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Abstract

Recent advances in high-fidelity semantic image editing
heavily rely on the presumably disentangled latent spaces
of the state-of-the-art generative models, such as Style-
GAN. Specifically, recent works show that it is possible to
achieve decent controllability of attributes in face images
via linear shifts along with latent directions. Several recent
methods address the discovery of such directions, implic-
itly assuming that the state-of-the-art GANs learn the latent
spaces with inherently linearly separable attribute distribu-
tions and semantic vector arithmetic properties.

In our work, we show that nonlinear latent code manip-
ulations realized as flows of a trainable Neural ODE are
beneficial for many practical non-face image domains with
more complex non-textured factors of variation. In partic-
ular, we investigate a large number of datasets with known
attributes and demonstrate that certain attribute manipula-
tions are challenging to obtain with linear shifts only.

1. Introduction
Generative Adversarial Networks (GANs) [13] have sig-

nificantly advanced techniques for image processing and
controllable generation, such as semantic image-to-image
translation [15, 9, 22, 34, 35] and image editing via ma-
nipulating the internal GAN activations [5, 10] or gen-
erator parameters [4, 8]. Moreover, since the GAN la-
tent spaces are known to possess semantically meaning-
ful vector space arithmetic, a plethora of recent works ex-
plore these spaces to discover the interpretable directions
[27, 29, 11, 16, 26, 31, 14, 25]. The directions identified by
these methods are then used to manipulate user-specified
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image attributes, which is shown to be particularly success-
ful for face images [29].

While a large number of methods exploring the latent
spaces of pretrained GANs have recently been developed,
most of them learn linear latent controls, and more com-
plex nonlinear latent transformations are hardly addressed.
We conjecture that this limitation could arise because most
of the latent editing literature is biased to the human face
datasets, where linear transformations are sufficient for de-
cent editing quality [29].

In this work, we demonstrate that in the general case,
the linear latent shifts cannot be used universally for all do-
mains and attributes, and more complex nonlinear transfor-
mations are needed. To this end, we analyze how different
attribute values are distributed in the latent spaces of GANs
trained on several synthetic and real datasets with known at-
tribute labels. Our analysis shows that for non-face images,
many attributes cannot be controlled by linear shifts. To
mitigate this issue, we propose an alternative parametriza-
tion of the latent transformation based on the recent Neural
ODE work [7]. Our parametrization allows for gradient-
based optimization and can be used within existing methods
for latent space exploration [29]. Through extensive experi-
ments, we show that the proposed nonlinear transformations
are much more appealing for the purposes of controllable
generation. In particular, we show that nonlinear transfor-
mations are more beneficial for edits requiring global con-
tent changes, such as changing appearance of a scene.

To sum up, our contributions are the following:

• We analyze the distributions of different attribute val-
ues in the GAN latent spaces and show that linear la-
tent controls are typically not sufficient beyond the hu-
man face domain.

• We propose a Neural ODE-based parametrization of
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the latent transformation that allows for learning the
nonlinear controls. On several non-face datasets,
we show that usage of this parametrization results
in higher editing quality confirmed qualitatively and
quantitatively.

• We propose a technique to analyze the learned Neu-
ral ODE models and reveal the attributes that require
nonlinear latent transformations.

2. Related work
Latent manipulations in GANs. The prior literature

has empirically shown that the GAN latent spaces are en-
dowed with human-interpretable vector space arithmetic
[27, 29, 11, 16, 31, 36, 30]. E.g., in GANs trained on
face images, their latent spaces possess linear directions
corresponding to adding smiles, glasses, and gender swap
[27, 29]. Since such interpretable directions provide a
straightforward route to powerful image editing, their dis-
covery currently receives much research attention. A line
of recent works [11, 29] employs explicit human-provided
supervision to identify interpretable directions in the latent
space. For instance, [29] use the classifiers pretrained on
the CelebA dataset [23] to predict certain face attributes.
These classifiers are then used to produce pseudo-labels for
the generated images and their latent codes. Based on these
pseudo-labels, the separating hyperplane is constructed in
the latent space, and a normal to this hyperplane becomes
a direction, controlling the corresponding attribute. An-
other work [11] solves the optimization problem in the la-
tent space, maximizing the score of the pretrained model,
which predicts the image aesthetic appeal. The result of
this optimization is the direction that makes images more
aesthetically pleasing. Two self-supervised works [16, 26]
seek the vectors in the latent space that correspond to simple
image augmentations such as zooming or translation. Fi-
nally, a bunch of recent methods [31, 14, 25] identify inter-
pretable directions without any form of (self-)supervision.
[31] learns a set of directions that can be easily distin-
guished by a separate classification model based on two
samples, produced from the original latent codes and shifted
along the particular direction. [25] learns the directions by
minimizing the sum of squared off-diagonal terms of the
generator Hessian matrix. Another approach, [14], demon-
strates that interpretable directions often correspond to the
principal components of the activations from hidden layers
of generator networks.

