Detecting Invisible People

Tarasha Khurana¹ Achal Dave¹ Deva Ramanan¹,²
¹Carnegie Mellon University ²Argo AI
{tkhurana, achald, deva}@cs.cmu.edu

Figure 1: We visualize an online tracking scenario from Argoverse [9] that requires tracking a pedestrian through a complete occlusion. Such applications cannot wait for objects to re-appear (e.g., as re-identification approaches do): autonomous agents must properly react during the occlusion. We treat online detection of occluded people as a short-term forecasting challenge.

Abstract

Monocular object detection and tracking have improved drastically in recent years, but rely on a key assumption: that objects are visible to the camera. Many offline tracking approaches reason about occluded objects post-hoc, by linking together tracklets after the object re-appears, making use of reidentification (ReID). However, online tracking in embodied robotic agents (such as a self-driving vehicle) fundamentally requires object permanence, which is the ability to reason about occluded objects before they re-appear. In this work, we re-purpose tracking benchmarks and propose new metrics for the task of detecting invisible objects, focusing on the illustrative case of people. We demonstrate that current detection and tracking systems perform dramatically worse on this task. We introduce two key innovations to recover much of this performance drop. We treat occluded object detection in temporal sequences as a short-term forecasting challenge, bringing to bear tools from dynamic sequence prediction. Second, we build dynamic models that explicitly reason in 3D from monocular videos without calibration, using observations produced by monocular depth estimators. To our knowledge, ours is the first work to demonstrate the effectiveness of monocular depth estimation for the task of tracking and detecting occluded objects. Our approach strongly improves by 11.4% over the baseline in ablations and by 5.0% over the state-of-the-art in F1 score.

1. Introduction

Object detection has seen immense progress, albeit under a seemingly harmless assumption: that objects are visible to the camera in the image. However, objects that become fully occluded (and thus, invisible) continue to exist and move in the world. Indeed, object permanence is a fundamental visual cue exhibited by infants in as early as 3 months [3, 26]. Practical autonomous systems must similarly reason about such objects that undergo complete occlusions to ensure safe operation (Figure 1). Interestingly, existing work on object detection and tracking tends to de-emphasize this capability, either choosing to completely ignore highly-occluded instances for evaluation [15, 37, 50, 58], or simply down-weighting them because they occur so rarely that they fail to materially affect overall performance [41]. One reason that invisible-object detection may have been under-emphasized in the tracking community is that for offline analysis, one can post-hoc reason about the presence of an occluded object by relinking detections after it reappears. This approach has spawned the large subfield of reidentification (ReID). However, in an online setting (such as an autonomous vehicle that must make decisions given the available sensor information), intelligent agents must be able to instantaneously reason about occluded objects before they re-appear.

Problem formulation: We begin by introducing benchmarks and metrics for evaluating the task of detecting and
tracking invisible people. To do so, we repurpose existing tracking benchmarks and introduce metrics for evaluating this task that appropriately reward detection of occluded people. To ensure benchmarks are online, we forbid algorithms from accessing future frames when reporting object states for the current frame. Although this task requires reasoning about object trajectories, it can be evaluated as both a detection and a tracking problem. For the latter, we introduce extensions to tracking metrics in the supplement. When analyzing our metrics, it becomes readily apparent that human annotation of ground-truth occluded objects is challenging. We provide pilot human vision experiments in Section 4 that show annotators are still consistent, but exhibit larger variation in labeling the pixel position of occluded instances. This suggests that algorithms for occluded object detection should report distributions over object locations rather than precise discrete (bounding box) locations. Inspired by metrics for evaluating multimodal distributions in the forecasting literature [9], we explore probabilistic algorithms that make k predictions which are evaluated by Top-k accuracy.

Analysis: Perhaps not surprisingly, our first observation is that performance of state-of-the-art detectors and trackers plunges on occluded people, from 68.5% to 28.4%; it is far easier to detect visible objects than invisible ones! This underscores the need for the community to focus on this underexplored problem. We introduce two simple but key innovations for addressing this task, which improve performance from 28.4% to 39.8%. (a) We recast the problem of online tracking of occluded objects as a short-term forecasting challenge. We explore state-of-the-art deep forecasting networks, but find that classic linear dynamics models (Kalman filters) perform quite well. (b) Because modeling occlusions is of central importance, we cast the problem as one of 3D tracking given 2D image measurements.

