
Efficient Video Compression via Content-Adaptive Super-Resolution

Mehrdad Khani, Vibhaalakshmi Sivaraman, Mohammad Alizadeh
MIT CSAIL

{khani,vibhaa,alizadeh}@csail.mit.edu

Abstract

Video compression is a critical component of Internet
video delivery. Recent work has shown that deep learning
techniques can rival or outperform human-designed algo-
rithms, but these methods are significantly less compute and
power-efficient than existing codecs. This paper presents a
new approach that augments existing codecs with a small,
content-adaptive super-resolution model that significantly
boosts video quality. Our method, SRVC, encodes video
into two bitstreams: (i) a content stream, produced by com-
pressing downsampled low-resolution video with the exist-
ing codec, (ii) a model stream, which encodes periodic up-
dates to a lightweight super-resolution neural network cus-
tomized for short segments of the video. SRVC decodes
the video by passing the decompressed low-resolution video
frames through the (time-varying) super-resolution model
to reconstruct high-resolution video frames. Our results
show that to achieve the same PSNR, SRVC requires 20%
of the bits-per-pixel of H.265 in slow mode, and 3% of the
bits-per-pixel of DVC, a recent deep learning-based video
compression scheme. SRVC runs at 90 frames per second
on an NVIDIA V100 GPU.

1. Introduction
Recent years have seen a sharp increase in video traf-

fic. It is predicted that by 2022, video will account for
more than 80% of all Internet traffic [6, 1]. Video de-
livery is so bandwidth-intensive that during surge periods
such as the initial months of the pandemic, Netflix and
Youtube were forced to throttle video quality to reduce over-
heads [2, 3]. Further, while mobile devices support 1080p
resolutions these days, cellular networks are still plagued
by low bandwidth and frequent fluctuations in most parts
of the world. Hence efficient video compression to reduce
bandwidth consumption without compromising on quality
is more critical than ever.

While the demand for video content has increased over
the years, the techniques used to compress and transmit
video have largely remained the same. Ideas such as ap-

plying Discrete Cosine Transforms (DCTs) to video blocks
and computing motion vectors [46, 18] , which were de-
veloped decades ago, are still in use today. Even the latest
H.265 codec improves upon these same ideas by incorpo-
rating variable block sizes [7]. Recent efforts [35, 10, 38] to
improve video compression have turned to deep learning to
capture the complex relationships between the components
of a video compression pipeline. These approaches have
had moderate success at outperforming current codecs, but
they are much less compute- and power-efficient.

We present SRVC, a new approach particularly useful
for cellular networks and low bitrate-scenarios, that com-
bines existing compression algorithms with a lightweight,
content-adaptive super-resolution (SR) neural network that
significantly boosts performance with low computation
cost. SRVC compresses the input video into two bitstreams:
a content stream and a model stream, each with a sepa-
rate bitrate that can be controlled independently of the other
stream. The content stream relies on a standard codec such
as H.265 to transmit low-resolution frames at a low bitrate.
The model stream encodes a time-varying SR neural net-
work, which the decoder uses to boost the quality of decom-
pressed frames derived from the content stream. SRVC uses
the model stream to specialize the SR network for short seg-
ments of video dynamically (e.g., every few seconds). This
makes it possible to use a small SR model, consisting of just
a few convolutional and upsampling layers.

Applying SR to improve the quality of low-bitrate com-
pressed video isn’t new. AV1 [16], for instance, has a mode
(typically used in low-bitrate settings) that encodes frames
at low resolution and applies an upsampler at the decoder.
While AV1 relies on standard bicubic [26] or bilinear [52]
interpolation for upsampling, recent proposals have shown
that learned SR models can significantly improve the qual-
ity of these techniques [33, 20].

However, these approaches rely on generic SR neural
networks [45, 53, 25]) that are designed to generalize across
a wide range of input images. These models are large (e.g.,
10s of millions of parameters) and can typically reconstruct
only a few frames per second even on high-end GPUs [31].
But in many usecases, generalization isn’t necessary. In par-

4521



Original H.265 1080p (slow) H.264 1080p (slow)

SRVC 
(ours)

Deep Video Comp. 
(DVC)

H.265 480p +
One-shot Custom.

H.265 480p +
Generic SR

H.265 480p + 
Bicubic Upsampling

Figure 1: Comparing different video compression schemes at a 200 Kbps bitrate (except for DVC) on the 1560th frame of Sita Sings the
Blues video in Xiph [9] dataset. DVC [34] is encoding at its lowest available bitrate that requires 4.97 Mbps in this example.

ticular, we often have access to the video being compressed
ahead of time (e.g, for on-demand video). Our goal is to
dramatically reduce the complexity of the SR model in such
applications by specializing it (in a sense, overfitting it) to
short segments of video.

To make this idea work, we must ensure that the over-
head of the model stream is low. Even with our small SR
model (with 2.22M parameters), updating the entire model
every few seconds would consume a high bitrate, undoing
any compression benefit from lowering the resolution of the
content stream. SRVC tackles this challenge by carefully
selecting a small fraction (e.g., 1%) of parameters to update
for each segment of the video, using a “gradient-guided”
coordinate-descent [48] strategy that identifies parameters
that have the most impact on model quality. Our primary
finding is that a SR neural network adapted in this man-
ner over the course of a video can provide such a boost to
quality, that including a model stream along with the com-
pressed video is more efficient than allocating the entire bit-
stream to content.

