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Figure 1: We visualize an online tracking scenario from Argoverse [9] that requires tracking a pedestrian through a complete
occlusion. Such applications cannot wait for objects to re-appear (e.g., as re-identification approaches do): autonomous agents
must properly react during the occlusion. We treat online detection of occluded people as a short-term forecasting challenge.

Abstract
Monocular object detection and tracking have improved

drastically in recent years, but rely on a key assumption: that
objects are visible to the camera. Many offline tracking ap-
proaches reason about occluded objects post-hoc, by linking
together tracklets after the object re-appears, making use
of reidentification (ReID). However, online tracking in em-
bodied robotic agents (such as a self-driving vehicle) funda-
mentally requires object permanence, which is the ability to
reason about occluded objects before they re-appear. In this
work, we re-purpose tracking benchmarks and propose new
metrics for the task of detecting invisible objects, focusing on
the illustrative case of people. We demonstrate that current
detection and tracking systems perform dramatically worse
on this task. We introduce two key innovations to recover
much of this performance drop. We treat occluded object
detection in temporal sequences as a short-term forecasting
challenge, bringing to bear tools from dynamic sequence
prediction. Second, we build dynamic models that explicitly
reason in 3D from monocular videos without calibration,
using observations produced by monocular depth estima-
tors. To our knowledge, ours is the first work to demonstrate
the effectiveness of monocular depth estimation for the task
of tracking and detecting occluded objects. Our approach
strongly improves by 11.4% over the baseline in ablations
and by 5.0% over the state-of-the-art in F1 score.

1. Introduction

Object detection has seen immense progress, albeit under
a seemingly harmless assumption: that objects are visible to
the camera in the image. However, objects that become fully
occluded (and thus, invisible) continue to exist and move
in the world. Indeed, object permanence is a fundamental
visual cue exhibited by infants in as early as 3 months [3, 26].
Practical autonomous systems must similarly reason about
such objects that undergo complete occlusions to ensure safe
operation (Figure 1). Interestingly, existing work on object
detection and tracking tends to de-emphasize this capabil-
ity, either choosing to completely ignore highly-occluded
instances for evaluation [15, 37, 50, 58], or simply down-
weighting them because they occur so rarely that they fail to
materially affect overall performance [41]. One reason that
invisible-object detection may have been under-emphasized
in the tracking community is that for offline analysis, one can
post-hoc reason about the presence of an occluded object by
relinking detections after it reappears. This approach has
spawned the large subfield of reidentification (ReID). How-
ever, in an online setting (such as an autonomous vehicle
that must make decisions given the available sensor infor-
mation), intelligent agents must be able to instantaneously
reason about occluded objects before they re-appear.

Problem formulation: We begin by introducing bench-
marks and metrics for evaluating the task of detecting and
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tracking invisible people. To do so, we repurpose existing
tracking benchmarks and introduce metrics for evaluating
this task that appropriately reward detection of occluded peo-
ple. To ensure benchmarks are online, we forbid algorithms
from accessing future frames when reporting object states
for the current frame. Although this task requires reasoning
about object trajectories, it can be evaluated as both a de-
tection and a tracking problem. For the latter, we introduce
extensions to tracking metrics in the supplement. When ana-
lyzing our metrics, it becomes readily apparent that human
annotation of ground-truth occluded objects is challenging.
We provide pilot human vision experiments in Section 4 that
show annotators are still consistent, but exhibit larger varia-
tion in labeling the pixel position of occluded instances. This
suggests that algorithms for occluded object detection should
report distributions over object locations rather than precise
discrete (bounding box) locations. Inspired by metrics for
evaluating multimodal distributions in the forecasting liter-
ature [9], we explore probabilistic algorithms that make k
predictions which are evaluated by Top-k accuracy.

Analysis: Perhaps not surprisingly, our first observation
is that performance of state-of-the-art detectors and trackers
plummets on occluded people, from 68.5% to 28.4%; it is
far easier to detect visible objects than invisible ones! This
underscores the need for the community to focus on this
underexplored problem. We introduce two simple but key
innovations for addressing this task, which improve perfor-
mance from 28.4% to 39.8%. (a) We recast the problem
of online tracking of occluded objects as a short-term fore-
casting challenge. We explore state-of-the-art deep forecast-
ing networks, but find that classic linear dynamics models
(Kalman filters) perform quite well. (b) Because modeling
occlusions is of central importance, we cast the problem as
one of 3D tracking given 2D image measurements.

