MUSIQ: Multi-scale Image Quality Transformer

Junjie Ke1, Qifei Wang1, Yilin Wang2, Peyman Milanfar1, Feng Yang1
1Google Research, 2Google
\{junjiek, qfwang, yilin, milanfar, fengyang\}@google.com

Abstract

Image quality assessment (IQA) is an important research topic for understanding and improving visual experience. The current state-of-the-art IQA methods are based on convolutional neural networks (CNNs). The performance of CNN-based models is often compromised by the fixed shape constraint in batch training. To accommodate this, the input images are usually resized and cropped to a fixed shape, causing image quality degradation. To address this, we design a multi-scale image quality Transformer (MUSIQ) to process native resolution images with varying sizes and aspect ratios. With a multi-scale image representation, our proposed method can capture image quality at different granularities. Furthermore, a novel hash-based 2D spatial embedding and a scale embedding is proposed to support the positional embedding in the multi-scale representation. Experimental results verify that our method can achieve state-of-the-art performance on multiple large scale IQA datasets such as PaQ-2-PiQ [41], SPAQ [11], and KonIQ-10k [16].

1. Introduction

The goal of image quality assessment (IQA) is to quantify perceptual quality of images. In the deep learning era, many IQA approaches [11, 33, 34, 41, 47] have achieved significant success by leveraging the power of convolutional neural networks (CNNs). However, the CNN-based IQA models are often constrained by the fixed-size input requirement in batch training. \textit{i.e.}, the input images need to be resized or cropped to a fixed shape as shown in Figure 1 (b). This preprocessing is problematic for IQA because images in the wild have varying aspect ratios and resolutions. Resizing and cropping can impact image composition or introduce distortions, thus changing the quality of the image.

To learn IQA on the full-size image, the existing CNN-based approaches use either adaptive pooling or resizing to get a fixed-size convolutional feature map. MNA-CNN [24] processes a single image in each training batch which is not practical for training on a large dataset. Hosu et al. [15] extracts and stores fixed-size features offline, which costs additional storage for every augmented image. To keep aspect ratio, Chen et al. [7] proposes a dedicated convolution to preserve aspect ratio in the convolutional receptive field. Its evaluation verifies the importance of aspect-ratio-preserving (ARP) in the IQA tasks. But it still needs resizing and smart grouping for effective batch training.

In this paper, we propose a patch-based multi-scale image quality Transformer (MUSIQ) to bypass the CNN constraints on fixed input size and predict the quality effectively on the native resolution image as shown in Figure 1 (a). Transformer [36] is first proposed for natural language processing (NLP) and has recently been studied for various vision tasks [4–6, 10]. Among these, the Vision Transformer (ViT) [10] splits each image into a sequence of fixed-size patches, encodes each patch as a token, and then applies
Transformer to the sequence for image classification. In theory, such kind of patch-based Transformer models can handle arbitrary numbers of patches (up to memory constraints), and therefore do not require preprocessing the input image to a fixed resolution. This motivates us to apply the patch-based Transformer on the IQA tasks with the full-size images as input.

Another aspect for improving IQA models is to imitate the human visual system which captures an image in a multi-scale fashion [1]. Previous works [15, 21, 46] have shown the benefit of using multi-scale features extracted from CNN feature maps at different depths. This inspires us to transform the native resolution image into a multi-scale representation, enabling the Transformer’s self-attention mechanism to capture information on both fine-grained detailed patches and coarse-grained global patches. Besides, unlike the convolution operation in CNNs that has a relatively limited receptive field, self-attention can attend to the whole input sequence and therefore effectively capture the image quality at different granularities.

However, it is not straightforward to apply the Transformer on the multi-aspect-ratio multi-scale input. Although self-attention accepts arbitrary length of the input sequence, it is permutation-invariant and therefore cannot capture patch location in the image. To mitigate this, ViT [10] adds fixed-length positional embedding to encode the absolute position of each patch in the image. However, the fixed-length positional encoding fails when the input length varies. To solve this issue, we propose a novel hash-based 2D spatial embedding that maps the patch positions to a fixed grid to effectively handle images with arbitrary aspect ratios and resolutions. Moreover, since the patch locations at each scale are hashed to the same grid, it aligns spatially close patches at different scales so that the Transformer model can leverage information across multiple scales. In addition to the spatial embedding, a separate scale embedding is further introduced to help the Transformer distinguish patches coming from different scales in the multi-scale representation.