Novelty: While there exists considerable classic work on 3D tracking from 2D [48, 7, 52, 10], much focuses on 3D modeling of tracked objects. Instead, we find that the 3D structure of scene occluders is important for understanding where tracked objects can “hide”. Typically such dense 3D understanding requires calibrated multiview sensors [53, 13]. Instead, we show that recent advances in uncalibrated monocular depth estimation provide “good enough” estimates of relative depth that still enable dense freespace reasoning. This is crucial because monocular depth has the potential to be far more scalable [55]. To our knowledge, ours is the first work to use uncalibrated depth estimates for multi-object tracking and detection of occluded objects.

Overview: After reviewing related work, we present our core algorithmic contributions, including straightforward but crucial extensions to classic linear dynamics models to (a) incorporate putative depth observations from a monocular network and (b) forecast object state even during occlusions. We conclude with extensive evaluations on three datasets [44, 54, 11] repurposed for detecting occluded objects.

2. Related Work

Amodal object detection aims to segment the full extent of objects that may be partially (but not fully) occluded. [66] introduces this task with a dataset labeled by multiple annotators, which is later expanded by [65]. More recently, [46] introduces a larger dataset of amodal annotations on the KITTI [20] dataset. Approaches in this setting largely rely on training variants of standard detectors (e.g. [23]) on amodal annotations generated synthetically from modal datasets [35, 12, 63, 60]. As this line of work addresses detection from a single image, it requires objects to be at least partially visible. By contrast, we target fully occluded people, which cannot be recovered from a single frame.

Multi-object tracking requires tracking across partial and full occlusions. Approaches for this task address occlusions post-hoc in an offline manner, using appearance-based re-identification models to identify occluded objects after they become visible. These appearance-based models can be incorporated into tracking approaches, as part of a graph optimization problem [4, 45, 62] or online linking [56, 5]. In this work, we point out that some approaches internally maintain online estimates of the position of occluded people [5, 6, 56], but explicitly choose not to report these internal predictions, as they tend to be noisy and, thus, are penalized heavily by current benchmarks. We provide two simple extensions to these internal predictions that significantly improve detection of occluded people while preserving accuracy on visible people. [21] tracks occluded objects using contextual ‘supporters’, but requires a user to initialize a single object to track in uncluttered scenes; by contrast, we simultaneously detect and track people in large crowds.

Other work shares our motivation of tracking in 3D but relies on additional depth sensors [19] or stereo setups [28, 8]. Finally, many surveillance-based tracking systems explicitly consider occlusion, but require calibrated cameras to compute ground plane coordinates [1, 18, 27, 30, 31]. By contrast, our work emphasizes detection of occluded people in uncalibrated, monocular videos. To do so, we use monocular depth estimators via technical innovations that address noise in predicted depth estimates. Our method generalizes to arbitrary videos, since estimating monocular depth is far more scalable than retrieving additional sensor information for any video.

Forecasting approaches predict pedestrian trajectories in future, unobserved frames. These approaches leverage social cues from nearby pedestrians or semantic scene information to better model person trajectories [51, 34, 59, 44, 40, 32]. Recently, data-driven approaches have also been proposed for learning social cues [2, 49]. We note that detection of fully occluded people can be formulated as forecasting the trajectory of a visible person in future frames, where the
positions of the occluded person are unobserved, but the rest of the frame can be observed. Some approaches do use forecasting to track objects [17, 39] but we use a constant-velocity model to forecast trajectories along with depth cues from the observed frames, to improve detection of occluded people. In Section 4.3, we show that while this approach can use a more powerful forecasting model, the constant-velocity approximation is sufficient in our setting.

3. Method

We build an online approach for detecting invisible people starting with a simple tracker, using estimated trajectories of visible people to forecast their location during occlusions. We describe our tracking mechanism, building upon [57]. While such trackers internally forecast the location of occluded people for improved tracking, these forecasts tend to be noisy and cannot directly localize occluded people. To address this, we incorporate depth cues from a monocular depth estimator to reason about occlusions in 3D.