In summary, we make the following contributions:
• We propose a novel dual-stream approach to video

streaming that combines a time-varying SR model with
compressed low-resolution video produced by a standard
codec. We develop a coordinate descent method to update
only a fraction of model parameters for each few-second
segment of video with low overhead.

• We propose a lightweight model with spatially-adaptive
kernels, designed specifically for content-specific SR.
Our model runs in real-time, taking only 11 ms (90 fps)

to generate a 1080p frame on an NVIDIA V100 GPU. In
comparison, DVC [35] takes 100s of milliseconds at the
same resolution.

• We show that, in low bitrate regimes, to achieve the same
PSNR, SRVC requires only 20% of the bitrate as H.265
in its slow encoding mode 1, and 3% of DVC’s bits-per-
pixel. SRVC’s quality improvement extends across all
frames in the video.
Figure 1 shows visual examples comparing the SRVC

with these baseline approaches at competitive or higher bi-
trates. Our datasets and code are available at https:
//github.com/AdaptiveVC/SRVC.git

2. Related Work

Standard codecs. Prior work has widely studied video
encoder/decoders (codecs) such as H.264/H.265 [40, 42],
VP8/VP9 [12, 37], and AV1 [16]. These codecs rely on
hand-designed algorithms that exploit the temporal and spa-
tial redundancies in video pixels, but cannot adapt to spe-
cific videos. Existing codecs are particularly effective when
used in slow mode for offline compression. Nevertheless,
SRVC’s combination of a low-resolution H.265 stream with
a content-adaptive SR model outperforms H.265 at high res-
olution, even in its slow mode. Some codecs like AV1 pro-
vide the option to encode at low resolution and upsample
using bicubic interpolation [26]. But, as we show in §4,
SRVC’s learned model provides a much larger improvement

1To the authors’ knowledge, this is the first learning-based scheme that
compares to H.265 in its slow mode

4522



Downsampler

Model	Encoder

Content	Encoder
(H.265)

Super-Resolution	
Upsampler

Model	Decoder

Content	Decoder
(H.265)

...01100110...

...10101001...

Content	Stream

Model	Stream

Values0,
Indices0

Initialization

Values1,
Indices1

Diff1

Values2,
Indices2

Diff2

Encoder Decoder

Original	Frame Decoded	Frame

Content	Decoder
(H.265)

Figure 2: SRVC encodes video into two bitstreams.Content stream encodes downsampled low-resolution video with the existing codec.
Model stream encodes periodic updates to a lightweight super-resolution neural network customized for short segments of the video.

in video quality compared to bicubic interpolation.
Super resolution. Recent work on single-image SR [53,
25] and video SR [33, 20, 22, 30] has produced a variety
of CNN-based methods that outperform classic interpola-
tion methods such as bilinear [52] and bicubic [26]. Ac-
celerating these SR models has been of interest particularly
due to their high computational complexity at higher reso-
lutions [54]. Our design adopts the idea of subpixel convo-
lution [41], keeping the spatial dimension of all layers iden-
tical to the low-resolution input until the final layer. Fusing
the information from several video frames has been shown
to further improve single-image SR models [44]. However,
to isolate the effects of using a content-adaptive SR model,
we focus on single-image SR in this work.
Learned video compression. End-to-end video compres-
sion techniques [38, 34, 10, 51, 50] follow a compres-
sion pipeline similar to standard codecs but replace some
of the core components with DNN-based alternatives, e.g.,
flow estimators [19] for motion compensation and auto-
encoders [21] for residue compression. However, running
these models in real time is challenging. For example, even
though the model in [38] is explicitly designed for low-
latency video compression, it decodes only 10 frames-per-
second (fps) for 640×480 resolution on an NVIDIA Tesla
V100 [38]. In contrast, H.264 and H.265 process a few hun-
dred frames a second at the same resolution. Moreover,
existing learned video compression schemes are designed
to generalize and not targeted to specific videos. Few ap-
proaches have proposed overfitting [23] and updating only
specific layers [29] of the SR model, yet do not go as far as
presenting a holistic solution and an extensive evaluation.
In this work, we show that augmenting existing codecs with
content-adaptive SR achieves better quality and compres-
sion than end-to-end learned compression schemes.
Lightweight models. Lightweight models intended for
phones and compute-constrained devices have been de-
signed manually [39] and using neural architecture search
techniques [55, 49]. Model quantization and weight prun-
ing [24, 32, 14, 17] have helped reduce the computation

footprint of models with a small loss in accuracy. Despite
the promise of these optimizations, the accuracy of these
lightweight models falls short of state-of-the-art solutions.
SRVC is complementary to such optimization techniques
and would benefit from them.

3. Methods
Figure 2 shows an overview of SRVC’s compression

pipeline. SRVC compresses video into two bitstreams:

1. Content stream: The encoder downsamples the input
video frames by a factor of k in each dimension (e.g.,
k=4) to generate low-resolution (LR) frames using area-
based downsampling. It then encodes the LR frames us-
ing an off-the-shelf video codec to generate the content
bitstream (our implementation uses H.265 [7]). The de-
coder decompresses the content stream using the same
codec to reconstruct the LR frames. Since video codecs
are not lossless, the LR frames at the decoder will not
exactly match the LR frames at the encoder.

