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Abstract

The goal of unsupervised co-localization is to locate the
object in a scene under the assumptions that 1) the dataset
consists of only one superclass, e.g., birds, and 2) there
are no human-annotated labels in the dataset. The most
recent method achieves impressive co-localization perfor-
mance by employing self-supervised representation learn-
ing approaches such as predicting rotation. In this pa-
per, we introduce a new contrastive objective directly on
the attention maps to enhance co-localization performance.
Our contrastive loss function exploits rich information of
location, which induces the model to activate the extent
of the object effectively. In addition, we propose a pixel-
wise attention pooling that selectively aggregates the fea-
ture map regarding their magnitudes across channels. Our
methods are simple and shown effective by extensive qual-
itative and quantitative evaluation, achieving state-of-the-
art co-localization performances by large margins on four
datasets: CUB-200-2011, Stanford Cars, FGVC-Aircraft,
and Stanford Dogs. Our code will be publicly available on-
line for the research community.

1. Introduction
Object localization aims to capture the location of the

target object in a given image. Over the past decade, deep
learning approaches have become mainstream in object lo-
calization. These methods typically train a convolutional
neural network (CNN) with human-annotated locations in
the form of bounding boxes [24, 29, 30]. This has shown
great performance but has the downside that the location
annotations on all images are too expensive.

To alleviate this, object localization with weaker super-
vision, such as image-level class labels [43] or dataset-level
superclass label [2, 37], has drawn a lot of attention recently.

*Work done as a research scientist at NAVER AI Lab.
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Figure 1: Contrastive learning framework for image co-
localization. An encoder embeds two views of one image
into feature maps which become attention maps by channel-
wise pooling. Then we train the encoder by contrastive ob-
jective on the attention maps, which preserve signals from
different locations, and by classification objective on the
feature maps for the pretext task.

In general, the former is called weakly-supervised object lo-
calization (WSOL), whereas we refer to the latter as image
co-localization. This paper focuses on the problem of im-
age co-localization, which aims to locate common objects
in a dataset consisting of only one superclass.

Existing image co-localization methods can be divided
into two categories: multiple instance learning (MIL) and
self-supervised representation learning (SSL). MIL-based
methods [17, 33] firstly generate candidate boxes and then
identify if each box contains the target object using hand-
crafted features. These approaches require high computa-
tional costs for inference, making it difficult to operate in
real-time.
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On the other hand, the SSL-based methods employ im-
age transformation as a pretext task. If the selected trans-
form is rotation, the model learns to predict the amount of
rotation applied to the image. Interestingly, the attention
map from the learned representation is strongly activated at
the location of the target object. The current state-of-the-art
method [2] trains the network by cross-entropy for classify-
ing artificial labels from the pretext task.

However, Figure 2 illustrates that the activations smear
in the backgrounds, which hamper the co-localization per-
formance. We suppose one of the reasons be the dis-
crepancy between the goals of classification and localiza-
tion [9, 32]: the classification loss function trains the model
to learn the task-relevant information. We believe that the
co-localization performance can be further improved by ad-
ditional location-related information.

Contrastive learning [13] became popular in self-
supervised representation learning in recent years. How-
ever, it is not straightforward to adapt it into image co-
localization because current state-of-the-art methods en-
code the transformed images into feature vectors by neu-
ral networks [3, 14] and the feature vector does not contain
spatial information.

To adopt the contrastive learning for image co-
localization, we believe that three questions need to be an-
swered: (1) how do we encode the input image into the em-
beddings that contain spatial information? (2) how do we
define positive and negative pairs of embeddings for con-
trastive learning? and (3) which image transformation do
we use?

To this end, we propose a contrastive learning framework
(Figure 1) for image co-localization considering these three
questions. First, we aggregate the last convolutional fea-
ture map of across the channels to generate an attention map
which will serve as an embedding for the contrastive frame-
work. It allows the contrastive framework not to lose spatial
information. Specifically, we introduce a simple and effec-
tive pooling method that chooses the contributed channels
separately in each location for computing attention maps.
Second, we maximize the similarity between the attention
map of the input original image and the inverse transformed
attention map of the transformed image, and maximize the
dissimilarity between the former and the attention map on
the background. It makes the attention map contain the ex-
tent of the object more accurately. Last, we explore vari-
ous image transformations for the positive pairs. Then, we
suggest the optimal combination for image co-localization.
Overview of our framework is illustrated in Figure 3.