The main contributions of this paper can be summarized into three-folds:

- We propose a patch-based multi-scale image quality Transformer (MUSIQ), which supports processing full-size input with varying aspect ratios or resolutions, and allows multi-scale feature extraction.
- A novel hash-based 2D spatial embedding and a scale embedding are proposed to support positional encoding in the multi-scale representation, helping the Transformer capture information across space and scales.
- We apply MUSIQ on four large-scale IQA datasets. It consistently achieves the state-of-the-art performance on three technical quality datasets: PaQ-2-PiQ [41], KonIQ-10k [16], and SPAQ [11], and is on-par with the state-of-the-art on the aesthetic quality dataset AVA [29].

2. Related Work

Image Quality Assessment. Image quality assessment aims to quantitatively predict perceptual image quality. There are two important aspects for assessing image quality: technical quality [16] and aesthetic quality [29]. The former focuses on perceptual distortions while the latter also relates to image composition, artistic value and so on. In the past years, researchers proposed many IQA methods: early natural scene statistics based [13, 25, 27, 45], codebook-based [38, 40] and CNN-based [11, 33, 34, 41, 47]. CNN-based methods achieve the state-of-the-art performance. However they usually need to crop or resize images to a fixed size in batch training, which affects the image quality. Several methods have been proposed to mitigate the distortion from resizing and cropping in CNN-based IQA. An ensemble of multi-crops from the original image is proven to be effective for IQA [7, 15, 23, 32, 33], but it introduces non-negligible inference cost. In addition, MNA-CNN [24] handles full-size input by adaptively pooling the feature map to a fixed shape. However, it only accepts a single input image for each training batch to preserve the original resolution which is not efficient for large scale training. Hosu et al. [15] extracted and stored the fixed-sized features from the full-size image for model training which costs extra storage for every augmented image and is inefficient for large scale training. Chen et al. [7] proposed an adaptive fractional dilated convolution to adapt the receptive field according to the image aspect ratio. The method preserves aspect ratio but cannot handle full-size input without resizing. It also needs smart grouping strategy in mini-batch training.

Transformers in Vision. Transformers [36] were first applied to NLP tasks and achieved great performance [9, 22, 39]. Recent works applied transformers on various vision tasks [4–6, 10]. Among these, the Vision Transformer (ViT) [10] employs a pure Transformer architecture to classify images by treating an image as a sequence of patches. For batch training, ViT resizes the input images to a fixed squared size, e.g., 224 × 224, where fixed number of patches are extracted and combined with fixed-length positional embedding. This constrains its usage for IQA since resizing will affect the image quality. To solve this, we propose a novel Transformer-based architecture that accepts the full-size image for IQA.

Positional Embeddings. Positional embeddings are introduced in Transformers to encode the order of the input sequence [36]. Without it, the self-attention operation is permutation-invariant [2]. Vaswani et al. [36] used deterministic positional embeddings generated from sinusoidal
Figure 2. Model overview of MUSIQ. We construct a multi-scale image representation as input, including the native resolution image and its ARP resized variants. Each image is split into fixed-size patches which are embedded by a patch encoding module (blue boxes). To capture 2D structure of the image and handle images of varying aspect ratios, the spatial embedding is encoded by hashing the patch position \((i, j)\) to \((t_i, t_j)\) within a grid of learnable embeddings (red boxes). Scale Embedding (green boxes) is introduced to capture scale information. The Transformer encoder takes the input tokens and performs multi-head self-attention. To predict the image quality, we follow a common strategy in Transformers to add a [CLS] token to the sequence to represent the whole multi-scale input and use the corresponding Transformer output as the final representation.

functions. ViT [10] showed that the deterministic and learnable positional embeddings [12] works equally well. However, those positional embeddings are generated for fixed-length sequences. When the input resolution changes, the pre-trained positional embeddings is no longer meaningful. Relative positional embeddings [2, 31] is proposed to encode relative distance instead of absolute position. Although the relative positional embeddings can work for variable length inputs, it requires substantial modifications in Transformer attention and cannot capture multi-scale positions in our use case.

3. Multi-scale Image Quality Transformer

3.1. Overall Architecture

To tackle the challenge of learning IQA on full-size images, we propose a multi-scale image quality Transformer (MUSIQ) which can handle inputs with arbitrary aspect ratios and resolutions. An overview of the model is shown in Figure 2.