2. Model stream: A second bitstream encodes the SR
model that the decoder uses to upsample the each de-
coded LR frame. We partition the input video into N
fixed-length segments, each τ seconds long (e.g., τ = 5).
For each segment t ∈ {0, ..., N − 1}, we adapt the SR
model to the frames in that segment during encoding.
Specifically, the encoder trains the SR model to map
the LR decompressed frames within a segment to high-
resolution frames. Let Θt denote the SR model param-
eters obtained for segment t. The model adaptation is
sequential: the training procedure for segment t initial-
izes the model parameters to Θt−1. The model stream
encodes the sequence Θt for t ∈ {0, ..., N −1}. It starts
with the full model Θ0, and then encodes the changes in
the parameters for each subsequent model update, i.e.,
∆t = Θt −Θt−1. The decoder updates the parameters
every τ seconds, using the last model parameters Θt−1
to find Θt = Θt−1 + ∆t.

4523



The model stream adds overhead to the compressed bit-
stream. To reduce this overhead, we develop a small model
that is well-suited to content-specific SR (§3.1), and de-
sign an algorithm that significantly reduces the overhead of
model adaptation by training only a small fraction of the
model parameters that have the highest impact on the SR
quality in each segment (§3.2).

3.1. Lightweight SR Model Architecture

Existing SR models typically use large and deep neural
networks (e.g., typical EDSR has 43M parameters across
more than 64 layers [31]), making them difficult to use in a
real-time video decoder. Moreover, adapting a large DNN
model to specific video content and transmitting it to the
decoder would incur high overhead.

We propose a new lightweight architecture that keeps
the model small and shallow, and yet, is very effective at
content-based adaptation (§4.2). Our model is inspired by
classical algorithms like bicubic upsampling [27], which
typically use only one convolutional layer and a fixed ker-
nel for upsampling the entire image. It uses this basic archi-
tecture but replaces the fixed kernel with spatially-adaptive
kernels that are customized for different regions of the input
frame. Our model partitions each frame into patches, and
uses a shallow CNN operating on the patches to generate
different (spatially-adaptive) kernels for each patch (Fig. 3).

More formally, the model first partitions an input frame
into equal-sized patches of P×P pixels (e.g. P = 5 pixels)
using a common space-to-batch operation. For each patch,
a patch-specific block (Adaptive Conv Block in Fig. 3) com-
putes a 3×3 convolution kernel with 3 input and F output
channels (27F parameters) using a two-layer CNN, and ap-
plies this kernel (pink box) to the patch. The forward pass of
the adaptive conv block with input patch x ∈ RP×P×3 and
output features y ∈ RP×P×F is summarized as follows:

w = f(x),

y = σ(w ∗ x).

We use a two-layer CNN to model f(·) in our architecture.
We finally reassemble the feature patches (batch-to-space)
and compute the output using another two-layer CNN fol-
lowed by a pixel shuffler (depth-to-space) [41] that brings
the content to the higher resolution. All convolutions have
a kernel height and width of 3, except for the first layer of
the regular block that uses kernel size of 5.

3.2. Model Adaptation and Encoding

Training algorithm. We use the L2-loss between the SR
model’s output and the corresponding high-resolution frame
(input to the encoder), over all the frames in each segment
to train the model for that segment. Formally, we define the

Co
nv
2D

Co
nv
2D

Co
nv
2D

Re
LU Conv	Kernel

Adaptive	Conv	Block	

Po
ol
in
g

Sp
ac
e-
to
-B
at
ch

Ad
ap
tiv
e	
Co

nv

Ba
tc
h-
to
-S
pa
ce

Re
gu
la
r	C

on
v

Pi
xe
lS
hu

ffl
er
	x
4

Space-to-Batch	(Extract	Image	Patches)

Batch	dimension

Co
nv
2D

Co
nv
2D

Re
LU

Regular	Conv	Block	

Figure 3: SRVC lightweight SR model architecture.

loss as

L(Θt) =
1

n|Ft|

n∑
i=1

|Ft|∑
j=1

||Yij −Xij ||2

where |Ft| is the number of frames in the tth segment, each
with n pixels, and Yij and Xij denote the value of the ith

pixel in the jth frame of the decoded high-resolution output
frame and the original high-resolution input frame respec-
tively. During the training, we randomly crop the samples
at half of their size in each dimension. We use Adam opti-
mizer [28] with learning rate of 0.0001, and first and second
momentum decay rates of 0.9 and 0.999.

To reduce the model stream bitrate, we update only a
fraction of the model parameters across video segments.
Our approach is to update only those parameters that have
the most impact on the model’s accuracy. Specifically, we
update the model parameters with the largest gradient mag-
nitude for each new segment as follows. First, we save a
copy of the model at the beginning of a new segment and
perform one iteration of training over all the frames in the
new segment. We then choose the fraction η of the pa-
rameters with the largest magnitude of change in this iter-
ation, and reset the model parameters to the starting saved
copy. We apply the Adam updates for only the selected
paramaters and discard the updates for the rest of the model
(keeping those parameters fixed).
Encoding the model stream. To further compress the
model stream, we only transmit changes to the model pa-
rameters at each update. We encode the model updates into
a bitstream by recording the indices and associated change
in values of the model parameters (Fig. 2). SRVC’s model
encoding is lossless: the encoder and decoder both update
the same subset of parameters during each update. To up-
date a fraction η of the parameters for a model with M
float16 parameters, we need an average bitrate of at most
(16+log(M))×ηM/τ to express the deltas and the indices
every τ seconds. For example, with model size M = 2.22
million parameters (F=32, see Table 2), τ = 10 seconds,
and η = 0.01, we only require 82 Kbits/sec to encode the
model stream required to generate 1080p video. To put this

4524



number into perspective, Netflix recommends a bandwidth
of 5 Mbits/sec at 1080p resolution [4]. The model stream
can be compressed further using lossy compression tech-
niques or by dynamically varying η or the model update
frequency based on scene changes.