Novelty: While there exists considerable classic work on
3D tracking from 2D [48, 7, 52, 10], much focuses on 3D
modeling of tracked objects. Instead, we find that the 3D
structure of scene occluders is important for understanding
where tracked objects can “hide”. Typically such dense 3D
understanding requires calibrated multiview sensors [53, 13].
Instead, we show that recent advances in uncalibrated monoc-
ular depth estimation provide “good enough” estimates of
relative depth that still enable dense freespace reasoning.
This is crucial because monocular depth has the potential to
be far more scalable [55]. To our knowledge, ours is the first
work to use uncalibrated depth estimates for multi-object
tracking and detection of occluded objects.

Overview: After reviewing related work, we present our
core algorithmic contributions, including straightforward but
crucial extensions to classic linear dynamics models to (a)
incorporate putative depth observations from a monocular
network and (b) forecast object state even during occlusions.
We conclude with extensive evaluations on three datasets [41,

54, 11] repurposed for detecting occluded objects.

2. Related Work
Amodal object detection aims to segment the full extent

of objects that may be partially (but not fully) occluded.
[66] introduces this task with a dataset labeled by multiple
annotators, which is later expanded by [65]. More recently,
[46] introduces a larger dataset of amodal annotations on
the KITTI [20] dataset. Approaches in this setting largely
rely on training variants of standard detectors (e.g. [23])
on amodal annotations generated synthetically from modal
datasets [35, 12, 63, 60]. As this line of work addresses
detection from a single image, it requires objects to be at
least partially visible. By contrast, we target fully occluded
people, which cannot be recovered from a single frame.

Multi-object tracking requires tracking across partial
and full occlusions. Approaches for this task address occlu-
sions post-hoc in an offline manner, using appearance-based
re-identification models to identify occluded objects after
they become visible. These appearance-based models can be
incorporated into tracking approaches, as part of a graph opti-
mization problem [4, 45, 62] or online linking [56, 5]. In this
work, we point out that some approaches internally maintain
online estimates of the position of occluded people [5, 6, 56],
but explicitly choose not to report these internal predictions,
as they tend to be noisy and, thus, are penalized heavily by
current benchmarks. We provide two simple extensions to
these internal predictions that significantly improve detec-
tion of occluded people while preserving accuracy on visible
people. [21] tracks occluded objects using contextual ‘sup-
porters’, but requires a user to initialize a single object to
track in uncluttered scenes; by contrast, we simultaneously
detect and track people in large crowds.

Other work shares our motivation of tracking in 3D but re-
lies on additional depth sensors [19] or stereo setups [28, 8].
Finally, many surveillance-based tracking systems explic-
ity reason about object occupancy and occlusion, but re-
quire calibrated cameras to compute ground plane coordi-
nates [1, 18, 27, 30, 31]. By contrast, our work emphasizes
detection of occluded people in uncalibrated, monocular
videos. To do so, we use monocular depth estimators via
technical innovations that address noise in predicted depth
estimates. Our method generalizes to arbitrary videos, since
estimating monocular depth is far more scalable than retriev-
ing additional sensor information for any video.

Forecasting approaches predict pedestrian trajectories in
future, unobserved frames. These approaches leverage social
cues from nearby pedestrians or semantic scene information
to better model person trajectories [51, 34, 59, 44, 40, 32].
Recently, data-driven approaches have also been proposed
for learning social cues [2, 49]. We note that detection of
fully occluded people can be formulated as forecasting the
trajectory of a visible person in future frames, where the
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positions of the occluded person are unobserved, but the
rest of the frame can be observed. Some approaches do use
forecasting to track objects [17, 39] but we use a constant-
velocity model to forecast trajectories along with depth cues
from the observed frames, to improve detection of occluded
people. In Section 4.3, we show that while this approach can
use a more powerful forecasting model, the constant-velocity
approximation is sufficient in our setting.

3. Method
We build an online approach for detecting invisible people

starting with a simple tracker, using estimated trajectories
of visible people to forecast their location during occlusions.
We describe our tracking mechanism, building upon [57].
While such trackers internally forecast the location of oc-
cluded people for improved tracking, these forecasts tend to
be noisy and cannot directly localize occluded people. To
address this, we incorporate depth cues from a monocular
depth estimator to reason about occlusions in 3D.