3.1. Background

To detect people during occlusions, we build on a simple online tracker [57] that estimates the trajectories of visible people. We briefly describe aspects relevant to our approach, but refer the reader to [57] for a more detailed explanation. In the first frame, this tracker instantiates a track for each detected person. The tracker adds each track to its “active” set, representing people that have been seen so far. Each track maintains a Kalman Filter whose state space encodes the position \((x, y, \dot{x}, \dot{y})\), aspect ratio \((a, \dot{a})\), height \((h, \dot{h})\), and corresponding velocities \((\dot{x}, \dot{y}, \dot{a}, \dot{h})\) of the person. The filter’s process model assumes a constant velocity model with Gaussian noise (i.e., \(x_t = x_{t-1} + \dot{x}_{t-1} + \epsilon_x\)). At each successive frame, the tracker first runs the predict step of the filter, using the process model to forecast the location of the track in the new frame. Each detection in the current frame is matched to this set of active tracks based on appearance features, and distance to the tracks’ forecasted location (as estimated by the filter). A new track is created for all detections that are unmatched. If a track is matched to a detection, the detection is used as a new observation to update the track’s filter, and the detection is reported as part of the track. Importantly, if a track does not match to any detection, its forecasted box is not reported. When a track is not matched to a detection for more than \(N_{age}\) frames, it is deleted.

3.2. Short-term forecasting across occlusions

Although this tracker internally forecasts the positions of all tracks at each step, its estimates are used only to improve the association of tracks to detections, and are not reported externally. However, these internally forecasted track locations are crucial as they may correspond to an occluded person. We show that naively reporting these track locations leads to significant recall of occluded people, but the noise in these estimates results in poor precision. Further, these noisy estimates lead to a small decrease in overall accuracy, as standard benchmarks largely focus on visible people. We improve these estimates by augmenting them with 3D information. Specifically, we use a monocular depth estimator [36] to get per pixel depth estimates of the scene. We then augment our Kalman Filter state space with the inverse depth. Inverse depth is a commonly used representation predicted by depth estimators [36, 33] due to important benefits, including the ability to represent points at infinity and ability to model uncertainty in pixel disparity space (commonly used for stereo-based depth estimation [42]). Our state space thus additionally includes \(1/z\) variable.

3.3. Tracking in 3D camera coordinates using 2D image coordinates

Equipped with depth estimates, we formulate tracking with a constant velocity model in 3D using 2D measurements. Unlike prior work which assumes linear dynamics in (projected) 2D image measurements, our dynamics model operates in 3D using depth cues, resulting in far more realistic person trajectories. We derive our uncalibrated tracker by demonstrating that the unknown camera focal length \(f\) can be folded into a motion noise parameter that can be easily tuned on a training set. Hence our final method runs without calibration on arbitrary videos.

Let us model objects as cylinders with centroids \((X_t, Y_t, Z_t)\), height \(H\) and aspect ratio \(A_t\). We model object height as constant, but allow for varying aspect ratios because people are non-rigid. We can then compute image-measured bounding boxes with centroid \((x_t, y_t)\) and dimensions \((h_t, a_t)\) as follows:

\[
\begin{align*}
x_t &= \frac{X_t}{Z_t}, & y_t &= \frac{Y_t}{Z_t}, & h_t &= \frac{H}{Z_t}, & a_t &= A_t
\end{align*}
\]

We extend the commonly used constant velocity model with Gaussian noise from 2D [6, 56] to 3D:

\[
X_t = X_{t-1} + \dot{X}_{t-1} + \epsilon_x, \quad \epsilon_x \sim \mathcal{N}(0, \sigma_x),
\]

where similar equations hold for \(Y_t, Z_t\) and \(A_t\). Let the observed (inverse) depth from a depth estimator associated with an object be \(1/z_t\). Since image measurements are given by perspective projection of real world coordinates, we have the following equations (assuming Gaussian image noise):

\[
\begin{align*}
x_t &= \frac{X_t}{Z_t} + \epsilon_x, & \epsilon_x &\sim \mathcal{N}(0, \sigma_x) \\
\frac{1}{z_t} &= \frac{1}{Z_t} + \epsilon_z, & \epsilon_z &\sim \mathcal{N}(0, \sigma_z)
\end{align*}
\]

with similar equations for \(y_t, h_t, \) and \(a_t\). Note that inverse depth naturally assumes a large uncertainty in far away regions, and a small uncertainty in nearby regions. Defining a
We make two additional assumptions: that people move with a temporal noise model that is scaled by the estimated inverse-depth of the object (in the case of small errors, when \(z_f < \sigma_{\text{supp} z_o} \) or delete the track entirely (for large errors, when \(z_f < \sigma_{\text{delete} z_o} \)). A key advantage of this approach is the ability to reason about occlusions arising not only from interactions between tracked people, but also from natural occluders such as trees or cars. Section 4.3 shows that this modification is critical for improving the precision of our trajectory forecasts.