Training the SR model for 1080p resolution and encod-
ing the updates into the model stream takes about 12 min-
utes for each minute worth of video with our un-optimized
implementation. However, given the small compute over-
head of our lightweight model, we shared a V100 GPU
between five simultaneous model training (encoding) pro-
cesses without any significant slow down to any process.
Hence, the overall throughput of the encoding on V100
GPU is about 2.5 minutes of training per minute of content.
We consider this duration feasible for offline compression
scenarios where videos are available to content providers
well ahead of viewing time. We believe that there is sig-
nificant room to accelerate the encoding process too with
standard techniques (e.g., training on sampled frames rather
than all frames) and further engineering. We leave an explo-
ration of these opportunities to future work.

4. Experiments

4.1. Setup

Dataset. Video datasets like JCT-VC [15], UVG [36] and
MCL-JCV [43], consisting of only a few hundred frames
(∼10 sec) per video, are too short to evaluate SRVC’s
content-adaptive SR. Hence, we train and test the efficacy
of SRVC on a custom dataset consisting of 28 download-
able videos from Vimeo (short films) and 4 full-sequence
videos from the Xiph Dataset [9]. We trim all videos to 10
minutes and resize them to 1080p resolution in RAW format
from their original 4K resolution and MPEG-4 format using
area-based interpolation [47]. We use the resulting 1080p
frames as our high-resolution source frames in our pipeline.
We re-encode each video’s raw frames at different qualities
or Constant Rate Factors (CRFs) on H.264/H.265 to control
the bitrate. We also use area-interpolation to downsample
the video to 480p and encode the low-resolution (LR) video
using H.265 at different CRFs to achieve different degrees
of compression. The SR model in SRVC is then trained to
learn the mapping from each LR video at a particular CRF
to the original 1080p video at its best quality.
Baselines. We compare the following approaches. The first
four only use a content stream while the next three use both
a content stream and a model stream. The last approach is
an end-to-end neural compression scheme.
• 1080p H.264/H.265: We use ffmpeg and the

libx264/libx265 codec to re-encode each of the 1080p
videos at different CRFs using the slow preset.

• 480p H.265 + Bicubic upsampling: We use ffmpeg
and the libx265 codec to downsample the 1080p orig-

inal video to LR 480p at different CRFs using area-
interpolation and the slow preset. This approach’s bitrate
comes only from its content stream: the downsampled
480p frames encoded using H.265. We use bicubic inter-
polation to upsample the 480p videos back to 1080p. This
isolates the bitrate reduction from just encoding at lower
resolutions.

• 480p H.265 + Generic SR: Instead of Bicubic upsam-
pling, we use a more sophisticated DNN-based super-
resolution model (EDSR [31] with 16 residual blocks)
to upsample the 480p frames to 1080p. The upsampling
takes about 50ms for each frame (about 5× worse than
SRVC). We use a pre-trained checkpoint that has been
trained on a generic corpus of images [11]. Since we ex-
pect all devices to be able to pre-fetch such a model, this
approach only has a content stream at 480p encoded us-
ing H.265. Thus, its bits-per-pixel value is identical to the
Bicubic case.

• 480p H.265 + One-shot Customization: We evaluate a
version of SRVC that uses a lightweight SR model (§3.1)
without the model adaptation procedure. For this, we
train our SR model exactly once (one-shot) using the en-
tire 1080p video and encode it in the model stream right
at the beginning before any LR content. The content
stream for this approach comprises of the 480p H.265
video while the model stream consists of a single initial
model customized to the entire video duration. The over-
head of the model is amortized over the entire video and
added to the content bitrate when computing the total bits-
per-pixel value.

• 480p H.265 + SRVC : We evaluate SRVC which uses the
same initial SR model as One-shot Customization but is
periodically adapted to the most recent 5 second segment
of the video. To train this model, we use random crops
(half the frame size in each dimension) from each refer-
ence frame within a video segment. The content stream
for SRVC relies on standard H.265. The model stream,
on the other hand, is updated every 5 seconds and is com-
puted using our gradient-guided strategy, which only en-
codes the change to those parameters that have the largest
gradients in each video segment (§3.2). To compute the
total bits-per-pixel, we add the model stream’s bitrate
(computed as described in §3.2) to the content stream’s
bitrate. We also add the overhead of sending the initial
model in full to the model stream’s bitrate.

• DVC: An official checkpoint [5] of Deep Video Compres-
sion [35], an end-to-end neural network based compres-
sion algorithm. To evaluate DVC, we compute the PSNR
and SSIM metrics, and use Lu et al.’s[35] estimator to
measure their required bits-per-pixel for every frame at
four different bitrate-distortion trade-off operating points
(λ ∈ {256, 512, 1024, 2048}).

Model and training procedure. Our model uses 32 output

4525



Figure 4: Tradeoff between video quality and bits-per-pixel for different approaches on three long videos from the Xiph dataset. SRVC
with content-adaptive streaming reduces the bitrate consumption to 16% of current codecs and ∼2% of end-to-end compression schemes
like DVC. Though comparable in video quality to SRVC, the generic SR approach does not run in real-time.

feature channels in the adaptive convolution block, result-
ing in 2.22 million parameters. However, only 1% of them
are updated by the model stream and that too, only every
5 seconds. We vary the number of output feature channels,
the fraction of model parameters updated, and the update
interval to understand its impact on SRVC’s performance.