We demonstrate the effectiveness of the proposed
method through extensive experiments. Qualitative evalu-
ation results show that our method can localize the full ex-
tent of the object and ignore the background. In quanti-
tative evaluation, our method achieves new state-of-the-art
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Figure 2: Activation maps extracted from baseline and our
model. The baseline method trains the network using only
the classification loss. Thus, it activates even on back-
grounds to predict the amount of transformations. The red
boxes are the ground truth, and the green boxes are the pre-
dictions.

localization performances on CUB-200-2011 [34], Stanford
Cars [20], FGVC-Aircraft [26], and Stanford Dogs [18].

In summary, our main contributions are:

• We propose a novel way to adopt a contrastive learning
framework for image co-localization. The proposed
framework successfully leads the model to learn the
full extent of the target object.

• We extensively study how to adopt contrastive learning
for image co-localization: (1) the definition of positive
and negative pairs, (2) a simple yet effective attention
extraction method, and (3) an optimal combination of
image transformations.

• Our method achieves new state-of-the-art localization
performances with significant margins on four differ-
ent benchmark datasets. Consistent results are ob-
served through qualitative evaluation.

2. Related Work
Image co-localization aims to discover the common object
using only unlabeled positive image sets. Li et al. [22] ap-
ply the object detector [12] to generate heat maps by model-
ing the distribution of confidence scores. However, they re-
quire a supervised detector to obtain object candidates, and
localization performance depends on the quality of initial
proposals.

Several methods reuse CNN pre-trained models to local-
ize target objects. Selective convolutional descriptor aggre-
gation [36] discards the noisy backgrounds and aggregates
the remaining deep convolutional descriptors from the pre-
trained model. Deep descriptor transforming [37, 38] pro-
poses an indicator matrix using principal component anal-
ysis that can indicate the correlations of deep descriptors.
Co-attention recurrent unit [21] explores all training set to
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Figure 3: Our proposed self-supervised co-localization network based on contrastive learning. The pixel-wise top-k attention
pooling (PTAP) generates the attention maps from original and transformed images. We compute the contrastive attention
map loss (CAML) so that the positive pairs are closer to each other and away from the negative pairs. Our model can use
various pretext tasks other than the rotation in Figure 3.

learn the valuable group representation. Spatial-semantic
modulated deep network [40] trains a mask to coarsely lo-
calize the co-object regions that capture the correlations of
image features. We also use the CNN features but propose
an effective attention pooling that indicates the foreground
area of the target object well. Most recently, Baek et al. [2]
proposed PsyNet that employs self-supervised learning to
solve the unsupervised co-localization task. We also focus
on self-supervised learning but introduce a novel objective
function to localize the entire object more accurately.

Self-supervised learning. Many self-supervised methods
have been proposed to learn meaningful feature represen-
tation without expensive manual annotations. Doersch et
al. [10] extract random pairs of patches in the 3 x 3 grid and
predict the relative position between two patches. Context-
free network [27] defines a set of jigsaw puzzle permuta-
tions to classify the randomly permutated index. Count-
ing [28] exploits image transformations (e.g., scaling and
tiling) to estimate the number of visual primitives in the im-
age. RotNet [11] predicts random multiples of 90 degrees
from rotated images. We find these methods useful, but we
complement their limitations with contrastive learning.

Also, contrastive leaning [13] pulls similar samples
closer and pushes different samples away in an embedding
feature space. Recent self-supervised approaches [3, 4, 5,
14] consider the different images in the minibatch to mini-
mize the agreement for negative pairs. These methods use

the last feature vector of the neural network to calculate the
similarity. However, the feature vector does not contain lo-
cation information; hence it cannot be employed for image
co-localization. To address this, we propose contrastive at-
tention maps to compute the similarity.

3. Proposed Method

We first obtain the contrastive attention maps by encod-
ing multiple views of the input image with our pixel-wise
top-k attention pooling (§3.1). Then, we compute con-
trastive attention map loss with the attention maps to train
the model (§3.2). The schematic overview of our method is
shown in Figure 3.

3.1. Pixel-wise Top-k Attention Pooling

Motivation. A common method to locate objects is to ex-
tract class activation maps (CAM) [43] from the last con-
volutional feature map of a trained classifier [1, 9, 19, 25].
However, it requires class labels to specify the target objects
for CAM.