Nonlinear editing. While some works [16, 3, 36] briefly
mention the possibility of non-linear latent transformations,
they do not provide reliable evidence of the necessity of
non-linear editing; therefore, most of the recent editing lit-
erature employs only linear manipulations. To the best of
our knowledge, our work is the first that demonstrates sev-

eral cases of inadequacy caused by linear editing and pro-
vides a rigorous quantitative comparison with non-linear
techniques on several datasets.

3. GAN-based image editing
In this section, we remind on current approaches to con-

trollable image generation and editing via GANs and dis-
cuss their possible weaknesses.

We assume that we are given a well-trained GAN model
G : W ! X , where W ⇢ Rd denotes the latent space
and X ⇢ RC⇥H⇥W is the image space. We work with
the style–based generators where the manipulation is per-
formed in the so-called style space W , which has been
shown to be more “disentangled” with respect to various
image attributes. We focus on the supervised setting and as-
sume that we are given a trained semantic attribute regressor
network R : X ! S ⇢ RN , which predicts the attribute
values for a given image. Here S denotes the semantic at-
tribute space of the image domain X , e.g., for human faces,
this can be hair color, age, etc. The space of image attributes
S may be exhaustive, i.e., a point x 2 X may be uniquely
determined by its attributes R(x), or be only a subset of a
“true” attribute space.

3.1. Manipulating image attributes by shifts
Most of the current approaches propose to manipulate

attributes of synthesized images with simple linear trans-
lations in the latent space. This means the following. Let
s denote the attribute vector of a generated image G(w0),
and let si be a single chosen (binary) attribute. These ap-
proaches seek to carefully construct a vector ni such that
by gradually changing w0 as

w(↵) = w0 + ↵ni, (1)

we achieve controls over the value of the attribute si. Note
that these approaches assume that we use a single vector ni

for all the points w 2 W . InterFaceGAN [29] is among
the most successful approaches to construct the shift vector
that manipulates a desired attribute in the supervised set-
ting. The idea of this method is to find a hyperplane in the
latent space separating w with different values of si. For a
large number of random style vectors w the labels are ob-
tained by evaluating R[G(w)], and the hyperplane is found
by fitting an SVM on this synthetic labeled dataset. The
corresponding direction ni is then simply a normal vector
to this hyperplane.

4. Nonlinear approach
In contrast to previously described methods, in this sec-

tion, we focus on the nonlinear approach to manipulations
in GAN latent spaces. We can view the simple linear shift
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Figure 1. Consider the following toy example of a distribution
of a binary attribute si in the latent space W . With any transla-
tion vector n, certain points in the left distribution will “miss” the
right distribution. This suggests that more complex, i.e., nonlinear
translations may be necessary.

given by (1) as the flow of a differential equation with a con-
stant righthand side, i.e., ẇ = ni with the initial condition
w(0) = w0. The generalization of such edits to the nonlin-
ear domain can be made straightforwardly: e.g., by replac-
ing the righthand side with some function, depending on the
input w. We propose a simple approach: we consider the
Neural ODE model [7] with a righthand side parametrized
by a neural network consisting of a few linear layers with
the Leaky ReLU activation. The model is later trained end-
to-end using the regressor R. Let us now discuss the model
structure and training procedure in detail.

4.1. Reminder on Neural ODEs
The Neural ODE model [7] bridges the differential equa-

tions and neural networks by parametrizing a system of
ODEs:

ḣ(t) = f(h(t), t; ✓), (2)

where t 2 [0, T ] is time and h(t) 2 Rd. The solution of
the ODE problem at time step t = T serves as the output of
the corresponding hidden layer, where the input is provided
as the initial value to (2). In practice, the output can be
computed via black-box differential equation solvers. In or-
der to compute gradients with respect to ✓, it is common to
use the adjoint method, which allows for memory-efficient
backpropagation at the cost of extra function evaluations.