Metrics and color space. We compute the average Peak
Signal-To-Noise Ratio (PSNR) and Structural Similarity In-
dex Measure (SSIM) across all frames at the output of the
decoder (after upsampling). We report PSNR based on the
mean square error across all pixels in the video (over all
frames) where the pixel-wise error itself is computed on
the RGB space. SSIM is computed as the average SSIM
between the decoded frames and their corresponding high-
resolution original counterparts. However, since variations
in frame quality over the course of a video can have signif-
icant impact on users’ experience, we also show a CDF of
both PSNR and SSIM across all frames in the video.

We compute the content bitrate for the all approaches
relying on H.264/5 at both 1080p and 480p using ffm-
peg. For approaches that stream a model in addition to
video frames, we compute the model stream bitrate based
on the total number of model parameters, the fraction of
them that are streamed in each update interval, and the fre-
quency of updates (§3.2). The content and model stream
bitrates are combined to compute a single bits-per-pixel
metric. Note that the bits-per-pixel range in our evalua-
tions is an order-of-magnitude lower than results reported
in prior work [35, 10] because our approach is designed
for low-bitrate scenarios and we compare to the slow mode
in H.264/5 which is more efficient than the “fast” and
“medium” modes We plot PSNR and SSIM metrics at dif-
ferent bits-per-pixel to compare different schemes. Since
SRVC runs inference on decoded frames as they are ren-
dered to users, its SR model needs to run in real-time. To
evaluate its feasibility, we also compare SRVC’s speed in
frames per second to other learning-based approaches.

Method BD-PSNR (dB) BD-Rate (%)

DVC -10.04 598.76
H.264 1080p (slow) -1.38 45.5
H.265 1080p (slow) 0 0
H.265 480p (slow) + Bicubic +0.67 -55.81
H.265 480p (slow) + Generic SR +2.61 -75.31
SRVC (Ours) +3.41 -80.09

Table 1: BD-PSNR and BD-Rate of different approaches on Xiph
dataset relative to H.265 1080p (slow).

4.2. Results

Compression performance. Fig. 1 shows a visual com-
parison of the different schemes for similar bits-per-pixel
values. For DVC in this figure, we show the results for
the lowest bitrate model available that ends up using 4.97
Mbps, which is significantly larger than the 200 Kbps bi-
trate of other schemes in this example. To compare the com-
pression provided by different approaches across a wide
range of bits-per-pixel values, we analyze the PSNR and
SSIM achieved by different methods on three long Xiph [9]
videos in Fig. 4. Tab. 1 summarizes the BD-Rate and BD-
PSNR [13] metrics for the same experiment. Note that the
bits-per-pixel metric captures both the contribution of the
content and the model for those approaches that use a model
stream for SR. We do not report the bitrate distortion met-
rics for One-shot customization as its PSNR hardly overlaps
with H.265.

As seen in Fig. 4, SRVC achieves PSNR compara-
ble to today’s H.265 standard (in slow mode) with far less
bits-per-pixel. For instance, to achieve a PSNR of 30 dB,
SRVC requires only 0.005 bits-per-pixel while H.265 and
H.264 codecs, even in their slowest settings, require more
than 0.03 bits-per-pixel. In BD-Rate and BD-PSNR terms
(Tab. 1), SRVC on average achieves a 3.41dB improve-
ment relative to H.265 slow preset at 1080p at the same
bitrate, or requires only 20% of the bitrate to achieve the
same PSNR. However, One-shot Customization’s performs
poorer than a simple bicubic interpolation. This is because

4526



Figure 5: Tradeoff between video quality and bits-per-pixel for different approaches on 28 videos from Vimeo. To achieve 30dB PSNR,
SRVC requires 10% and 25% of the bits-per-pixel required by H.264 and H.265 in their slow modes.

SRVC’s custom SR model is not large enough to general-
ize to the entire video, but has enough parameters to learn a
small segment. It is worth noting that to achieve the same
PSNR, SRVC requires only 3% of the bits-per-pixel re-
quired by DVC [35], the end-to-end neural compression
scheme. SRVC ’s SSIM is comparable but 0.01-0.02 bet-
ter than current codecs for the same level of bits-per-pixel,
particularly at higher bitrates. SRVC also outperforms a
generic SR approach (EDSR) by 0.8dB and 4.8% respec-
tively on BD-Rate and BD-PSNR metrics.

Fig. 4 suggests that a 480p stream augmented with a
generic SR model performs just as well as SRVC in terms of
its PSNR and SSIM for a given bits-per-pixel level. How-
ever, typical SR models are too slow to perform inference
on a single frame (about 5× slower in this case), making
them unfit for real-time video delivery. To evaluate the per-
formance of viable schemes on real-world video, we evalu-
ate the bits-per-pixel vs. video quality tradeoff on 28 videos
publicly available on Vimeo. As Fig. 5 suggests, SRVC
outperforms all other approaches on the PSNR achieved for
a given bits-per-pixel value. In particular, to achieve 30dB
PSNR, SRVC requires 25% and 10% of the bits-per-pixel
required by H.265 and H.264 respectively.