We first make a multi-scale representation of the input image, containing the native resolution image and its ARP resized variants. The images at different scales are partitioned into fixed-size patches and fed into the model. Since patches are from images of varying resolutions, we need to effectively encode the multi-aspect-ratio multi-scale input into a sequence of tokens (the small boxes in Figure 2), capturing both the pixel, spatial, and scale information.

To achieve this, we design three encoding components in MUSIQ, including: 1) A patch encoding module to encode patches extracted from the multi-scale representation (Section 3.2); 2) A novel hash-based spatial embedding module to encode the 2D spatial position for each patch (Section 3.3); 3) A learnable scale embedding to encode different scale (Section 3.4).

After encoding the multi-scale input into a sequence of tokens, we use the standard approach of prepending an extra learnable “classification token” (CLS) [9, 10]. The CLS token state at the output of the Transformer encoder serves as the final image representation. We then add a fully con-
nected layer on top to predict the image quality score. Since MUSIQ only changes the input encoding, it is compatible with any Transformer variants. To demonstrate the effectiveness of the proposed method, we use the classic Transformer [36] (Appendix A) with a relatively lightweight setting to make model size comparable to ResNet-50 in our experiments.

3.2. Multi-scale Patch Embedding

Image quality is affected by both the local details and global composition. In order to capture both the global and local information, we propose to model the input image with a multi-scale representation. Patches from different scales enables the Transformer to aggregate information across multiple scales and spatial locations.

As shown in Figure 2, the multi-scale input is composed of the full-size image with height \(H \), width \(W \), channel \(C \), and a sequence of ARP resized images from the full-size image using Gaussian kernel. The resized images have height \(h_k \), width \(w_k \), channel \(C \), where \(k = 1, ..., K \) and \(K \) is the number of resized variants for each input. To align resized images for a consistent global view, we fix the longer side length to \(L_k \) for each resized variant and yield:

\[
\alpha_k = \frac{L_k}{\max(H, W)} \quad \text{and} \quad h_k = \alpha_k H \quad \text{and} \quad w_k = \alpha_k W
\]

(1)

\(\alpha_k \) represents the resizing factor for each scale.

Square patches with size \(P \) are extracted from each image in the multi-scale representation. For images whose width or height are not multiples of \(P \), we pad the image with zeros accordingly. Each patch is encoded into a \(D \)-dimensional spatial embedding by the patch encoder module. \(D \) is the latent token size used in the Transformer.

Instead of encoding the patches with a linear projection as in [10], we choose a 5-layer ResNet [14] with a fully connected layer of size \(D \) as the patch encoder module to learn a better representation for the input patch. We find that encoding the patch with a few convolution layers performs better than linear projection when pre-training on ILSVRC-2012 ImageNet [30] (see Section 4.4). Since the patch encoding module is lightweight and shared across all the input patches whose size \(P \) is small, it only adds a small amount of parameters.

The sequence of patch embeddings output from the patch encoder module are concatenated together to form a multi-scale embedding sequence for the input image. The number of patches from the original image and the resized ones are calculated as \(N = HW/P^2 \) and \(n_k = h_k w_k / P^2 \).

Since each input image has a different resolution and aspect ratio, \(H \) and \(W \) are different for each input and therefore \(N \) and \(n_k \) are different. To get fixed-length input during training, we follow the common practice in NLP [36] to zero-pad the encoded patch tokens to the same length. An input mask is attached to indicate the effective input, which will be used in the Transformer to perform masked self-attention (Appendix A.3). Note that the padding operation will not change the input because the padding tokens are ignored in the multi-head attention by masking them.

As previously mentioned, we fix the longer length to \(L_k \) for each resized variant. Therefore \(n_k \leq L_k^2 / P^2 = m_k \) and we can safely pad to \(m_k \). For the native resolution image, we simply pad or cut the sequence to a fixed length \(l \). The padding is not necessary during single-input evaluation because the sequence length can be arbitrary.

3.3. Hash-based 2D Spatial Embedding

Spatial positional embedding is important in vision Transformers to inject awareness of the 2D image structure in the 1D sequence input [10]. The traditional fixed-length positional embedding assigns an embedding for every input location. This fails for variable input resolutions where the number of patches are different and therefore each patch in the sequence may come from an arbitrary location in the image. Besides, the traditional positional embedding models each position independently and therefore it cannot align the spatially close patches from different scales.