4.2. Neural ODE for image manipulation.
We directly apply Neural ODEs for image manipulation

performed in the latent space of GANs. I.e., we replace the
linear flow (1) with the curved flow of a trainable Neural
ODE in the latent space. Let us now briefly describe the
specifics and the optimization goal.

Network architecture. The righthand side of Neural
ODE model f(·; ✓) is represented by a simple multilayer
perceptron (MLP) with Leaky ReLU nonlinearity (with ↵ =

0.2). We vary the number of layers in the network f from
1 to 3; we additionally consider a constant righthand side,
i.e., equation of the form ẇ = ✓ with trainable ✓. We ad-
ditionally normalize the righthand side of the ODE to the
unit length, so the trajectories for all the approaches have
the same length for the same value of T . To sum up, our
Neural ODE takes the following form.

ẇ =
f(w; ✓)

kf(w; ✓)k
, (3)

with f(·; ✓) being an MLP (or constant) as described above.
To compute image edits, we then move along the trajecto-
ries of this ODE in the latent space.

Loss function. As was discussed above, we search for
transformations in the latent space in such a manner that
they would change the desired attribute while leaving the
others unchanged. Recall, that R is a network, which pre-
dicts the value of image attributes. Suppose that we have N
discrete attributes and our goal is to manipulate the i-th (bi-
nary) attribute. Let w be a random style vector with a vector
of attributes R(w) = (s1, . . . , si, . . . sN ). We set the target
attribute vector ŝ = (s1, . . . , 1 � si, . . . sN ). After follow-
ing along the trajectory of the Neural ODE starting at w for
some time value T , we obtain a point w(T, ✓). More con-
cretely, in practice we set the maximal value Tmax of order
8�12 and then randomly sample the interval [Tmax/4, Tmax]
to get the final time step (as was done in [31]). In what
follows, as a slight abuse of notation, we will denote by
R[·] the predicted attribute values of a generated image:
R[G(·)].

To achieve the aforementioned desired transformation
properties, we introduce a loss function consisting of two
terms: the first one, denoted by L1, measures the discrep-
ancy between the obtained and the desired i-th attribute val-
ues.

L1(w, ✓) = CE(R[w(T, ✓)]i, ŝi), (4)

where CE stands for the cross entropy loss. The second one
represented by L2 is a loss term controlling the change of
remaining attribute values.

L2(w, ✓) =
1

N � 1

NX

j=1,i 6=j

CE(R[w(T, ✓)]j , ŝj). (5)

Finally, the loss function takes the form L = L1 + L2.
Note that this loss function, in general, can not be written
as a single cross-entropy loss since the discrete attributes ŝj
may belong to spaces of different cardinalities (e.g., we may
have an attribute like ‘object position’ assuming a large set
of intermediate values). In our work, we search for a sepa-
rate Neural ODE for each attribute; however, in principle, it
is possible to consider conditional Neural ODEs and have a
single model.
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4.3. Evaluation
Estimation of the quality of the image editing approach

is a nontrivial task, often relying on mean opinion scores
provided by human evaluators or some proxy metrics. Typ-
ically, given a method to manipulate the latent code of an
image, we continuously steer it while visually observing
whether the desired attribute shift happened and how dis-
entangled the transformation looks [29, 31]. In a nutshell,
we propose to measure these effects numerically in the spirit
of traditional PR or ROC curves. Concretely, given a start-
ing point w and a timestep ⌧ , we measure (i) whether the
value of the attribute si is equal to the desired target value
and (ii) for each of the remaining attributes we compute the
normalized entropy of the label distribution along the tra-
jectory up to ⌧ . The idea behind (ii) is that in the ideal case,
the attribute values remain constant, and relatively “rare”
and localized spontaneous attribute changes are still satis-
factory. Formally, for a given w with the attribute vector
R(w) = (s1, . . . , si, . . . sN ) and the target attribute vec-
tor ŝ = (s1, . . . , 1 � si, . . . sN ) these two metrics, termed
C(⌧,w) and D(⌧,w) for Control and Disentanglement, are
defined as follows.