Camera motion. Camera motion is challenging, as our approach assumes linear dynamics for trajectories. To address this, we follow prior work (e.g., [5]) in estimating a non-linear pixel warp \(W \) between neighboring frames which maps pixel coordinates \((x_{t-1}, y_{t-1})\) in one frame to the next \((x_t, y_t)\). This warp is then used to align boxes forecasted using frames up to \(t - 1 \) with frame \(t \). Note that this alignment assumes the motion of dynamic objects is small relative to their size.
the scene motion, allowing for the use of an image registration algorithm [14]. Despite the simplicity of this modification, we show in the supplement that it helps considerably for the moving camera sequences. We also detail our algorithm with pseudo-code in the supplement. We proceed to an empirical analysis of the task and prior methods, showing the benefits of each component of our proposed approach.

4. Experimental Results

We first describe our proposed benchmarks, including the datasets and our proposed metrics for evaluating the task of detecting occluded people. Next, we conduct an oracle study in Section 4.1 to analyze how well existing approaches can detect occluded people. We then compare our proposed approach to these state-of-the-art approaches in multiple settings in Section 4.2. Finally, we analyze each component of our approach with a detailed ablation study in Section 4.3.

Dataset. Evaluating our approach is challenging, as most datasets do not annotate occluded objects. The MOT-17 [41], MOT-20 [11] and PANDA [54] datasets are key exceptions which label both visible and occluded people, along with a visibility field indicating what portion of the person is visible to the camera. We find that a majority of the annotations in these datasets (over 85% in each dataset) are people that are at least partially visible, leading standard evaluations on these datasets to underemphasize occluded people. To address this, we separately evaluate accuracy on the subset of fully occluded people (indicated by < 10% visibility). MOT-17 contains 7 sequences with publicly available groundtruth, and 7 test sequences with held-out groundtruth. We evaluate on these 14 sequences. MOT-20 contains 8 sequences, of which 4 have held-out groundtruth. PANDA officially releases a high-resolution 2FPS groundtruth for its 10 train and 5 test sequences. Because tracking and forecasting is challenging at such low frame rates, we reached out to the authors who provided a high-frame rate (30FPS), low-resolution groundtruth for 9 train videos. We report results on MOT-20 and PANDA train set without tuning our pipeline on any of the videos in these datasets. From visual inspection, we found that visibility labels in PANDA tend to be noisy (see the supplement), and so we define objects with up to 33% visibility as occluded. We carry out the analysis including oracle and ablation study on MOT-17 train and report the final results on MOT-17 test, MOT-20 and PANDA datasets. In all, these three datasets target a diverse set of application scenarios – static surveillance cameras, car-mounted cameras, and hand-held cameras.

Metric. As most benchmarks consist primarily of visible people, existing metrics which measure performance across all people underemphasize the accuracy of detecting occluded people. We propose detection and tracking metrics (see supplement for latter) which evaluate accuracy on occluded people, as indicated by visibility < 10% and 10% visible, last frame), annotators still agree to a fair extent (average IoU overlap of 60%, right), but require temporal video context. We use these to justify our Top-k evaluation and motivate our probabilistic tracking approach.

Top-k F1: We start by modifying the standard detection evaluation protocol [15, 37]. For every person, we allow methods to report k predictions, \(P = \{p_1, p_2, \ldots, p_k\} \). We match these predictions to all groundtruth boxes based on intersection-over-union (IoU). We define the overlap between a groundtruth \(g \) and \(P \) as the maximum overlap with the predictions \(p_i \) in \(P \) — i.e., \(\text{IoU}(g, P) = \max_i \text{IoU}(g, p_i) \). We use this overlap definition and perform standard matching between predictions and groundtruth, with a minimum overlap threshold of \(\alpha_{\text{IoU}} \).

When evaluating accuracy across all people, matched groundtruth boxes are true positives (TP), all unmatched groundtruth are false negatives (FNs, or misses), and unmatched detections are false positives (FP). When evaluating accuracy on occluded people, only matched occluded groundtruth boxes count as TPs, only unmatched occluded groundtruth boxes count as FNs, and all unmatched detections count as FPs. Intuitively, when evaluating metrics for occluded people, we do not penalize a detector for correctly detecting a visible person, but we do penalize it for false positives that do not match any visible or occluded person.