We argue that an effective spatial embedding design for MUSIQ should meet the following requirements: 1) effectively encode patch spatial information under different aspect ratios and input resolutions; 2) spatially close patches at different scales should have close spatial embeddings; 3) efficient and easy to implement, non-intrusive to the Transformer attention.

Based on that, we propose a novel hash-based 2D spatial embedding (HSE) where the patch locating at row \(i \), column \(j \) is hashed to the corresponding element in a \(G \times G \) grid. Each element in the grid is a \(D \)-dimensional embedding.

We define HSE by a learnable matrix \(T \in \mathbb{R}^{G \times G \times D} \). Suppose the input resolution is \(H \times W \). The input image will be partitioned into \(\frac{H}{T} \times \frac{W}{T} \) patches. For the patch at position \((i, j)\), its spatial embedding is defined by the element at position \((t_i, t_j)\) in \(T \) where

\[
t_i = \frac{i \times G}{H/P}, \quad t_j = \frac{j \times G}{W/P}
\]

(2)

The \(D \)-dimensional spatial embedding \(T_{t_i, t_j} \) is added to the patch embedding element-wisely as shown in Figure 2. For fast lookup, we simply round \((t_i, t_j)\) to the nearest integers. HSE does not require any changes in the Transformer attention module. Moreover, both the computation of \(t_i \) and \(t_j \) and the lookup are lightweight and easy to implement.

To align patches across scales, patch locations from all scales are mapped to the same grid \(T \). As a result, patches located closely in the image but from different scales are mapped to spatially close embeddings in \(T \), since \(i \) and \(H \) as well as \(j \) and \(W \) change proportionally to the resizing factor \(\alpha \). This achieves spatial alignment across different images from the multi-scale representation.
There is a trade-off between expressiveness and train-ability with the choice hash grid size G. Small G may re-
result in a lot of collision between patches which makes the
model unable to distinguish spatially close patches. Large
G wastes memory and may need more diverse resolutions
to train. In our IQA setting where rough positional informa-
tion is sufficient, we find once G is large enough, changing
G only results in small performance differences (see Ap-
pendix B). We set $G = 10$ in the experiments.

3.4. Scale Embedding

Since we reuse the same hashing matrix for all images, HSE
does not make a distinction between patches from different
scales. Therefore, we introduce an additional scale embed-
ding (SCE) to help the model effectively distinguish infor-
mation coming from different scales and better utilize in-
formation across scales. In other words, SCE marks which
input scale the patch is coming from in the multi-scale rep-
resentation.

We define SCE as a learnable scale embedding $Q \in
\mathbb{R}^{(K+1) \times D}$ for the input image with K-scale resized var-
ant. Following the spatial embedding, the first element
$Q_0 \in \mathbb{R}^D$ is added element-wisely to all the D-dimensional
patch embeddings from the native resolution image.
$Q_k \in \mathbb{R}^D, k = 1, ..., K$ are also added element-wisely to all the
patch embeddings from the resized image at scale k.

3.5. Pre-training and Fine-tuning

Typically, the Transformer models need to be pre-trained
on the large datasets, e.g. ImageNet, and fine-tuned on the
downstream tasks. During the pre-training, we still keep
random cropping as an augmentation to generate images of
different sizes. However, instead of doing square resizing
like the common practice in image classification, we inten-
tionally skip resizing to prime the model for inputs with dif-
ferent resolutions and aspect ratios. We also employ com-
mon augmentations such as RandAugment [8] and mixup
[44] in pre-training.

When fine-tuning on IQA tasks, we do not resize or crop
the input image to preserve the image composition and as-
pect ratio. In fact, we only use random horizontal flipping
for augmentation in fine-tuning. For evaluation, our method
can be directly applied on the original image without aggre-
gating multiple augmentations (e.g. multi-crops sampling).

When fine-tuning on the IQA datasets, we use common
regression losses such as L1 loss for single mean opinion
score (MOS) and Earth Mover Distance (EMD) loss to pre-
dict the quality score distribution [34]:

$$EMD(p, \bar{p}) = \left(\frac{1}{N} \sum_{m=1}^{N} |CDF_p(m) - CDF_{\bar{p}}(m)|^\frac{1}{2} \right)^\frac{1}{2} \quad (3)$$

where p is the normalized score distribution and $CDF_p(m)$
is the cumulative distribution function as $\sum_{i=1}^{m} p_i$.