C(⌧,w) =

(
1, ŝi = R[w(⌧)]i
0, otherwise

, (6)

D(⌧,w) =
1

N � 1

NX

j=1,j 6=i

H

⇣
{R[w(t)]j}⌧t=0

⌘

H

⇣
Uniform(#Sj)

⌘ . (7)

Here #Sj denotes the cardinality of j-th attribute, and H

is the entropy. To get the global values of these metrics,
we simply average them across a large number of samples.
I.e, we obtain a curve (C(⌧) = 1/N

P
i
C(⌧,wi),D(⌧) =

1/N
P

i
D(⌧,wi)), which by construction lies in the unit

square. By comparing relative positions of these curves for
two methods, we can judge which provides more disentan-
glement/better control quality. Note that, however, the reli-
able estimation of the quality by these metrics is only pos-
sible in the case when all the factors of variation in data are
known, which is possible for synthetic datasets. For large-
scale datasets of real images, we have to resort to standard
visual evaluation with human assessors.

5. Experiments
We have implemented the proposed method in

Pytorch. For GAN training, we utilized a single
DGX-1 station with 8 Nvidia Tesla V100 GPUs, and for
training Neural ODEs, we used a single V100 GPU (in
our setting, it takes roughly 30 minutes per single direc-
tion). Specifics of architectures, optimization details, and
additional experiments, are available in the supplementary
material. Our code and models are available at github.

5.1. Synthetic datasets
The goal of this section is to quantitatively verify the

benefits of nonlinear editing on several large-scale datasets
where the ground truth factors of variations are known and
contain both texture and non-texture-based attributes (see
Figure 3 for an example).

Datasets.

• MPI3D consisting of 1, 036, 800 images with 7 factors
[12]. This dataset represents a robotic arm in various
positions holding an object of varied shapes and colors.
We use the toy part of the dataset, i.e., simply rendered
images.

• Isaac3D is a recently proposed dataset of high-
resolution images [24] containing 737, 280 images
with 9 factors of variations; we resize images to 128⇥
128 resolution. This is, in a way, an advanced ver-
sion of MPI3D with photorealistic images and more
attributes.

For both of these datasets, each image is uniquely deter-
mined by the corresponding attributes; thus, we can reason-
ably compare linear and nonlinear manipulations using the
aforementioned metric.

GAN Model. We use the recently proposed StyleGAN 2
[19] and its implementation in Pytorch found at github.
We use the default settings except for the number of layers
in the style network, which we set to 3, as was done in [24,
20]. For MPI3D we trained the model for 12.5M frames
and for Isaac3D for 25M frames. We do not use any data
augmentation for training.

Attribute regressors. For each dataset, we train an at-
tribute regressor network on the real data. For MPI3D,
we use a simple four-block CNN as a backbone, followed
by multiple classification heads, and for Isaac3D we use
ResNet18 (not pretrained) as a backbone. In both cases, the
attribute regressors were able to achieve more than 99% ac-
curacy on all the attributes on the test set.

Neural ODE models. We consider two Neural ODEs,
namely one with a trainable constant righthand side (termed
Ours(linear) on the plots), and righthand sides repre-
sented by MLPs of depth one (Ours(nonlinear)). We use
the open-source implementation of Neural ODE found at
github. We train all the models for 5000 iterations with a
batch size of 24. For these two datasets, all the attributes
take more than two values, while previously, we considered
binary attributes. To alleviate this, when rectifying the at-
tribute with index j for the sake of simplicity, we binarize it
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Figure 2. Our learning method. A sample from the latent space is transformed via the nonlinear flow of a trainable Neural ODE. The loss
function ensures that the desired semantic attribute of the edited image changed while others remained fixed. The attributes are obtained
using the pre-trained attribute regressor R.

Figure 3. Samples from two synthetic datasets used for quantita-
tive evaluation of the methods. In both cases, all the factors of
variation are known.

by learning to transform sj = 0 to sj = #Sj � 1, and all
other attributes retain their full discrete set of values. For
both datasets we used Tmax = 12. For Isaac3D, we con-
sider all the attributes, and for MPI3D, we train Neural ODE
models for the first five attributes due to the large cardinal-
ity of the two positional attributes; however, we still include
them when computing metrics and during training. As a
reference, we include the scores obtained by the InterFace-
GAN (IF) method and its ‘disentangled’ version, termed IF
projected. The latter was obtained using the conditional
manipulation approach specified in [29] (we conditioned
each attribute on all the remaining attributes).