We now describe how the \(k \)-vector of predictions is obtained: in addition to a state mean (first sample), our probabilistic method maintains covariances for \(x \) and \(z \) state variables which result in a 2D gaussian. Since these gaussians may extend incorrectly into freespace, we perform rejection sampling to accumulate \(k \)-1 predictions which respect freespace constraints. This gives us \(P \). For baseline methods that are not probabilistic or do not have access to a depth map, we artificially simulate this distribution by tuning two scale factors that control the size of gaussians as a function of bounding box’s height. We tune these scale factors on MOT-17 train and use them throughout experiments.

Top-1 F1: When \(k = 1 \), this metric is simply the standard F1 metric. We additionally report this Top-1 F1 for
occluded and all people. We do not use the standard ‘average precision’ (AP) metric as most detectors and trackers on the MOT and PANDA datasets do not report confidences.

To guide evaluation, we conduct a human vision experiment with 10 in-house annotators who annotate 59 tracks with occlusions. Figure 3 shows that annotators have lower consistency when labeling occluded people than visible people. To address this ambiguity in localizing occluded people, we choose a low \(\alpha_{\text{supp}} = 0.5 \) and \(k = 5 \) in our experiments.

Implementation details. We empirically set parameters in our approach on MOT-17 train with Faster R-CNN [47] detections. The optimal thresholds for filtering forecasts on the train set are \(\alpha_{\text{delete}} = 0.88, \alpha_{\text{supp}} = 1.06 \)\(^1\). During occlusion we treat a person as a point, freezing its aspect ratio and height. We fix \(N_{\text{age}} \) to 30. The supplement presents further details of our method, parameters and their tuning protocol, including improvements by tuning \(N_{\text{age}} \). We tune on MOT-17 train and apply these tuned parameters on MOT-17 test, MOT-20, and PANDA. We find that our method and its hyperparameters tuned on the train set generalize well to the test set. We use [36] for monocular depth estimates, which has been shown to work well in the wild. While these estimates can be noisy, we qualitatively find that the relative depth orderings used in our approach are fairly robust.

4.1. Oracle Study

What is the impact of visible detection on occluded detection? We first evaluate an offline approach which uses groundtruth detections and tracks for visible people to (linearly) interpolate detections for occluded people in Table 1. As this method perfectly localizes visible people, and most people in this benchmark are visible, it achieves a high overall Top-5 F1 of 98.0 (Table 1, row 1). Additionally, despite using simple linear interpolation, this oracle also achieves a high Top-5 F1 of 87.3 for invisible people. This result indicates that although long-term forecasting of pedestrian trajectories may require higher-level reasoning [51, 34, 40], short-term occlusions may be modeled linearly.

Next, we evaluate the same approach with detections from a Faster R-CNN [47] model in place of groundtruth (Table 1, row 2). This leads to a significant drop in both overall and occluded accuracy, indicating that improvements in visible person detection can improve detection for invisible people. Finally, although Occluded Top-5 F1 drops, it is significantly above chance, suggesting that current detectors equipped with appropriate trackers can detect invisible people.

What is the impact of tracking on occluded detection? So far, we have assumed oracle linking of detections, allowing for linear interpolation of bounding boxes to detect people through occlusion. We now evaluate the impact of using an online tracker, equipped with re-identification, on detecting occluded people. Removing the oracle results in a drastic drop in accuracy: the Top-5 F1 score for occluded people drops by over 30 points (87.3 to 53.3, Table 1 row 3) using groundtruth detections, and 14 points with Faster R-CNN detections (46.4 to 32.2, Table 1 row 4). Despite this significant drop in Occluded Top-5 F1, the overall Top-5 F1 is significantly more stable (from 98.0 to 92.3 for groundtruth detections and 70.5 to 69.9 for Faster R-CNN), showing that overall person detection underemphasizes the importance of detecting occluded people.