4. Experimental Results

4.1. Datasets

We run experiments on four large-scale image quality
datasets including three technical quality datasets (PaQ-2-
PiQ [41], SPAQ [11], KonIQ-10k [16]) and one aesthetics
quality dataset (AVA [29]).

PaQ-2-PiQ is the largest picture technical quality dataset
by far which contains 40k real-world images and 120k
cropped patches. Each image or patch is associated with a
MOS. Since our model does not make a distinction between
image and extracted patches, we simply use all the 30k full-
size images and the corresponding 90k patches from the
training split to train the model. We then run the evalua-
tion on the 7.7k full-size validation and 1.8k test set.

SPAQ dataset consists of 11k pictures taken by 66 smart-
phones. For a fair comparison, we follow [11] to resize the
raw images such that the shorter side is 512. We only use
the image and its corresponding MOS for training, not in-
cluding the extra tag information in the dataset.

KonIQ-10k contains 10k images selected from a large
public multimedia database YFCC100M [35].

AVA is an image aesthetic assessment dataset. It contains
250k images with 10-scale score distribution for each.

For KonIQ-10k, we follow [33, 48] to randomly sample
80% images for each run and report the results on the re-
mainining 20%. For other datasets, we use the same split as
the previous literature.

4.2. Implementation Details

For MUSIQ, the multi-scale representation is constructed
as the native resolution image and two ARP resized input
($L_1 = 224$ and $L_2 = 384$) by default. It therefore uses 3-
scale input. Our method also works on 1-scale input using
just the full-size image without resized variants. We report
the results of this single-scale setting as MUSIQ-single.

We use patch size $P = 32$. The dimensions for Trans-
former input tokens are $D = 384$, which is also the dimen-
sion for pixel patch embedding, HSE and SCE. The grid
size of HSE is set to $G = 10$. We use the classic Trans-
former [36] with lightweight parameters (384 hidden size,
14 layers, 1152 MLP size and 6 heads) to make the model
size comparable to ResNet-50. The final model has around
27 million total parameters.

We pre-train our models on ImageNet for 300 epochs,
using Adam with $\beta_1 = 0.9$, $\beta_2 = 0.999$, a batch size
of 4096, 0.1 weight decay and cosine learning rate decay
from 0.001. We set the maximum number of patches from
full-size image to 512 in training. For fine-tuning, we
use SGD with momentum and cosine learning rate decay
from 0.0002, 0.0001, 0.0001, 0.12 for 10, 30, 30, 20 epochs
on PaQ-2-PiQ, KonIQ-10k, SPAQ, and AVA, respectively.
Batch size is set to 512 for AVA, 96 for KonIQ-10k, and
For AVA, we use the EMD loss with numbers from [33, 48] for results of the reference methods.

In Table 2, the results on KonIQ-10k dataset. Blue and black numbers in bold represent the best and second best respectively. We take numbers from [41] for the results of the reference methods.

The models are trained on TPUv3. All the results are reported as ± std.

4.3. Comparing with the State-of-the-art (SOTA)

Results on PaQ-2-PiQ

Table 1 shows the results on the PaQ-2-PiQ dataset. Our proposed MUSIQ outperforms other methods on both the validation and test sets. Notably, the test set is entirely composed of pictures having at least one dimension exceeding 640 [41]. This is very challenging for traditional deep learning approaches where resizing is inevitable. Our method is able to outperform previous methods by a large margin on the full-size test set which verifies its robustness and effectiveness.

Results on KonIQ-10k

Table 2 shows the results on the KonIQ-10k dataset. Our method outperforms the SOTA methods. In particular, BIQA [33] needs to sample 25 crops from each image during training and testing. This kind of multi-crops ensemble is a way to mitigate the fixed shape constraint in the CNN models. But since each crop is only a sub-view of the whole image, the ensemble is still an approximate approach. Moreover, it adds additional inference cost for every crop and sampling can introduce randomness in the result. Since MUSIQ takes the full-size image as input, it can directly learn the best aggregation of information across the full image and only one evaluation is involved.

Results on SPAQ

Table 3 shows the results on the SPAQ dataset. Overall, our model is able to outperform other methods in terms of both SRCC and PLCC.

Results on AVA

Table 4 shows the results on the AVA dataset. Our method achieves the best MSE and has top SRCC and PLCC. As previously discussed, instead of multi-crops sampling, our model can accurately predict image aesthetics by directly looking at the full-size image.