5.1.1 Evaluation of the learned manipulations

We now evaluate the obtained Neural ODEs. Results
for Isaac3D are summarized on Figure 4. Here we plot
CD-curves as was discussed in Section 4. Intuitively, a
lower position of one curve, well-covering the Control
range, with respect to another, indicates better quality of
the image editing method. We observe that deep Neural
ODEs can obtain a reasonable trade-off between disentan-
glement and control for all the attributes. On the other
hand, linear controls are inferior in terms of either con-
trol (i.e., they do not work for a subset of the latent space)

Figure 4. Control-Disentanglement curves for Isaac3D and
MPI3D. We observe that, unlike linear shifts, nonlinear flows al-
low for achieving good control for all the samples while maintain-
ing reasonable disentanglement.

or provide inferior disentanglement. Interestingly, in some
cases, the curves make a jump near the origin, e.g., for
camera height. Such behavior indicates that the latent
codes have to travel a considerable distance before the at-
tribute shift occurs, which intuitively corresponds to neat
well–separated attribute distributions. On the other hand,
for many other non-textured attributes, such distributions
may “interlace” the latent space W and the attribute tran-
sition can occur relatively close to the point of origin. An
example of learned manipulations is provided at Figure 5.

5.2. Real-life datasets
In this section, we investigate the behavior of nonlinear

image edits learned by our Neural ODE-based approach on
real-life datasets. Additionally, we include experiments on
the CUB-200-2011 dataset in Appendix B.1.
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Figure 5. Manipulating the first five attributes on MPI3D. For the
visualization, we used learned Neural ODEs of depth 2.

Datasets.

• FFHQ is a dataset consisting of 70, 000 high-quality
human faces images [18]. This is a standard bench-
mark for image editing as it contains a rich variation in
age, ethnicity, lighting, and background.

• Places365 consists of 1, 803, 460 training images with
400+ unique scene categories [33]. We restrict our
dataset to the outdoor natural scenes and filter
out the ones with the attribute man-made. The final
version contains 48 classes and 239, 457 images.

Model. For these datasets, we also used StyleGAN 2. For
FFHQ, we used the recent high–quality pretrained model
producing images of resolution 256⇥ 256 and provided by
the authors of [17] at github. CUB-200-2011 and Places365
are especially challenging datasets for generative modeling
due to the low number of samples and high sample diversity.
We utilize the Adaptive Data Augmentation (ADA) strategy
[17], which helps to deal with limited size datasets. We use
the authors’ implementation in tensorflow at the same
github link. We train both models for 25M frames with the
default config; we only change the number of layers in the
style network to 8 to be consistent with the FFHQ model.
For training, we resize all the images to 256⇥ 256.

Attribute regressors. For all the attribute regressors, we
use the same frozen ResNet18 backbone pretrained on Ima-
geNet, followed by a trainable MLP of depth two, where for
each attribute, we consider a separate classification head. To
train the regressors, we utilized the following data.

• For FFHQ, we used the data and attribute annota-
tion provided by the CelebA [23] dataset. There
are 202, 599 images with 40 binary attributes such as
smile, gender, hairstyle, etc.

• For Places365 we used the Transient Attributes [21]
dataset. This dataset contains 8, 571 scene images
with annotations for 40 binary attributes such as “fog”,
“snow”, “dusk”, “autumn”. We used all 40 attributes
when training the regressor.

Another approach to enforce identity preservation in our
method is to utilize an off-the-shelf representation network
F , such as FaceNet [28] for human faces datasets. In this
case, we replace our L2 loss with the cosine distance be-
tween the representations F [G(w(T ; ✓)] and F [G(w)]. See
supplementary material for the details on this experiment.

Neural ODE. We use exactly the same settings and loss
function as for the synthetic datasets. We train a separate
model for each attribute. We experimented with Neural
ODEs of depth 1 and 2, but we did not notice any signif-
icant visual difference, so we chose to stick with depth 1 in
our visualizations. We denote it by Ours(nonlinear). To
verify the actual benefit of nonlinearity over simply having
a more powerful loss function, we also study Neural ODEs
with a trainable constant righthand side. We denote it by
Ours(linear).

Baselines. As the baseline approach for supervised image
editing, we consider InterFaceGAN (IF). We use 20, 000
latent codes to train SVMs. We did not obtain competitive
results with the conditional IF, thus we utilize the standard
version. This approach is similar to other works [3, 36].