3.1. Background

To detect people during occlusions, we build on a simple
online tracker [57] that estimates the trajectories of visible
people. We briefly describe aspects relevant to our approach,
but refer the reader to [57] for a more detailed explanation.
In the first frame, this tracker instantiates a track for each de-
tected person. The tracker adds each track to its “active” set,
representing people that have been seen so far. Each track
maintains a Kalman Filter whose state space encodes the po-
sition (x, y), aspect ratio (a), height (h), and corresponding
velocities (ẋ, ẏ, ȧ, ḣ) of the person.The filter’s process model
assumes a constant velocity model with gaussian noise (i.e.,
xt = xt−1 + ˙xt−1 + εx). At each successive frame, the
tracker first runs the predict step of the filter, using the pro-
cess model to forecast the location of the track in the new
frame. Next, each detection in the current frame is matched
to this set of active tracks based on appearance features, and
distance to the tracks’ forecasted location (as estimated by
the filter). A new track is created for all detections that are
unmatched. If a track is matched to a detection, the detection
is used as a new observation to update the track’s filter, and
the detection is reported as part of the track. Importantly, if
a track does not match to any detection, its forecasted box is
not reported. When a track is not matched to a detection for
more than Nage frames, it is deleted.

3.2. Short-term forecasting across occlusions

Although this tracker internally forecasts the positions of
all tracks at each step, its estimates are used only to improve
the association of tracks to detections, and are not reported
externally. However, these internally forecasted track lo-
cations are crucial as they may correspond to an occluded
person. We show that naively reporting these track locations

leads to significant recall of occluded people, but the noise
in these estimates results in poor precision. Further, these
noisy estimates lead to a small decrease in overall accuracy,
as standard benchmarks largely focus on visible people. We
improve these estimates by augmenting them with 3D infor-
mation. Specifically, we use a monocular depth estimator
[36] to get per pixel depth estimates of the scene. We then
augment our Kalman Filter state space with the inverse depth.
Inverse depth is a commonly used representation predicted
by depth estimators [36, 33] due to important benefits, in-
cluding the ability to represent points at infinity and ability to
model uncertainty in pixel disparity space (commonly used
for stereo-based depth estimation [42]). Our state space thus
additionally includes 1/z variable.

3.3. Tracking in 3D camera coordinates using 2D
image coordinates

Equipped with depth estimates, we formulate tracking
with a constant velocity model in 3D using 2D measure-
ments. Unlike prior work which assumes linear dynamics in
(projected) 2D image measurements, our dynamics model
operates in 3D using depth cues, resulting in far more realis-
tic person trajectories. We derive our uncalibrated tracker by
demonstrating that the unknown camera focal length f can
be folded into a motion noise parameter that can be easily
tuned on a training set. Hence our final method runs without
calibration on arbitrary videos.

Let us model objects as cylinders with centroids
(Xt, Yt, Zt), height H and aspect ratio At. We model ob-
ject height as constant, but allow for varying aspect ratios
because people are non-rigid. We can then compute image-
measured bounding boxes with centroid (xt, yt) and dimen-
sions (ht, at) as follows:

xt = f
Xt

Zt
, yt = f

Yt
Zt
, ht = f

H

Zt
, at = At (1)

We extend the commonly used constant velocity model
with Gaussian noise from 2D [6, 56] to 3D:

Xt = Xt−1 + Ẋt−1 + εX , εX ∼ N (0, σX), (2)

where similar equations hold for Yt, Zt and At. Let the
observed (inverse) depth from a depth estimator associated
with an object be 1/zt. Since image measurements are given
by perspective projection of real world coordinates, we have
the following equations (assuming Gaussian image noise):

xt = f
Xt

Zt
+ εx, εx ∼ N (0, σx) (3)

1

zt
=

1

Zt
+ εz, εz ∼ N (0, σz) (4)

with similar equations for yt, ht, and at. Note that inverse
depth naturally assumes a large uncertainty in far away re-
gions, and a small uncertainty in nearby regions. Defining a
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Figure 2: (a) Frame t− 1 has active tracks {1, 2, 3, 4}, each with an internal state of its 2D position, size, velocity, and depth
(see text). (b) We forecast tracks in 3D for frame t. (c) Tracks are matched to observed detections at t using spatial and
appearance cues. Matched tracks are considered visible (e.g. 1, 3). Tracks which don’t match to a visible detection (e.g. 2, 4)
may be occluded, or simply incorrectly forecasted. (d) To resolve this ambiguity, we leverage depth cues from a monocular
depth estimator, to compute (e) the freespace horizon. The region between the camera and the horizon must be freespace,
while the area beyond it is unobserved, and so may contain occluded objects. Tracks lying beyond the freespace horizon
are reported as occluded (e.g. 2). Tracks within freespace (e.g. 4) should have been visible, but did not match to any visible
detections. Hence, we assume these tracks are incorrectly forecasted, and we delete them.