4.4. Ablation Studies

Importance of Aspect-Ratio-Preserving (ARP). CNN-based IQA models usually resize the input image to a square resolution without preserving the original aspect ratio. We argue that such preprocessing can be detrimental to IQA because it alters the image composition. To verify that, we...
Table 5. Comparison of ARP resizing and square resizing on AVA dataset. * means our implementation. ViT-Small* is constructed by replacing the Transformer backbone in ViT with our 384-dim lightweight Transformer. The last group of rows show our method with different resizing methods. Numbers in the bracket show the resolution used in the multi-scale representation.

<table>
<thead>
<tr>
<th>method</th>
<th># Params</th>
<th>SRCC</th>
<th>PLCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIMA(Inception-v2) [34]</td>
<td>56M</td>
<td>0.612</td>
<td>0.636</td>
</tr>
<tr>
<td>NIMA(ResNet50)* (384 square input)</td>
<td>24M</td>
<td>0.624</td>
<td>0.632</td>
</tr>
<tr>
<td>ViT-Base 32* (384 square input) [10]</td>
<td>88M</td>
<td>0.654</td>
<td>0.664</td>
</tr>
<tr>
<td>ViT-Small 32* (384 square input) [10]</td>
<td>22M</td>
<td>0.656</td>
<td>0.665</td>
</tr>
<tr>
<td>MUSIQ w/ square resizing (512, 384, 224)</td>
<td>27M</td>
<td>0.706</td>
<td>0.720</td>
</tr>
<tr>
<td>MUSIQ w/ ARP resizing (512, 384, 224)</td>
<td>27M</td>
<td>0.712</td>
<td>0.726</td>
</tr>
<tr>
<td>MUSIQ w/ ARP resizing (full, 384, 224)</td>
<td>27M</td>
<td>0.726</td>
<td>0.738</td>
</tr>
</tbody>
</table>

Table 6. Comparison of multi-scale representation composition on PaQ-2-PiQ full-size test set. The multi-scale representation is composed of the resolutions shown in the brackets. Numbers in brackets indicate the longer side length L for ARP resizing. "full" means full-size input image.

<table>
<thead>
<tr>
<th>Multi-scale Composition</th>
<th>SRCC</th>
<th>PLCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(224)</td>
<td>0.600</td>
<td>0.667</td>
</tr>
<tr>
<td>(384)</td>
<td>0.618</td>
<td>0.695</td>
</tr>
<tr>
<td>(512)</td>
<td>0.620</td>
<td>0.691</td>
</tr>
<tr>
<td>(384, 224)</td>
<td>0.620</td>
<td>0.707</td>
</tr>
<tr>
<td>(512, 384, 224)</td>
<td>0.629</td>
<td>0.718</td>
</tr>
<tr>
<td>(full)</td>
<td>0.640</td>
<td>0.721</td>
</tr>
<tr>
<td>(full, 224)</td>
<td>0.643</td>
<td>0.726</td>
</tr>
<tr>
<td>(full, 384)</td>
<td>0.642</td>
<td>0.730</td>
</tr>
<tr>
<td>(full, 384, 224)</td>
<td>0.646</td>
<td>0.739</td>
</tr>
<tr>
<td>Average ensemble of (full), (224), (384)</td>
<td>0.640</td>
<td>0.710</td>
</tr>
</tbody>
</table>

Figure 3. Model predictions for an image resized to different aspect ratios. The blue curve shows MUSIQ with ARP resizing. The green curve shows our model trained and evaluated with square input. Orange and red curves show the ViT and ResNet-50 with square input. MUSIQ can detect quality degradation due to unnatural resizing while other methods are not sensitive.

Figure 4. Visualization of attention from the output tokens to the multi-scale representation (original resolution image and two ARP resized variants). Note that images here are resized to fit the grid, the model inputs are 3 different resolutions. The model is focusing on details in higher resolution image and on global area in lower resolution ones.
Figure 5. Visualization of the grid of hash-based 2D spatial embedding with \(G = 10 \). Each subplot \((i, j)\) is of size \(G \times G \), showing the cosine similarity between \(T_{i,j} \) and every element in \(T \). Visualizations for different \(G \) are available in Appendix B.3.

To further verify that the model captures different information at different scales, we visualize the attention weights on each image in the multi-scale representation as Figure 4. We observe that the model tends to focus on more detailed areas on full-size high-resolution images and on more global areas on the resized ones. This shows that the model learns to capture image quality at different granularities.