A key takeaway from Tab. 1, and Figures. 4 and 5 is
that for a given bitrate budget, SRVC achieves better quality
than standard codecs. This suggests that beyond a baseline
bitrate for the content, it is better to allocate bits to stream-
ing a SR model than to dedicate more bits to the content.
We describe this trade-off between model and content bi-
trates in more detail in Fig. 7.
Robustness of quality improvements. To see if SRVC’s
improvements come from just producing a few high-quality
frames right after the model is updated, we plot a CDF of the
PSNR and SSIM values across all frames of the Meridian
video in Fig. 6. We compare schemes at a bits-per-pixel
value of ∼0.002. Since DVC [35] has a much higher bits-
per-pixel and EDSR [31] performs poorly on this video, we
exclude both approaches 2. Firstly, we notice that both One-

2Figures. 4, 5 and 6 cover different videos, and thus, their results

Figure 6: CDF of PSNR and SSIM improvements with SRVC
across all video frames at a bits-per-pixel of 0.002. The quality
enhancement from SRVC is not limited to only those frames that
follow a model update.

#Feature Channels (F) 8 16 32 64 128

PSNR(dB) 38.49 38.69 39.87 39.89 39.90
SSIM 0.942 0.944 0.946 0.947 0.949
Inference Time (ms) 7 9 11 17 25
Num. of Parameters 0.59M 1.14M 2.22M 4.39M 8.72M

Table 2: Impact of number of output feature channels in SRVC’s
adaptive convolutional block on inference time and quality metrics
for a video snippet on an NVIDIA V100 GPU.

shot Customization and SRVC perform better than other
schemes. Further, this improvement occurs over all of the
frames in that no frame is worse off with SRVC than it is
with the defacto codec. In fact, over 50% of the frames
experience a 2–3 dB improvement in PSNR and a 0.05–
0.0075 improvement in SSIM with both versions of SRVC.
Impact of number of Output Feature Channels. Since
SRVC downsamples frames at the encoder and then streams
a model to the receiving client who resolves the decoded
frames, it is important that SRVC performs inference fast
enough to run at the framerate of the video on an edge-
device with limited processing power. Viewers need at least
30 fps for good quality. Consequently, the inference time
on a single frame cannot afford to be longer than 33ms. In
fact, the Meridian [8] video has a frame rate of 60 fps, so

cannot be directly compared.

4527



Figure 7: Impact of varying bits-per-pixel for the content stream
for a fixed model bitrate and vice-versa. Increasing the bits-per-
pixel for the low-resolution H.265 content stream improves PSNR,
especially at low bitrates. At higher content bitrates, increasing
the model bitrate by transmitting more model parameters further
improves PSNR.

running low-latency inference is even more critical.
To evaluate the practicality of SRVC’s lightweight

model, we evaluate the end-to-end inference time per frame
on an NVIDIA V100 GPU as we vary the number of the
output feature channels in the adaptive convolution block
(F ) in Tab. 2. While increasing F improves the PSNR and
SSIM values due to better reconstruction of the fine details,
it comes at a cost. With F = 64 and F = 128, the inference
times of 17 ms and 25 ms respectively causing the frame
rate to drop below the input 60 fps. Further, the number of
parameters increases to nearly 10M , a steep number for the
model to stream periodically. Hence, we design SRVC’s
model to use 32 output feature channels, ensuring it takes
only 11 ms to run inference on a single frame. In compar-
ison, the EDSR generic SR model is about 5× slower to
perform inference on a single frame. Even the end-to-end
neural video compression approach DVC [35] takes over
hundreds of milliseconds to infer a single frame at 1080p.
Trade-off between model bitrate and content bitrate
in SRVC. The presence of dedicated model and content
streams in SRVC implies that the bitrate for each stream
can be controlled independent of the other, to achieve differ-
ent compression levels. Fig. 7 shows the impact of altering
the content bitrate for a fixed model bitrate and vice-versa,
when encoding the Meridian video using SRVC. The con-
tent bits-per-pixel is varied by changing the quality (CRF)
of the 480p H.265 stream. In contrast, the contribution
from the model bits-per-pixel is controlled by the fraction
of model parameters transmitted during each update.

As anticipated, for a fixed amount of model bits-per-
pixel (updating 1% of the model parameters), PSNR im-
proves as the content bitrate is increased. This is because as
the quality of the underlying low-resolution H.265 frames
improves, it becomes easier for the model to resolve them
to their 1080p counterparts. Increasing the content bitrate
from the lowest quality level of CRF 35 (with 0.0014 bits-
per-pixel) to CRF 20 (with 0.003 bits-per-pixel) improves
PSNR from 31 dB to 36 dB. However, increasing the bits-
per-pixel for the content beyond that yields diminishing re-
turns on PSNR (also illustrated in Fig. 5). At higher quality

Update Interval (s) 5 10 15 20 ∞

PSNR(dB) 37.25 36.52 36.57 36.45 35.32
SSIM 0.92 0.91 0.91 0.91 0.91
Bits-per-pixel 0.006 0.003 0.002 0.0015 0

Table 3: Impact of SRVC’s model update interval on the bits-
per-pixel consumed by model updates and the associated gains in
video quality. We find that an update interval of 5 seconds strikes
a good trade-off between bits-per-pixel and quality.

levels, Fig. 7 suggest that modest increases in the bits-per-
pixel allocated to the model result in large improvements to
the PSNR. For instance, adapting 10% of the model param-
eters consumes 0.006 bits-per-pixel, 6x more bits-per-pixel
than adapting 0.5% of the model parameters, but results in
a PSNR improvement of 1dB from 36.31 dB to 37.32 dB.
Impact of SRVC’s update interval. SRVC can also con-
trol the bits-per-pixel consumed by the model stream by
varying the interval over which updates to the SR model are
performed. Frequent updates increase the model bitrate, but
ensure better reconstruction since the model is trained on
frames very similar to the current frame. An extreme sce-
nario is an update interval of∞ that corresponds to the One-
shot Customization. Tab. 3 captures the impact of varying
the update interval on the average quality of decoded frames
from the Meridian video. We find that an update interval of
5 seconds achieves good performance without compromis-
ing much on bits-per-pixel. The fact that the PSNR does
not degrade significantly for modest increases to the update
interval suggests further optimizations atop SRVC that only
update the model after a drastic scene change.