To obtain the attention maps in the image co-localization
setting where the target class labels are not given, previ-
ous methods use max-pool [39] or average-pool [2]. Es-
pecially, [2] finds average-pool effective for extracting at-
tention maps and name it class-agnostic activation mapping
(CAAM). We question the choice for max or average and

2805



design an alternative that improves co-localization perfor-
mance.
Our attention pooling. We propose a new attention pool-
ing based on activations’ priority which is defined as fol-
lows. To obtain the priority, we first employ a channel
attention module [35] to assign importance weights for
each channel of the feature map. Specifically, we apply
a global average pooling (GAP) [23] layer, a 1D convolu-
tion, and sigmoid function sequentially on the feature map
Fx ∈ RC×H×W . Then, we compute the weighted feature
map Fw ∈ RC×H×W by:

Fw = Fx ⊙ σ(Conv1D(GAP(Fx))), (1)

where Conv1D indicates a 1D convolution and ⊙ denotes
element-wise multiplication with broadcast along spatial di-
mensions. We treat the activation values of the weighted
feature map Fw as the priority of activations. Finally, with
priority, we define the pixel-wise top-k pooled attention
map A. Specifically, we collect top-k activations in each
location and perform average pooling over the channel di-
mension:

A(x, y) =
1

|C|
∗
∑
j∈C

Fw(x, y, j), (2)

where C is a set of selected channel indices regarding their
magnitudes across channels. It is worth noting that max
and average pooling can be regarded as special cases of our
pooling method. This is because, when all the channels are
selected, ours becomes average pooling and when |C| = 1,
ours becomes max pooling.

3.2. Contrastive Attention Map Loss

Contrastive objectives [3, 14] learn representations
by maximizing agreement between differently augmented
views (positive pair) from the original image. We propose
a novel objective function for the co-localization task using
this concept of contrastive learning. Figure 3 illustrates the
schematic of our method. Predicting rotation is chosen as
an example pretext task for brevity here and we will cover
other pretext tasks later. We train the model with a classi-
fication loss that predicts the degree of rotation and with a
contrastive loss function that maximizes the similarity be-
tween positive pairs and minimizes that between negative
pairs.

To construct the positive and negative pairs, we first ob-
tain two attention maps: Aori and Atrans of original and
transformed input images, respectively, by our attention
pooling. Then, we generate transformed attention map
Aorig2trans by applying the transformation T to the attention
map Aori of the original input image. Next, we apply the
inverse transformation T-1 to the attention map Atrans of the
transformed input image to obtain the inverse transformed

attention map Atrans2ori. Finally, the background attention
maps (Aori2bg, Atrans2bg) for negative pairs are computed as
below:

Mbg = 1[(1−A(·)) > θbg],

A(·)2bg = A(·) ⊙Mbg.
(3)

1 denotes a matrix with the same shape with the reverse at-
tention map having ones according to the logical operation.
θbg is a background threshold hyperparameter which set by
prefixed ratio of the minimum intensity of the reverse atten-
tion map (1-A(·)).

Then, we build two triplets of (anchor, positive
sample, negative sample): (Atrans2ori,Aori,Aori2bg) and
(Aori2trans,Atrans,Atrans2bg). Formally, our contrastive atten-
tion map loss (CAML) is given by:

Lcaml = Ex[[d(Atrans2ori,Aori)− d(Atrans2ori,Aori2bg) +m]++

[(d(Aori2trans,Atrans)− d(Aori2trans,Atrans2bg) +m]+].

(4)

where [·]+ = max(·, 0) and d(·, ·) denotes L2 distance in
attention map. m indicates the margin.

Our objective encourages consistency between the atten-
tion maps before and after the transformation of the input
image. Also, it penalizes the attention maps of two anchors
being activated in backgrounds.

3.3. Training and Inference

Training. We train our network with the full objective:

Ltotal = Lcls + Lcaml (5)

To compute the classification loss, we employ a GAP layer
at the end of the network, produce softmax output ŷ, and
then compute the loss given the ground truth label y:

Lcls = CrossEntropy(ŷ, y) (6)

Inference. We first generate the attention map Aori from
the original input image by using our PTAP. Next, the fi-
nal output, the bounding box, is obtained from the attention
map. Note that we follow the common practice [2, 8, 43] to
extract a bounding box from an attention map.