3D state space leads us to a modified formulation, written as(
f Xt

Zt
, f Yt

Zt
, 1
Zt
, At, f

H
Zt
, f Ẋt

Zt
, f Ẏt

Zt
, Ȧt

)
. We can therefore

rewrite Equation (2) as:

f
Xt

Zt
≈ f Xt

Zt−1
= f

Xt−1

Zt−1
+ f

Ẋt−1

Zt−1
+ f

εX
Zt−1

(5)

xt ≈ xt−1 + ẋt−1 + f
εX
Zt−1

(6)

where the approximation holds if depths are smooth over
time (Zt ≈ Zt−1). Technically, the above is no longer a
linear dynamics model since the noise depends on the state.
But the equation suggests that one can approximately ap-
ply a Kalman filter on 2D image measurements augmented
with a temporal noise model that is scaled by the estimated
inverse-depth of the object. Intuitively, this suggests that one
should enforce smoother tracks for objects far away. Our
approach thus scales the process noise (εX ) for far away
objects, leading to more accurate predictions. Algorithmi-
cally, [57] by default scales process and observation noise
covariances according to the person’s height; our approach
instead multiplies the process covariance by the person’s
estimated depth, computed by aggregating past monocular
depth observations and state estimates over time.

Assumptions. Because we do not assume calibrated cam-
eras, we do not know f . Rather, we make use of training
videos provided in standard tracking benchmarks and simply
tune scaled variances σ′X = fσX directly on the training set.
We make two additional assumptions: that people move with
constant velocity in 3D, and that depth estimates are smooth
over time. Although these do not always hold in real world
scenarios, we empirically find that our method generalizes
to diverse scenarios.

Filtering estimates lying in freespace. Equipping our

state space with depth information allows us to forecast
3D trajectories. Meanwhile, applying a monocular depth
estimator allows us to determine regions in 3D space that
are occluded to the camera without requiring calibration.
Specifically, if our approach forecasts a person at a point
Pf = (xf , yf , zf ), we can determine whether Pf should be
visible to the camera by estimating whether Pf lies in the
freespace [13] between the camera and its nearest occluder.
In the filter stage in Figure 2, we visualize one slice of the
“freespace horizon”: points beyond this horizon are occluded,
while points between the camera and horizon are visible.

Concretely, let zo be the (observed) depth of the horizon at
(xf , yf ). If the forecasted depth (zf ) lies closer to the camera
than the horizon depth (zo), as with person “4” in Figure 2
(e), then the person must be in the freespace between the
camera and its closest object, and therefore visible. If we do
not detect this person, then we assume the forecast is an error,
and either suppress the forecasted box for the current frame
(in the case of small errors, when zf < αsuppzo) or delete
the track entirely (for large errors, when zf < αdeletezo).
A key advantage of this approach is the ability to reason
about occlusions arising not only from interactions between
tracked people, but also from natural occluders such as trees
or cars. Section 4.3 shows that this modification is critical
for improving the precision of our trajectory forecasts.

Camera motion. Camera motion is challenging, as our
approach assumes linear dynamics for trajectories. To ad-
dress this, we follow prior work (e.g., [5]) in estimating a
non-linear pixel warp W between neighboring frames which
maps pixel coordinates (xt−1, yt−1) in one frame to the next
(xt, yt). This warp is then used to align boxes forecasted us-
ing frames up to t− 1 with frame t. Note that this alignment
assumes the motion of dynamic objects is small relative to

3177



the scene motion, allowing for the use of an image registra-
tion algorithm [14]. Despite the simplicity of this modifica-
tion, we show in the supplement that it helps considerably
for the moving camera sequences. We also detail our algo-
rithm with pseudo-code in the supplement. We proceed to
an empirical analysis of the task and prior methods, showing
the benefits of each component of our proposed approach.

4. Experimental Results
We first describe our proposed benchmarks, including the

datasets and our proposed metrics for evaluating the task
of detecting occluded people. Next, we conduct an oracle
study in Section 4.1 to analyze how well existing approaches
can detect occluded people. We then compare our proposed
approach to these state-of-the-art approaches in multiple
settings in Section 4.2. Finally, we analyze each component
of our approach with a detailed ablation study in Section 4.3.

Dataset. Evaluating our approach is challenging, as most
datasets do not annotate occluded objects. The MOT-17
[41], MOT-20 [11] and PANDA [54] datasets are key excep-
tions which label both visible and occluded people, along
with a visibility field indicating what portion of the person
is visible to the camera. We find that a majority of the an-
notations in these datasets (over 85% in each dataset) are
people that are at least partially visible, leading standard
evaluations on these datasets to underemphasize occluded
people. To address this, we separately evaluate accuracy on
the subset of fully occluded people (indicated by< 10% visi-
bility). MOT-17 contains 7 sequences with publicly available
groundtruth, and 7 test sequences with held-out groundtruth.
We evaluate on these 14 sequences. MOT-20 contains 8
sequences, of which 4 have held-out groundtruth. PANDA
officially releases a high-resolution 2FPS groundtruth for its
10 train and 5 test sequences. Because tracking and fore-
casting is challenging at such low frame rates, we reached
out to the authors who provided a high-frame rate (30FPS),
low-resolution groundtruth for 9 train videos. We report
results on MOT-20 and PANDA train set without tuning our
pipeline on any of the videos in these datasets. From visual
inspection, we found that visibility labels in PANDA tend
to be noisy (see the supplement), and so we define objects
with up to 33% visibility as occluded. We carry out the anal-
ysis including oracle and ablation study on MOT-17 train
and report the final results on MOT-17 test, MOT-20 and
PANDA datasets. In all, these three datasets target a diverse
set of application scenarios – static surveillance cameras,
car-mounted cameras, and hand-held cameras.