5. Conclusion
In this work, we present SRVC, an approach that aug-

ments existing video codecs with a lightweight and content-
adaptive super-resolution model. SRVC achieves video
quality comparable to modern codecs with better compres-
sion. Our design is a first step towards leveraging super-
resolution as a video compression technique. Future work
includes further optimizations to identify the pareto frontier
for the model vs. content bitrate trade-off, more sophisti-
cated techniques to detect scene changes and optimize up-
date intervals, and the design of more effective lightweight
super-resolution neural network architectures.

6. Acknowledgments
We would like to thank our anonymous reviewers and

meta-reviewer for their valuable feedback. This work was
supported in part by NSF grants CNS-1751009, CNS-
1955370, CNS-1910676, a Cisco Research Center Award,
a Microsoft Faculty Fellowship, and awards from the Ma-
chineLearningApplications@CSAIL and MIT.nano NC-
SOFT programs.

4528



References
[1] https://www.forbes.com/sites/markbeech/

2020/03/25/covid-19-pushes-up-internet-
use-70-streaming-more-than-12-first-
figures-reveal/?sh=4335cc443104. 1

[2] https://abcnews.go.com/Technology/
netflix-youtube-throttle-streaming-
quality-europe-coronavirus-forces/
story?id=69754458. 1

[3] https://www.theverge.com/2020/3/20/
21188072/amazon-prime-video-reduce-
stream-quality-broadband-netflix-
youtube-coronavirus. 1

[4] https://help.netflix.com/en/node/306. 5
[5] https://github.com/GuoLusjtu/DVC/tree/

master/TestDemo/VideoCodec/model. 5
[6] ”cisco annual internet report (2018–2023) white paper”.

https://www.cisco.com/c/en/us/solutions/
collateral/executive-perspectives/
annual-internet-report/white-paper-
c11-741490.html. 1

[7] x265 HEVC Encoder / H.265 Video Codec. http://
x265.org/. 1, 3

[8] Xiph Dataset Meridian Video. https://media.xiph.
org/video/derf/meridian/MERIDIAN_SHR_C_
EN-XX_US-NR_51_LTRT_UHD_20160909_OV/. 7

[9] Xiph.org Video Test Media. https://media.xiph.
org/video/derf/. 2, 5, 6

[10] Eirikur Agustsson, David Minnen, Nick Johnston, Johannes
Balle, Sung Jin Hwang, and George Toderici. Scale-space
flow for end-to-end optimized video compression. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8503–8512, 2020. 1, 3, 6

[11] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge
on single image super-resolution: Dataset and study. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 126–135, 2017. 5

[12] Jim Bankoski, Paul Wilkins, and Yaowu Xu. Technical
overview of vp8, an open source video codec for the web.
In 2011 IEEE International Conference on Multimedia and
Expo, pages 1–6. IEEE, 2011. 2

[13] Gisle Bjontegaard. Calculation of average psnr differences
between rd-curves. VCEG-M33, 2001. 6

[14] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Fran-
kle, and John Guttag. What is the state of neural network
pruning? arXiv preprint arXiv:2003.03033, 2020. 3

[15] Frank Bossen et al. Common test conditions and soft-
ware reference configurations. In JCTVC-L1100, volume 12,
2013. 5

[16] Yue Chen, Debargha Murherjee, Jingning Han, Adrian
Grange, Yaowu Xu, Zoe Liu, Sarah Parker, Cheng Chen, Hui
Su, Urvang Joshi, et al. An overview of core coding tools in
the av1 video codec. In 2018 Picture Coding Symposium
(PCS), pages 41–45. IEEE, 2018. 1, 2

[17] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A sur-
vey of model compression and acceleration for deep neural
networks. ArXiv, abs/1710.09282, 2017. 3

[18] Guy Cote, Berna Erol, Michael Gallant, and Faouzi Kossen-
tini. H. 263+: Video coding at low bit rates. IEEE Transac-
tions on circuits and systems for video technology, 8(7):849–
866, 1998. 1

[19] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van
Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2758–2766, 2015. 3

[20] Longtao Feng, Xinfeng Zhang, Xiang Zhang, Shanshe
Wang, Ronggang Wang, and Siwei Ma. A dual-network
based super-resolution for compressed high definition video.
In Pacific Rim Conference on Multimedia, pages 600–610.
Springer, 2018. 1, 3

[21] Amirhossein Habibian, Ties van Rozendaal, Jakub M Tom-
czak, and Taco S Cohen. Video compression with rate-
distortion autoencoders. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 7033–7042,
2019. 3

[22] Muhammad Haris, Gregory Shakhnarovich, and Norimichi
Ukita. Recurrent back-projection network for video super-
resolution. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3897–
3906, 2019. 3