4. Experiments
Datasets. We evaluate the proposed method on four bench-
marks: CUB-200-2011 [34], Stanford Cars [20], FGVC-
Aircraft [26], and Stanford Dogs [18]. Each dataset is di-
vided into two subsets: train and test. The train
sets include only images without labels for training. The
CUB dataset is also commonly used in WSOL, and we per-
form comparative experiments with recent WSOL state-of-
the-art methods.
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Evaluation metrics. Following the common prac-
tice [2, 36, 38, 41], we evaluate our method in terms of
CorLocIoU=0.5, where the predicted box is considered as
correct if an intersection over union (IoU) exceeds 50%.
We also compute Mean that averages accuracies at three
IoU criterions ∈ {0.3, 0.5, 0.7} to address diverse demands
for localization fineness. In addition, MaxBoxAccV2 [8]
is also measured for comparison with WSOL methods.
MaxBoxAccV2 measures the ratio of the samples with the
correct box, while the correctness is defined by an IoU cri-
terion 0.5 at the optimal activation threshold.

Implementation details. We build the proposed method
upon two CNN backbones: VGG16 [31], SE-ResNet50 [15,
16]. We insert our PTAP at the last convolution layer
for each backbone during the both training and inference
phases. We define two hyperparameters: k for PTAP and
θbg for background thresholding. The background thresh-
old is set to minimum intensity of APTAP times pre-defined
ratio θbg. We use 2.3 for θbg regardless of the dataset. We
set the batch size to 64 and margin m to 1. The initial learn-
ing rate and the momentum of the SGD optimizer are set to
0.001 and 0.9, respectively. We also begin by loading Ima-
geNet pre-trained weights for comparison with existing co-
localization works [2, 36, 38, 41] and then fine-tune the net-
work. Our model is implemented using PyTorch and trained
using two NVIDIA GeForce RTX 2080 Ti GPUs for ap-
proximately three hours.

4.1. Comparison with state-of-the-art methods

In Table 1 and Table 2, we compare the proposed
method with the weakly-supervised methods and unsu-
pervised co-localization in terms of CorLocIoUs=0.5 and
MaxBoxAccV2, respectively. We also show the upper
bound accuracy based on few-shot learning [8]. It uses
only a few fully labeled samples per class at training. The
CUB dataset is commonly used in WSOL tasks, and three
datasets (CUB, Cars, Aircraft) are traditionally used in
unsupervised co-localization tasks. Additionally, we also
compare with recent state-of-the-art works [2, 36, 41] on
the Stanford Dogs dataset [18].

Our method achieves state-of-the-art performance
both CorLocIoUs=0.5 on the four benchmarks and
MaxBoxAccV2 [8] on the CUB dataset. In Table 1, we ob-
serve that our method achieves state-of-the-art localization
performance. We believe that this is particularly impressive
because our method does not need image-level class labels.

In Table 2, we observe that the proposed method has
achieved the best performance on all four datasets. On the
CUB and Stanford Dogs datasets, our method increases per-
formance by 2% and 9% compared to PsyNet [2], respec-
tively. Our improvements on Stanford Cars and Aircraft
are not significant as those of other datasets, because the
performances on Stanford Cars and Aircraft benchmarks

Table 1: MaxBoxAccV2 [8] comparisons with the WSOL
state-of-the-art methods on the CUB dataset. The values are
taken from [8] except for MEIL [25]. The result of MEIL is
reproduced with the officially provided checkpoint.

Method MaxBoxAccV2@IoU (%)
0.3 0.5 0.7 Mean

V
G

G
16

Few-shot [8] - 86.30 - -
CAM [43] 96.77 73.14 21.23 63.72
ACoL [42] 93.77 63.20 15.17 57.38
ADL [9] 97.72 78.06 23.04 66.28

MEIL [25] 96.19 70.99 18.38 61.85
InCA [19] 96.20 77.20 26.75 66.72

Ours 96.42 84.15 50.60 77.06

have already been saturated. We also measure the perfor-
mance on the SE-ResNet50 [15, 16] backbone for the com-
parison with PsyNet [2]. The performances of our method
on all datasets outperform those of PsyNet in terms of
CorLocIoUs=0.5.

4.2. Ablation study

The ablation studies for the proposed components are
performed with VGG16 [31] on CUB-200-2011 [34]. We
validate the necessity of each proposed element over the
baseline.

Necessity of the proposed components. We propose two
components to locate the correct extent of the target object.
Table 3 shows the effectiveness of each proposed element
on the baseline. The baseline utilizes a rotation pretext task
that estimates four rotation angles by using only the classi-
fication loss Lcls.

We observe that each component of our method plays an
important role in improving co-localization performance.
Specifically, ours without the Lcaml achieves 3.76% lower
performance than the full setting. PTAP also improves the
performance by 3.70%. Excluding the Lcls in our full set-
ting, the performance degrades by 2.46%, and the degra-
dation is the smallest compared to the two elements. It
means that Lcls has the lowest contribution to the perfor-
mance improvement of our method. It is worthy to note that
the best performance is achieved when all components are
employed. Interestingly, our method especially boosts the
accuracy of CorLocIoU=0.5 and CorLocIoU=0.7. This in-
dicates that our proposed method induces the model to learn
the extent of the object more effectively than the baseline
method.