Metric. As most benchmarks consist primarily of vis-
ible people, existing metrics which measure performance
across all people underemphasize the accuracy of detect-
ing occluded people. We propose detection and tracking
metrics (see supplement for latter) which evaluate accuracy
on occluded people, as indicated by visibility < 10% and
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Figure 3: We visualize bounding boxes labeled by multiple
(4) in-house annotators (left). During small occlusions, an-
notators strongly agree. During large occlusions (less than
10% visible, last frame), annotators still agree to a fair extent
(average IoU overlap of 60%, right), but require temporal
video context. We use these to justify our Top-k evaluation
and motivate our probabilistic tracking approach.

on all (visible and invisible) people. Since localizing fully-
occluded people involves higher positional uncertainty than
visible people, we allow algorithms to predict k potential
locations for each person.

Top-k F1: We start by modifying the standard detec-
tion evaluation protocol [15, 37]. For every person, we al-
low methods to report k predictions, P = {p1, p2, . . . , pk}.
We match these predictions to all groundtruth boxes based
on intersection-over-union (IoU). We define the overlap be-
tween a groundtruth g and P as the maximum overlap with
the predictions pi in P — i.e., IoU(g, P ) = maxiIoU(g, pi).
We use this overlap definition and perform standard match-
ing between predictions and groundtruth, with a minimum
overlap threshold of αIoU .

When evaluating accuracy across all people, matched
groundtruth boxes are true positives (TP), all unmatched
groundtruth are false negatives (FNs, or misses), and un-
matched detections are false positives (FP). When evaluat-
ing accuracy on occluded people, only matched occluded
groundtruth boxes count as TPs, only unmatched occluded
groundtruth boxes count as FNs, and all unmatched detec-
tions count as FPs. Intuitively, when evaluating metrics for
occluded people, we do not penalize a detector for correctly
detecting a visible person, but we do penalize it for false
positives that do not match any visible or occluded person.

We now describe how the k-vector of predictions is ob-
tained: in addition to a state mean (first sample), our proba-
bilistic method maintains covariances for x and z state vari-
ables which result in a 2D gaussian. Since these gaussians
may extend incorrectly into freespace, we perform rejec-
tion sampling to accumulate k-1 predictions which respect
freespace constraints. This gives us P . For baseline methods
that are not probabilistic or do not have access to a depth
map, we artificially simulate this distribution by tuning two
scale factors that control the size of gaussians as a function
of a bounding box’s height. We tune these scale factors on
MOT-17 train and use them throughout experiments.

Top-1 F1: When k = 1, this metric is simply the stan-
dard F1 metric. We additionally report this Top-1 F1 for
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Detections Tracks Occl Strat Online? Top-5 Top-1 F1

Occl F1 Occl Prec Occl Rec All F1 Occl All

Groundtruth (vis.) Groundtruth Interpolate 7 87.3 ±0.1 83.8 ±0.2 91.1 ±0.1 98.0 ±0.0 79.8 96.8
Faster R-CNN Groundtruth Interpolate 7 46.4 ±0.1 65.5 ±0.1 35.9 ±0.1 70.5 ±0.0 34.4 68.1

Groundtruth (vis.) DeepSORT Interpolate 7 53.3 ±0.2 86.7 ±0.1 38.5 ±0.2 92.3 ±0.0 44.4 92.0
Faster R-CNN DeepSORT Interpolate 7 32.2 ±0.0 60.8 ±0.2 21.9 ±0.0 69.9 ±0.0 23.2 68.4

Faster R-CNN DeepSORT Forecast 3 29.8 ±0.2 29.5 ±0.4 30.2 ±0.1 69.4 ±0.0 20.9 66.5

Table 1: Oracle ablations on MOT-17 train reporting Top-5 F1 and Top-1 F1 for occluded and all people, using Faster R-CNN
detections. ‘Occl strat’ stands for Occlusion Strategy. We report the Top-5 mean and standard deviation for 3 runs.

occluded and all people. We do not use the standard ‘aver-
age precision’ (AP) metric as most detectors and trackers on
the MOT and PANDA datasets do not report confidences.