5.2.1 FFHQ

We hypothesize that for datasets consisting of human face
images, the attributes describing texture-based features
(e.g., hair or skin color) can be manipulated linearly rela-
tively well, while for non-texture-based attributes (e.g., hair
type, gender), the linear shifts may have slightly worse per-
formance. To support our hypothesis, we experiment with
gender and wavy hair; our findings are described in
Figure 6. Additionally, we experiment with a composition
of attribute manipulations: e.g., we may want to change the
gender at first and then manipulate the hair type; our exper-
iments are summarized in Figure 7. We note that in all the
experiments, our nonlinear method outperforms or is on par
with linear methods in terms of visual quality.

5.2.2 Places365

Similar to the previous reasoning, we consider the attributes
which intuitively correspond to the drastic change of im-
age content. Namely, we study the rugged attribute and
the lush vegetation attribute. Results are provided at
Figure 8. Here we can observe an interesting failure mode
of linear methods: for instance, in the last example, they
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Figure 6. Manipulating two different attributes on the StyleGAN
2 trained on the FFHQ dataset. For gender:male and wavy
hair linear shifts suffer from (i) unnatural face color (ii) identity
change.

Figure 7. An example of a sequential attribute manipulation:
gender:male combined with the subsequent wavy hair at-
tribute. Our nonlinear method performs visually better with re-
spect to both control and disentanglement.

simply make the texture greener, which on a very high level,
corresponds to more “vegetation”. However, they strug-
gle to add details like trees or grass, which is successfully
achieved by our nonlinear method. Similar results hold for
the rugged attribute as well.

5.2.3 Editing real images

In this section, we demonstrate that the obtained Neural
ODE-based edits can be applied to real images projected to
the StyleGAN 2 W+ space. We used the standard projector
[19] and trained model of depth 1. As commonly done for
real image editing [1, 2, 3] we apply edits to a subset of in-
dices of W+. Concretely, we used the indices (0-6) for this
experiment. Our results are provided at Figure 9.

Figure 8. Manipulating rugged and lush vegetation at-
tributes on the Places365 dataset. We observe that our nonlinear
method achieves the desired control over image contents, while
linear shifts tend to change images’ texture.

Figure 9. Manipulation of real images embedded in the W+ space.

5.2.4 Human evaluation

Similar to previous works [3], we perform a human eval-
uation of the quality of the obtained edits. We selected
13 common attributes for FFHQ and 32 attributes for
Places365. During the evaluation, we have presented three
images to an assessor: an original image and two modified
images obtained by two different methods; these two im-
ages were shown in random order. We asked the following
questions: (Q1)‘Which has better attribute change to tar-
get <attr>?’ and (Q2)‘Which better preserved identity of
the original image?’. The possible answers included Left,
Right and None / both / not applicable; the total number
of participants were 21 and the number of responses was
⇠ 1000 for both datasets. We compare Ours(nonlinear)
against Ours(linear) and IF methods in separate studies.
Results are given in Table 1; we observe that our nonlinear
method allows for better control and identity preservation,
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FFHQ Places365

vs IF Ours(linear) IF Ours(linear)

Q1 +34% +10% +47% +48%
Q2 +4% +5% �20% +31%

Table 1. Improvement of Ours(nonlinear) against linear meth-
ods (in absolute percentage values) according to human evaluators.

especially on the more challenging Places 365 dataset. We
noticed that on this dataset IF often struggles to make any
visual edits, which explains its superiority for Q2. We vi-
sualize the interface of our questionnaire on Figure 14 in
Appendix C. The breakdown of the improvements for each
particular attribute (for the Ours(nonlinear) vs IF evalu-
ation) is given in Figure 15 in Appendix C; we also noticed
that the top 4 most challenging attributes coincided for IF
and Ours(linear), which indicates the need for nonlinear-
ity for certain attributes (wavy hair, gray hair).

5.2.5 Analysis of learned Neural ODEs

In this section, we study the Neural ODEs obtained for var-
ious attributes with our method. We focus on the model of
depth 1, i.e, it takes the form dw

dt
= Aw + b. For the analy-

sis, we ignore the normalization of the right-hand side since
it does not affect the obtained trajectories and corresponds
only to their reparameterization. To study the obtained
ODE, it is convenient to switch to the eigenbasis of A. In
these coordinates (assuming all the eigenvalues are real), the
ODE takes the simple form dew

dt
= diag(�1, . . .�N )ew +eb.