Effectiveness of Proposed Hash-based Spatial Embedding (HSE) and Scale Embedding (SCE). We run ablations on different ways to encode spatial information and scale information using positional embeddings. As shown in Table 7, there is a large gap between adding and not adding spatial embeddings. This aligns with the finding in [10] that spatial embedding is crucial for injecting 2D image structure. To further verify the effectiveness of HSE, we try to add a fixed length spatial embedding as ViT [10]. This is done by treating all input tokens as a fixed length sequence and assigning a learnable embedding for each position. The performance of this method is unsatisfactory compared to HSE because of two reasons: 1) the inputs are of different aspect ratios. So each patch in the sequence can come from a different location from the image. Fixed positional embedding fails to capture this change; 2) since each position is modeled independently, there is no cross-scale information, meaning that the model cannot locate spatially close patches from different scales in the multi-scale representation. Moreover, the method is inflexible because fixed length spatial embedding cannot be easily applied to the large images with more patches. On the contrary, HSE is meaningful under all conditions.

A visualization of the learned HSE cosine similarity is provided as Figure 5. As depicted, the HSE of spatially close locations are more similar (yellow color) and it corresponds well to the 2D structure. For example, the bottom HSEs are brightest at the bottom. This shows that HSE can effectively capture the 2D structure of the image.

In Table 8, we show that adding SCE can further improve performance when compared with not adding SCE. This shows that SCE is helpful for the model to capture scale information independently of the spatial information.

Choice of Patch Encoding Module. We tried different designs for encoding the patch, including linear projection as [10] and small numbers of convolutional layers. As shown in Table 9, using a simple convolution based patch encoding module can boost the performance. Adding more conv layers has diminishing returns and we find a 5-layer ResNet can provide satisfactory representation for the patch.

5. Conclusion

We propose a multi-scale image quality Transformer (MUSIQ), which can handle full-size image input with varying resolutions and aspect ratios. By transforming the input image to a multi-scale representation with both global and local views, the model is able to capture the image quality at different granularities. To encode positional information in the multi-scale representation, we propose a hash-based 2D spatial embedding and a scale embedding strategy. Although MUSIQ is designed for IQA, it can be applied to other scenarios where task labels are sensitive to the image resolutions and aspect ratios. Moreover, MUSIQ is compatible with any type of Transformers that accept input as a sequence of tokens. Experiments on the four large-scale IQA datasets show that MUSIQ can consistently achieve state-of-the-art performance, demonstrating the effectiveness of the proposed method.

<table>
<thead>
<tr>
<th>Spatial Embedding</th>
<th>SRCC</th>
<th>PLCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o</td>
<td>0.704</td>
<td>0.716</td>
</tr>
<tr>
<td>Fixed-length (no HSE)</td>
<td>0.707</td>
<td>0.722</td>
</tr>
<tr>
<td>HSE</td>
<td>0.726</td>
<td>0.738</td>
</tr>
</tbody>
</table>

Table 7. Ablation study results for spatial embeddings on AVA. For "Fixed length (not HSE)", we consider the input as a fixed-length sequence and assign a learnable embedding for each position.

<table>
<thead>
<tr>
<th>Scale Embedding</th>
<th>SRCC</th>
<th>PLCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o</td>
<td>0.717</td>
<td>0.729</td>
</tr>
<tr>
<td>w/ HSE</td>
<td>0.726</td>
<td>0.738</td>
</tr>
</tbody>
</table>

Table 8. Ablation study results for scale embedding on AVA.

<table>
<thead>
<tr>
<th># Params</th>
<th>SRCC</th>
<th>PLCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear projection</td>
<td>22M</td>
<td>0.634</td>
</tr>
<tr>
<td>Simple Conv</td>
<td>23M</td>
<td>0.639</td>
</tr>
<tr>
<td>5-layer ResNet</td>
<td>27M</td>
<td>0.646</td>
</tr>
</tbody>
</table>

Table 9. Comparison of different patch encoding modules on PaQ-2-PiQ full-size test set. For simple conv, we use the root of ResNet (a 7x7 conv followed by a 3x3 conv). For 5-layer ResNet, we stack a residual block on top of Simple Conv.
References

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. *Communications of the ACM*, 59(2):64–73, 2016. 6

5157