Can online approaches work? These results indicate that in the offline setting, existing visible-person detection and tracking approaches can detect invisible people via interpolation. We now evaluate a simple online approach, which uses an off-the-shelf visible person detector (Faster R-CNN), equipped with a tracker (DeepSORT) and linear (constant velocity) forecasting for detecting invisible people (Table 1, row 5). Moving to an online setting results in a similar Top-5 F1 score but significantly reduces the precision for occluded persons, from 60.8 to 29.5. This is expected as even though linear forecasting recalls slightly more number of boxes than offline interpolation (recall from 21.9 to 30.2), its naive nature results in many more false positives resulting in a much lower precision and therefore, a similar F1 score. In Section 4.3, we present simple modifications to this approach that recover much of this performance gap.

\(^1\)Note that \(\alpha_{\text{supp}} > 1 \) allows the forecasted depth to be closer to the camera than the observed depth, accounting for potential noise in the depth estimator to reduce the number of forecasts that are suppressed.
Table 2: Results on MOT-17 [41], MOT-20 [11] and PANDA [54] train. We evaluate on public detections provided with MOT-17 (DPM, FRCNN, SDP), two trackers that operate on public detections (Tracktor++, MIFT), and CenterTrack which does not use public detections. We use (public FR-CNN, visible groundtruth) detections for (MOT-20, PANDA). Our method improves on occluded people across all trackers.

Table 3: Results on MOT-17 and MOT-20 test set. The best, second-best and third-best methods are highlighted.

4.2. Comparison to Prior Work

Next, we apply our approach to the output of existing methods to evaluate its improvement over prior work. Table 2 shows results on the MOT-17 train set, showing our approach improves significantly in Occluded Top-5 F1 ranging from 6.0 to 13.0 points, while maintaining the overall F1. Detecting invisible people requires reliable amodal detectors for visible people (ref. Section 4.1). For this reason, we use visible groundtruth detections from PANDA, similar to the oracle experiments in Section 4.1, as no public set of amodal detections come with PANDA (unlike MOT-17 or MOT-20). Table 2 shows that our method improves the detection of occluded people by 4.0% on PANDA using groundtruth visible detections and by 3.6% on MOT-20 using the Faster-RCNN public detections. We explicitly do not tune our hyperparameters for these two datasets, showing that our method is robust to changes in video data distribution. MOT-20 and PANDA contain a few sequences with top-down views, where occlusions are rare. We disable our depth and occlusion reasoning on such sequences; please see supplement.

As MOT-17 and MOT-20 test labels are held out, we worked with the MOTChallenge authors to implement our metrics on the test server. Table 3 shows that MIFT [24] and Tracktor++ [5] achieve the highest Occluded Top-5 F1 amongst prior online approaches on MOT-17 and MOT-20 test respectively. Applying our approach on top of these methods improves results significantly by 5.0% to 43.4 F1 and by 2.7% to 46.9 F1, leading to a new state-of-the-art for occluded person detection on MOT-17 and MOT-20 test.

Table 2 shows that our method consistently improves occluded F1. However, it sometimes results in a drop in overall accuracy. We attribute this to the increased number of false positives introduced while tackling the challenging task of detecting invisible people. These false positives for invisible people are counted as false positives for all people, whether visible or invisible. This causes existing metrics to penalize methods for even trying to detect invisible people. In safety critical applications, where worst-case accuracy may be more appropriate, our approach significantly improves during complete occlusions by up to 13.0% on MOT-17, while mildly decreasing average accuracy by 0.4%.

4.3. Ablation Study

We now study the impact of each component of our approach in Table 4, focusing on the Occluded Top-5 F1 metric using Faster R-CNN detections on the MOT-17 train set. First, we show that the DeepSORT tracker, upon which our approach is built, results in a 28.4 Occluded Top-5 F1. Reporting the internal, linear forecasts from the tracker increases the score to 29.8, driven primarily by a 12.5% improvement in recall. Compensating for camera motion provides another 2.4% improvement. Next, leveraging depth cues to incorporate freespace constraints, as detailed in Section 3.3, improves accuracy by 3.5%, driven primarily by a 14.6% jump in precision, indicating that this component drastically reduces false positives. Finally, we add depth-aware process noise to handle perspective transformations between 2D and 3D coordinates, which leads to an improvement of 4.1%, resulting in a final score of 39.8. Only a 1.0% improvement in F1 as compared to 4.1% with Top-5 F1 suggests that our uncertainty estimates are significantly improved by the depth-aware process noise scaling. In all, our approach leads to an improvement of 11.4% over the baseline. Figure 4
Figure 4: Our probabilistic model reports a distribution over 3D location during occlusions. We visualize (occluded, visible) detection with (outlined, filled-in) bounding boxes (top). We provide “birds-eye-view” top-down visualizations of Gaussian distributions over 3D object centroids with covariance ellipses (bottom). During occlusion, variance grows roughly linearly with the number of consecutively-occluded frames. We are also able to correctly predict depth of occluded people in the top down view, e.g., in the second last frame, which would not be possible with single-frame monocular depth estimates. During evaluation, we truncate the uncertainty using our freespace estimates (not visualized). Please refer to the supplement video.