To guide evaluation, we conduct a human vision exper-
iment with 10 in-house annotators who annotate 59 tracks
with occlusions. Figure 3 shows that annotators have lower
consistency when labeling occluded people than visible peo-
ple. To address this ambiguity in localizing occluded people,
we choose a low αIoU = 0.5 and k = 5 in our experiments.

Implementation details. We empirically set parameters
in our approach on MOT-17 train with Faster R-CNN [47]
detections. The optimal thresholds for filtering forecasts
on the train set are αdelete = 0.88, αsupp = 1.061. During
occlusion we treat a person as a point, freezing its aspect
ratio and height. We fixNage to 30. The supplement presents
further details of our method, parameters and their tuning
protocol, including improvements by tuning Nage. We tune
on MOT-17 train and apply these tuned parameters on MOT-
17 test, MOT-20, and PANDA. We find that our method and
its hyperparameters tuned on the train set generalize well
to the test set. We use [36] for monocular depth estimates,
which has been shown to work well in the wild. While these
estimates can be noisy, we qualitatively find that the relative
depth orderings used in our approach are fairly robust.

4.1. Oracle Study

What is the impact of visible detection on occluded
detection? We first evaluate an offline approach which uses
groundtruth detections and tracks for visible people to (lin-
early) interpolate detections for occluded people in Table 1.
As this method perfectly localizes visible people, and most
people in this benchmark are visible, it achieves a high over-
all Top-5 F1 of 98.0 (Table 1, row 1). Additionally, despite
using simple linear interpolation, this oracle also achieves
a high Top-5 F1 of 87.3 for invisible people. This result
indicates that although long-term forecasting of pedestrian
trajectories may require higher-level reasoning [51, 34, 40],
short-term occlusions may be modeled linearly.

1Note that αsupp > 1 allows the forecasted depth to be closer to the
camera than the observed depth, accounting for potential noise in the depth
estimator to reduce the number of forecasts that are suppressed.

Next, we evaluate the same approach with detections from
a Faster R-CNN [47] model in place of groundtruth (Table 1,
row 2). This leads to a significant drop in both overall and
occluded accuracy, indicating that improvements in visible
person detection can improve detection for invisible people.
Finally, although Occluded Top-5 F1 drops, it is significantly
above chance, suggesting that current detectors equipped
with appropriate trackers can detect invisible people.

What is the impact of tracking on occluded detection?
So far, we have assumed oracle linking of detections, allow-
ing for linear interpolation of bounding boxes to detect peo-
ple through occlusion. We now evaluate the impact of using
an online tracker, equipped with re-identification, on detect-
ing occluded people. Removing the oracle results in a drastic
drop in accuracy: the Top-5 F1 score for occluded people
drops by over 30 points (87.3 to 53.3, Table 1 row 3) using
groundtruth detections, and 14 points with Faster R-CNN
detections (46.4 to 32.2, Table 1 row 4). Despite this sig-
nificant drop in Occluded Top-5 F1, the overall Top-5 F1 is
significantly more stable (from 98.0 to 92.3 for groundtruth
detections and 70.5 to 69.9 for Faster R-CNN), showing that
overall person detection underemphasizes the importance
of detecting occluded people.

Can online approaches work? These results indicate
that in the offline setting, existing visible-person detection
and tracking approaches can detect invisible people via inter-
polation. We now evaluate a simple online approach, which
uses an off-the-shelf visible person detector (Faster R-CNN),
equipped with a tracker (DeepSORT) and linear (constant
velocity) forecasting for detecting invisible people (Table 1,
row 5). Moving to an online setting results in a similar Top-5
F1 score but significantly reduces the precision for occluded
persons, from 60.8 to 29.5. This is expected as even though
linear forecasting recalls slightly more number of boxes than
offline interpolation (recall from 21.9 to 30.2), its naive na-
ture results in many more false positives resulting in a much
lower precision and therefore, a similar F1 score. In Section
4.3, we present simple modifications to this approach that
recover much of this performance gap.
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Top-5 F1 Top-1 F1

Occl All Occl All
M

O
T-

17

DPM [16] 17.2 46.7 13.2 46.5
+ Ours 24.6 (+7.4) 49.3 (+2.6) 17.4 48.4
FRCNN [47] 28.4 68.5 20.1 67.4
+ Ours 39.8 (+11.4) 70.5 (+2.0) 26.7 68.5
SDP [61] 45.2 80.5 35.8 79.8
+ Ours 51.2 (+6.0) 80.8 (+0.3) 38.5 79.4
Tracktor++ [5] 32.4 77.0 22.7 76.8
+ Ours 45.4 (+13.0) 77.2 (+0.2) 33.2 76.5
MIFT [24] 37.8 75.9 29.9 75.1
+ Ours 44.9 (+7.1) 75.6 (-0.3) 33.8 74.3
CTrack [64] 38.7 84.8 29.4 84.2
+ Ours 47.9 (+9.2) 84.4 (-0.4) 36.4 83.4

