calibration network, where the orange bars
depict the calibration gap, defined as the difference between
the mean confidence for each interval and the corresponding
accuracy. The corresponding ECE score amounts to 2.15%.
Note that this also considers the average calibration error
computed for the stochastic classes, where we randomly
sample the labels according to the predefined probabilities.
Hence, we confirm that Fθ(x) is well calibrated.

An important outstanding issue in our approach is that
the calibration network may not perfectly capture the class-
probabilities, e. g. as seen from the car2 category in Fig. 6.
Since we calibrate the refinement network relative to the cali-
bration target provided by Fθ, such errors can be propagated
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Figure 7: Reliability diagram for the calibration network.
The corresponding ECE score is 2.15%.

into Gφ. Calibration issues in modern neural networks are
well documented [17, 34, 56]—these have been attributed to
several factors, such as long-tailed data distributions, out-of-
distribution inputs, specific network architectural elements
or optimising procedures. Even though we did not find it
necessary, ad hoc solutions to miscalibration, such as tem-
perature scaling [20], Dirichlet calibration [34] etc., can be
readily applied to the calibration network to improve the pre-
dicted probabilities, and thus the overall calibration of our
model. Therefore, an important direction for future work is
towards improving the calibration of deep neural networks.

5. Conclusion
In this work, we developed a novel framework for seman-

tic segmentation capable of learning a calibrated multimodal
predictive distribution, closely matching the ground truth dis-
tribution of labels. We attained improved results on a modi-
fied Cityscapes dataset and competitive scores on the LIDC
dataset, indicating the utility of our approach on real-world
datasets. We also showed that our approach can be easily
integrated into any off-the-shelf, deterministic, black-box se-
mantic segmentation model, enabling sampling an arbitrary
number of plausible segmentation maps. By highlighting
regions of high data uncertainty and providing multiple valid
label proposals, our approach can be used to identify and re-
solve ambiguities, diminishing risk in safety-critical systems.
Therefore, we expect our approach to be particularly bene-
ficial for applications such as map making for autonomous
driving or computer-assisted medical diagnostics. Finally,
even though the primary focus of this work is semantic seg-
mentation, we demonstrated the versatility of our method
with an illustrative toy regression problem, alluding to a
broader applicability beyond semantic segmentation.
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