Superiority of the contrastive attention over contrastive
feature map. In general, contrastive learning [3, 5, 6, 14]
compares similarity by embedding the samples as feature
representations. Following the original way of contrastive
learning, we compare the performance for two cases using
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Table 2: CorLocIoU=0.5 comparisons with the co-localization state-of-the-art methods on four benchmarks. SE: SE-
Res50 [15, 16]. The values are taken from their respective papers.

Method CUB-200-2011 Stanford Cars FGVC-Aircraft Stanford Dogs
V

G
G

16

Part-based [7] 69.37 93.05 42.91 36.23
SCDA [36] 76.79 90.96 94.91 78.76
DDT [38] 82.26 71.33 92.53 -
OLM [41] 80.45 92.51 94.94 80.70
PsyNet [2] 83.78 96.61 95.59 73.71

Ours 85.88 97.26 96.60 82.82

SE

PsyNet [2] 85.10 98.81 97.81 77.84
Ours 85.93 98.95 98.75 80.32

Table 3: The ablation study of the main configurations
of our method in terms of CorLocIoUs for rotation task.
Lcls: classification loss. Lcaml: contrastive attention map
loss (CAML). APTAP: pixel-wise top-k attention pooling
(PTAP).

Method
Dataset: CUB CorLocIoUs

Lcls Lcaml APTAP 0.3 0.5 0.7 Mean
Baseline ✓ ✗ ✗ 96.75 77.21 28.66 67.54
Ours ✓ ✓ ✓ 97.30 83.65 38.64 73.20
−Lcls ✗ ✓ ✓ 94.73 77.25 40.24 70.74
−Lcaml ✓ ✗ ✓ 96.65 78.97 32.70 69.44
−APTAP ✓ ✓ ✗ 96.73 79.49 32.27 69.50

Table 4: CorLocIoUs comparison according to the feature
maps or attention maps used to calculate our contrastive at-
tention map loss Lcaml.

Method: rotation CorLocIoUs

0.3 0.5 0.7 Mean
Lcaml w/ feature maps 95.82 76.97 30.96 67.92
Lcaml w/ attention maps 97.30 83.65 38.64 73.20

feature representations or attention maps to calculate our
Lcaml (Table 4). Both cases train our model using Equa-
tion (4), but generating positive and negative pairs is differ-
ent. Lcaml with feature representations multiplies the atten-
tion map generated using our PTAP with the weighted fea-
ture map Fw (element-wise multiplication over the chan-
nel dimension). Specifically, Lcaml with attended features
achieves 5.28% lower performance than Lcaml with atten-
tion maps. Consequently, the proposed method achieves
better performance when operating on attention maps rather
than feature representations.

Necessity of both positive and negative pairs. Recent
contrastive learning work [6] proposes a simple siamese
network that maximizes the similarity only between posi-
tive pairs without negative pairs. We note that [6] is not

Table 5: CorLocIoUs on the proposed method according
to the negative sampling or not. We train our network by
calculating the L2 loss between positive pairs in the case of
w/o neg pairs (first row). Ours w/o pos pairs (second row)
train the network so that the negative pairs are separated
from each other. The margins used in the second and third
rows are applied equally.

Method: rotation CorLocIoUs

0.3 0.5 0.7 Mean
Ours w/o neg pairs 96.94 80.60 32.94 70.16
Ours w/o pos pairs 96.65 78.11 28.99 67.92
Ours 97.30 83.65 38.64 73.20

proposed for image co-localization. However, we believe
that the insight of them needs to be considered as a possi-
ble design choice for co-localization. Therefore, we vali-
date the idea of only using positive pairs or negative pairs
in terms of co-localization.

In the Table 5, we compare the performance accord-
ing to the composition of pairs to calculate our loss using
PTAP. We observe that using negative and positive sam-
pling together plays an important role in improving per-
formance. The performance particularly boosts in terms of
CorLocIoU=0.7; thus, the model covers the region of the
target object more accurately.