Table 4: MOT-17 train ablations. Each row adds a component to the row above. ‘Dep. noise’ is depth-aware noise.

<table>
<thead>
<tr>
<th></th>
<th>Top-5</th>
<th></th>
<th></th>
<th>Top-1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Occl F1</td>
<td>Occl Prec</td>
<td>Occl Rec</td>
<td>All F1</td>
<td>Occl All</td>
</tr>
<tr>
<td>DeepSORT</td>
<td>28.4 ±0.1</td>
<td>71.9 ±0.2</td>
<td>17.7 ±0.1</td>
<td>68.5 ±0.0</td>
<td>20.1 ±0.1</td>
</tr>
<tr>
<td>+ Forecast</td>
<td>29.8 ±0.2</td>
<td>29.5 ±0.4</td>
<td>30.2 ±0.1</td>
<td>69.4 ±0.0</td>
<td>20.9 ±0.9</td>
</tr>
<tr>
<td>+ Egomotion</td>
<td>32.2 ±0.2</td>
<td>33.1 ±0.3</td>
<td>31.3 ±0.1</td>
<td>70.4 ±0.0</td>
<td>23.2 ±0.2</td>
</tr>
<tr>
<td>+ Freespace</td>
<td>35.7 ±0.0</td>
<td>47.7 ±0.1</td>
<td>28.6 ±0.0</td>
<td>70.4 ±0.0</td>
<td>25.7 ±0.2</td>
</tr>
<tr>
<td>+ Dep. noise</td>
<td>39.8 ±0.2</td>
<td>52.6 ±0.6</td>
<td>32.0 ±0.0</td>
<td>70.5 ±0.1</td>
<td>26.7 ±0.5</td>
</tr>
</tbody>
</table>

Table 4: MOT-17 train ablations. Each row adds a component to the row above. ‘Dep. noise’ is depth-aware noise.

5. Discussion

We propose the task of detecting fully-occluded objects from uncalibrated monocular cameras in an online manner. Our experiments show that current detection and tracking approaches struggle to find occluded people, dropping in accuracy from 68% to 28% F1. Our oracle experiments reveal that interpolating across tracklets in an offline setting noticeably improves F1, but the task remains difficult because of large occlusions. We propose an online approach that forecasts the trajectories of occluded people, exploiting depth estimates from a monocular depth estimator to better reason about potential occlusions. Our approach can be applied to the output of existing detectors and trackers, leading to significant accuracy gains of 11% over the baseline, and 5% over state-of-the-art. We hope our problem definition and initial exploration of this safety-critical task encourages others to do so as well.

Acknowledgements We thank Laura Leal-Taixé, Simon Lucey, Gengshan Yang, Patrick Dendorfer, Xueyang Wang, internal reviewers at CMU RI, and participants of the human vision experiment for their help. This work was supported by the CMU Argo AI Center for Autonomous Vehicle Research, the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001117C0051, and the National Science Foundation (NSF) under Grant No. IIS-1618903.
References

[23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. In ICCV, 2017. 2, 8

[26] Yan Huang and Irfan Essa. Tracking multiple objects through time rgb-d based people detection and tracking for mobile robots and head-worn cameras. In ICRA, 2014. 2

[27] Omid Hosseini Jafari, Dennis Mitzel, and Bastian Leibe. Real-time rgb-d based people detection and tracking for mobile robots and head-worn cameras. In ICRA, 2014. 2

[46] Lu Qi, Li Jiang, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Amodal instance segmentation with KINS dataset. In *CVPR*, 2019. 2

[57] Xiaosheng Yan, Feigege Wang, Wenxi Liu, Yuanlong Yu, Shengfeng He, and Jia Pan. Visualizing the invisible: Occluded vehicle segmentation and recovery. In *ICCV*, 2019. 2