The eigenvalues of large magnitude |�i| � 1 correspond to
a ‘fast’ subspace where some nontrivial dynamics happens.
On the other hand, in the ‘slow’ subspace with |�i| ⌧ 1, the
dynamics is close to linear, i.e., the trajectories are close to
straight lines. Thus, we can measure the ‘complexity’ of an
attribute by evaluating how quickly the eigenvalues of the
corresponding matrix decay. If they decay rapidly, then this
attribute is easier to control with linear shifts and requires
more ‘nonlinear’ controls in the opposite case. One way to
estimate how many vectors span the range of the matrix A
is via singular entropy. It is defined in terms of singular
values {�i} of the matrix A in the following way:

HSV D(A) = �

NX

i=1

�̃i log �̃i, (8)

with {�̃i} being the set of normalized singular values: �̃i =
�i/P�i. The values of HSV D(A) can serve as a proxy to
the log-dimensionality of the ‘fast’ subspace of A. We hy-
pothesize that for the attributes with larger values of HSV D,
our nonlinear method provides a more significant improve-
ment. When computing HSV D, we utilize the first 128 sin-
gular values (out of 512) in order to get rid of the noise

induced by the training procedure (the results are not sensi-
tive to this parameter). The obtained values are provided
at Figure 10. To verify our hypothesis, we compute the

Figure 10. Estimated values of HSV D for a number of attributes
on FFHQ.

Spearman rank correlation between the attribute ordering
provided by HSV D and human evaluation ordering visual-
ized at Figure 15. The obtained value is ⇠ 0.41, confirming
the existence of a correlation. Interestingly, we find that
even such ‘simple’ attributes such as gray hair still re-
quire a nontrivial trajectory in the latent space. The obtained
HSV D values for Places365 are available in the supplemen-
tary material. Overall, based on the experimental results,
we argue that attributes requiring a ‘global’ content change
can not be adequately controlled with linear edits. E.g., for
gray hair which is naturally entangled with the facial
appearance, we do not simply change the hair color but also
make the entire face older. Similar logic holds, for instance,
for the lush attribute on Places365. On the other hand,
such attributes as Smiling or Bushy Eyebrows require
relatively small and localized changes, and we observe that
the IF method is on par with our nonlinear model.

6. Conclusion
In this work, we discussed a novel approach for image

manipulations via nonlinear shifts, parameterized by a Neu-
ral ODE model. On multiple datasets, we demonstrated an
advantage of our approach over standard linear shifts. For
the analysis, we simply considered state-of-the-art Style-
GAN 2 trained in a conventional manner. Thus, it may be
possible that design choices for this model do not allow for
achieving perfect disentanglement. One interesting direc-
tion for future work is to better understand the arrangement
of attribute distributions in the latent space and how it can
be utilized to achieve better disentanglement. Another pos-
sible direction to achieve this goal would be to try to tune
the GAN architecture so it better incorporates geometrical
(i.e., shape) inductive biases.
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lot. Controlling generative models with continuos factors of

14436



variations. Proceedings of the International Conference on
Learning Representations (ICLR), 2020. 1, 2

[27] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gener-
ative adversarial networks. Proceedings of the International
Conference on Learning Representations (ICLR), 2015. 1, 2

[28] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823, 2015. 6

[29] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. In-
terpreting the latent space of gans for semantic face editing.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9243–9252, 2020. 1,
2, 4, 5

[30] Nurit Spingarn, Ron Banner, and Tomer Michaeli. GAN
”steerability” without optimization. In International Con-
ference on Learning Representations, 2021. 2

[31] Andrey Voynov and Artem Babenko. Unsupervised discov-
ery of interpretable directions in the gan latent space. In In-
ternational Conference on Machine Learning, pages 9786–
9796. PMLR, 2020. 1, 2, 3, 4

[32] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011. 15

[33] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2017. 6

[34] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2223–
2232, 2017. 1

[35] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Dar-
rell, Alexei A Efros, Oliver Wang, and Eli Shechtman. To-
ward multimodal image-to-image translation. In Advances
in Neural Information Processing Systems, pages 465–476,
2017. 1

[36] Peiye Zhuang, Oluwasanmi O Koyejo, and Alex Schwing.
Enjoy your editing: Controllable GANs for image editing
via latent space navigation. In International Conference on
Learning Representations, 2021. 2, 6

14437