[23] Gang He, Chang Wu, Lei Li, Jinjia Zhou, Xianglin Wang,
Yunfei Zheng, Bing Yu, and Weiying Xie. A video compres-
sion framework using an overfitted restoration neural net-
work. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops, pages 148–
149, 2020. 3

[24] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and ac-
celeration on mobile devices. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 784–
800, 2018. 3

[25] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,
2017. 1, 3

[26] Robert Keys. Cubic convolution interpolation for digital im-
age processing. IEEE transactions on acoustics, speech, and
signal processing, 29(6):1153–1160, 1981. 1, 2, 3

[27] Robert Keys. Cubic convolution interpolation for digital im-
age processing. IEEE transactions on acoustics, speech, and
signal processing, 29(6):1153–1160, 1981. 4

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 4

[29] Yat-Hong Lam, Alireza Zare, Francesco Cricri, Jani
Lainema, and Miska M Hannuksela. Efficient adaptation of
neural network filter for video compression. In Proceedings
of the 28th ACM International Conference on Multimedia,
pages 358–366, 2020. 3

[30] Sheng Li, Fengxiang He, Bo Du, Lefei Zhang, Yonghao Xu,
and Dacheng Tao. Fast spatio-temporal residual network for

4529



video super-resolution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 10522–10531, 2019. 3

[31] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops,
pages 136–144, 2017. 1, 4, 5, 7

[32] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy.
Fixed point quantization of deep convolutional networks.
In International Conference on Machine Learning, pages
2849–2858, 2016. 3

[33] Hongwei Lin, Xiaohai He, Linbo Qing, Qizhi Teng, and
Songfan Yang. Improved low-bitrate hevc video coding us-
ing deep learning based super-resolution and adaptive block
patching. IEEE Transactions on Multimedia, 21(12):3010–
3023, 2019. 1, 3

[34] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chun-
lei Cai, and Zhiyong Gao. Dvc: An end-to-end deep video
compression framework. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
11006–11015, 2019. 2, 3

[35] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chun-
lei Cai, and Zhiyong Gao. Dvc: An end-to-end deep video
compression framework. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
11006–11015, 2019. 1, 2, 5, 6, 7, 8

[36] Alexandre Mercat, Marko Viitanen, and Jarno Vanne. Uvg
dataset: 50/120fps 4k sequences for video codec analysis and
development. In Proceedings of the 11th ACM Multimedia
Systems Conference, pages 297–302, 2020. 5

[37] Debargha Mukherjee, Jingning Han, Jim Bankoski, Ronald
Bultje, Adrian Grange, John Koleszar, Paul Wilkins, and
Yaowu Xu. A technical overview of vp9—the latest open-
source video codec. SMPTE Motion Imaging Journal,
124(1):44–54, 2015. 2

[38] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson,
Alexander G Anderson, and Lubomir Bourdev. Learned
video compression. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 3454–3463,
2019. 1, 3

[39] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
4510–4520, 2018. 3

[40] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.
Overview of the scalable video coding extension of the h.
264/avc standard. IEEE Transactions on circuits and sys-
tems for video technology, 17(9):1103–1120, 2007. 2

[41] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1874–1883, 2016. 3, 4

[42] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and
Thomas Wiegand. Overview of the high efficiency video

coding (hevc) standard. IEEE Transactions on circuits and
systems for video technology, 22(12):1649–1668, 2012. 2

[43] Haiqiang Wang, Weihao Gan, Sudeng Hu, Joe Yuchieh Lin,
Lina Jin, Longguang Song, Ping Wang, Ioannis Katsavouni-
dis, Anne Aaron, and C-C Jay Kuo. Mcl-jcv: a jnd-based
h. 264/avc video quality assessment dataset. In 2016 IEEE
International Conference on Image Processing (ICIP), pages
1509–1513. IEEE, 2016. 5

[44] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and
Chen Change Loy. Edvr: Video restoration with enhanced
deformable convolutional networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 0–0, 2019. 3

[45] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 0–0, 2018. 1

[46] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra.
Overview of the h.264/avc video coding standard. IEEE
Transactions on Circuits and Systems for Video Technology,
13(7):560–576, 2003. 1

[47] Ping Wah Wong and Cormac Herley. Area based interpola-
tion for image scaling, Mar. 30 1999. US Patent 5,889,895.
5

[48] Stephen J. Wright. Coordinate descent algorithms. Mathe-
matical Programming, 151:3–34, 2015. 2

[49] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 10734–10742, 2019. 3

[50] Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl.
Video compression through image interpolation. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 416–431, 2018. 3

[51] Ren Yang, Fabian Mentzer, Luc Van Gool, and Radu Timo-
fte. Learning for video compression with hierarchical quality
and recurrent enhancement. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6628–6637, 2020. 3

[52] Egor Zakharov, Aleksei Ivakhnenko, Aliaksandra Shysheya,
and Victor Lempitsky. Fast bi-layer neural synthesis of one-
shot realistic head avatars. In European Conference on Com-
puter Vision, pages 524–540. Springer, 2020. 1, 3

[53] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 1, 3

[54] Zhang, Zhengdong and Sze, Vivienne. FAST: A Frame-
work to Accelerate Super-Resolution Processing on Com-
pressed Videos. In CVPR Workshop on New Trends in Image
Restoration and Enhancement, 2017. 3

[55] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016. 3

4530