M
O

T-
20 FRCNN 42.5 71.2 27.5 70.7

+ Ours 46.1 (+3.6) 71.5 (+0.3) 28.6 70.9

PA
N

D
A GT (visible) 45.5 90.6 30.5 90.5

+ Ours 49.5 (+4.0) 90.5 (-0.1) 34.1 90.3

Table 2: Results on MOT-17 [41], MOT-20 [11] and PANDA
[54] train. We evaluate on public detections provided with
MOT-17 (DPM, FRCNN, SDP), two trackers that operate
on public detections (Tracktor++, MIFT), and CenterTrack
which does not use public detections. We use (public FR-
CNN, visible groundtruth) detections for (MOT-20, PANDA).
Our method improves on occluded people across all trackers.

4.2. Comparison to Prior Work

Next, we apply our approach to the output of existing
methods to evaluate its improvement over prior work. Table
2 shows results on the MOT-17 train set, showing our ap-
proach improves significantly in Occluded Top-5 F1 ranging
from 6.0 to 13.0 points, while maintaining the overall F1.
Detecting invisible people requires reliable amodal detec-
tors for visible people (ref. Section 4.1). For this reason,
we use visible groundtruth detections from PANDA, similar
to the oracle experiments in Section 4.1, as no public set
of amodal detections come with PANDA (unlike MOT-17
or MOT-20). Table 2 shows that our method improves the
detection of occluded people by 4.0% on PANDA using
groundtruth visible detections and by 3.6% on MOT-20 us-
ing the Faster-RCNN public detections. We explicitly do not
tune our hyperparameters for these two datasets, showing
that our method is robust to changes in video data distribu-
tion. MOT-20 and PANDA contain a few sequences with
top-down views, where occlusions are rare. We disable our
depth and occlusion reasoning on such sequences; please see
supplement.

As MOT-17 and MOT-20 test labels are held out, we
worked with the MOTChallenge authors to implement our
metrics on the test server. Table 3 shows that MIFT2[24]
and Tracktor++ [5] achieve the highest Occluded Top-5 F1
amongst prior online approaches on MOT-17 and MOT-20
test respectively. Applying our approach on top of these

2MIFT is referred to as ISE MOT17R on the MOT leaderboards

Top-5 F1 Top-1 F1

Occl All Occl All

M
O

T-
17

Ours 43.4 76.8 31.4 75.6
MIFT [24] 38.4 77.3 29.7 76.7
UnsupTrack [29] 35.9 78.1 26.6 77.4
GNNMatch [43] 35.2 74.3 26.3 73.7
GSM Tracktor [38] 35.4 73.8 26.2 73.2
Tracktor++ [5] 33.3 73.3 24.8 73.0

M
O

T-
20

Ours 46.9 76.7 33.3 75.2
Tracktor++ [5] 44.2 76.0 34.2 75.3
UnsupTrack [29] 41.7 71.4 30.9 70.8
SORT20 [57] 38.5 65.2 27.3 63.6

Table 3: Results on MOT-17 and MOT-20 test set. The best,
second-best and third-best methods are highlighted.

methods improves results significantly by 5.0% to 43.4 F1
and by 2.7% to 46.9 F1, leading to a new state-of-the-art for
occluded person detection on MOT-17 and MOT-20 test.

Table 2 shows that our method consistently improves oc-
cluded F1. However, it sometimes results in a drop in overall
accuracy. We attribute this to the increased number of false
positives introduced while tackling the challenging task of
detecting invisible people. These false positives for invisible
people are counted as false positives for all people, whether
visible or invisible. This causes existing metrics to penal-
ize methods for even trying to detect invisible people. In
safety critical applications, where worst-case accuracy may
be more appropriate, our approach significantly improves
during complete occlusions by up to 13.0% on MOT-17,
while mildly decreasing average accuracy by 0.4%.

4.3. Ablation Study

We now study the impact of each component of our ap-
proach in Table 4, focusing on the Occluded Top-5 F1 metric
using Faster R-CNN detections on the MOT-17 train set.
First, we show that the DeepSORT tracker, upon which
our approach is built, results in a 28.4 Occluded Top-5 F1.
Reporting the internal, linear forecasts from the tracker in-
creases the score to 29.8, driven primarily by a 12.5% im-
provement in recall. Compensating for camera motion pro-
vides another 2.4% improvement. Next, leveraging depth
cues to incorporate freespace constraints, as detailed in Sec-
tion 3.3, improves accuracy by 3.5%, driven primarily by a
14.6% jump in precision, indicating that this component dras-
tically reduces false positives. Finally, we add depth-aware
process noise to handle perspective transformations between
2D and 3D coordinates, which leads to an improvement of
4.1%, resulting in a final score of 39.8. Only a 1.0% improve-
ment in F1 as compared to 4.1% with Top-5 F1 suggests that
our uncertainty estimates are significantly improved by the
depth-aware process noise scaling. In all, our approach leads
to an improvement of 11.4% over the baseline. Figure 4
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Figure 4: Our probabilistic model reports a distribution over 3D location during occlusions. We visualize (occluded, visible)
detection with (outlined, filled-in) bounding boxes (top). We provide “birds-eye-view” top-down visualizations of Gaussian
distributions over 3D object centroids with covariance ellipses (bottom). During occlusion, variance grows roughly linearly
with the number of consecutively-occluded frames. We are also able to correctly predict depth of occluded people in the top
down view, e.g. in the second last frame, which would not be possible with single-frame monocular depth estimates. During
evaluation, we truncate the uncertainty using our freespace estimates (not visualized). Please refer to the supplement video.

Top-5 Top-1 F1

Occl F1 Occl Prec Occl Rec All F1 Occl All

DeepSORT 28.4 ±0.1 71.9 ±0.2 17.7 ±0.1 68.5 ±0.0 20.1 67.4
+ Forecast 29.8 ±0.2 29.5 ±0.4 30.2 ±0.1 69.4 ±0.0 20.9 66.5
+ Egomotion 32.2 ±0.2 33.1 ±0.3 31.3 ±0.1 70.4 ±0.0 23.2 67.9
+ Freespace 35.7 ±0.0 47.7 ±0.1 28.6 ±0.0 70.4 ±0.0 25.7 68.4
+ Dep. noise 39.8 ±0.2 52.6 ±0.6 32.0 ±0.0 70.5 ±0.1 26.7 68.5

Table 4: MOT-17 train ablations. Each row adds a compo-
nent to the row above. ‘Dep. noise’ is depth-aware noise.

presents a sample result from our approach, where the per-
son in the green bounding box is detected throughout two
full occlusion phases, marked with an unfilled box.

One concern with our approach might be that the average
depth inside a person’s bounding box may contain pixels
from the background or an occluder. To verify the impact of
this, we evaluate a variant where we use segmentation masks
for all the bounding boxes in MOT-17’s FRCNN public
detections using MaskRCNN [23]. We initialize the z state
variable in the model with the average depth inside this mask.
On doing so, the Top-1 occluded F1 increases from 26.7 to
27.3, indicating that masks can help with estimating the
person’s depth, but boxes are a reasonable approximation.
We kindly refer the reader to our supplement for further
ablative analysis, including an analysis of more recent depth
estimators, ablations on moving vs. stationary sequences,
and failure cases (in supplementary video).

Forecasting: We evaluate replacing our linear forecaster
with state-of-the-art forecasters. We supply these forecasters
with a birds-eye-view representation of visible person trajec-
tories. As these forecasters forecast only the birds-eye-view
(x, z) coordinates, we rely on our approach’s estimates of

the height, width, and y coordinate. We evaluate two trajec-
tory forecasting approaches for crowded scenes, Social GAN
(SGAN) [22] and STGAT [25]. SGAN and STGAT result
in Occluded Top-5 F1 scores of 36.0 and 36.4 respectively.
While this improves over the baseline at 28.4, it underper-
forms our linear forecaster at 39.8. This suggests that simple
linear models suffice for short, frequent occlusions. We refer
the reader to the supplement for more details and analysis.

5. Discussion
We propose the task of detecting fully-occluded objects

from uncalibrated monocular cameras in an online manner.
Our experiments show that current detection and tracking
approaches struggle to find occluded people, dropping in
accuracy from 68% to 28% F1. Our oracle experiments re-
veal that interpolating across tracklets in an offline setting
noticeably improves F1, but the task remains difficult be-
cause of large occlusions. We propose an online approach
that forecasts the trajectories of occluded people, exploiting
depth estimates from a monocular depth estimator to better
reason about potential occlusions. Our approach can be ap-
plied to the output of existing detectors and trackers, leading
to significant accuracy gains of 11% over the baseline, and
5% over state-of-the-art. We hope our problem definition
and initial exploration of this safety-critical task encourages
others to do so as well.
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