Effect of pixel-wise top-k sampling. In Table 6, we also
measure CorLocIoUs according to how we pool the atten-
tion map. Ours with the max pooling uses only the maxi-
mum value from one location; thus, one exceptionally high
activation may overwhelm the entire attention, leading to
an exaggerated focus on the most discriminative part. Us-
ing the top-70% pooling improves the mean accuracy by
20% compared to the bottom-30% pooling. Figure 4 is the
visualization of generating final activation maps from our
model with averaging all channels, top-70% channels, and
bottom-30% channels. Bottom-30% pooling with relatively
low weights activates mainly around objects or background

2808



Table 6: CorLocIoUs comparisons of PTAP for rotation
task. The bottom-30% attention values of the pixel unit are
the main factor in the performance drop due to the back-
grounds. Excluding them to generate attention maps shows
better performance.

Method: rotation CorLocIoUs

0.3 0.5 0.7 Mean
Ours w/ bottom-30% 89.04 57.90 17.74 54.89
Ours w/ max 91.09 62.35 20.60 58.01
Ours w/ top-70% 97.30 83.65 38.64 73.20
Ours w/ average 96.30 81.89 34.65 70.94

Average 
pooling

Top-70% 
pooling

Bottom-30% 
pooling

Figure 4: Qualitative comparisons of activation map and
localization results according to the pooling methods of our
PTAP (average, top-70%, and bottom-30%). The red boxes
are the ground-truth and the green boxes are the predictions.

Figure 5: (a) Loss curve (Lcaml and Lcls), (b) Activation
maps from the baseline and ours as training proceeds.

areas. Average pooling tends to suppress the target object
area where strong activation appears due to a channel with
low reliability, or rather, the background contributes to the
generation of an attention map. On the other hand, the top-
70% pooling method can cover the extent of the object more
accurately. In summary, we confirm that our design choice
of PTAP is effective to improve localization performance
effectively by both qualitative and quantitative evaluations.
Choice of image transformations. We measure the
CorLocIoU=0.5 on various image transformations. Specif-
ically, For that, six different transformations are chosen,
which are rotation [11], scale, translation, horizontal flip
(Hflip), vertical flip (Vflip), and recently proposed PST [2].

Figure 6: Mbg regarding θbg. red box: ground truth.

Table 7 shows the experimental results. Note that the base-
line method trains the network using only the classification
loss.

On all six pretext tasks, we show that our method
improves localization performance compared to baseline
across all the datasets. Especially, there are large perfor-
mance gains in scale and translation tasks where undefined
regions occur after transformation. We fill the undefined re-
gions with reflection (reflected remaining part of the image)
and zeros for scale and translation tasks, respectively.

We observe that our method consistently improves local-
ization performance overall image transformations. Among
them, our method achieves the highest performance in the
rotation prediction task [11], except for the Stanford Dogs
dataset. To successfully predict the rotation of an image, the
RotNet [11] encourages to accomplish the rotation predic-
tion task it learns to focus on high-level object parts (e.g.,
eyes, tails, heads, etc.). Learning the feature representation
with these properties helps to localize the target object.
Early behavior analysis. Figure 5a plots the two losses.
The rotation classification loss Lcls quickly drops in the
early phase (red box) and our contrastive attention map loss
Lcaml slowly follows. The early training dynamics neither
heavily fluctuates nor saturates. Qualitatively, the attention
maps start from rough coverage and gradually fit to the ob-
ject extent while the baseline barely changes (Figure 5b).
Performance variation regarding θbg. Lower θbg leaves
more foreground attention on the negative counterpart,
shrinking the attention map to be dissimilar from it (Fig-
ure 6). According to our experimental results on the rota-
tion task (same setting with Table 6), we observe that our
hyperparameter is quite robust in that our method still sur-
passes the baseline in a large margin with 1.5 ≤ θbg ≤ 2.6.

4.3. Qualitative results

Figure 7 illustrates attention maps and estimated bound-
ing boxes from PsyNet [2] and ours. Since PsyNet [2] learns
using only classification loss and has no background con-
straints, it is challenging to cover less discriminative regions
(e.g., leg, beak, tail) accurately. In contrast, our method
constrains the background region during training, so it can
cover the full extent of the object effectively. More exam-
ples are available in the supplemental material. Unfortu-
nately, some examples in Figure 8 degenerate when the ob-
jects are under the shadow, overlapping, unclear visual clue,
or mirror image. Part of the background is activated due to
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Table 7: CorLocIoU=0.5 comparisons with the base task (VGG16) on each dataset. Baseline: learns using only classification
loss (e.g., rotation [11]: 0◦, 90◦, 180◦, 270◦). The results of PST [2] are reproduced using official code. Best entries:
boldface + underline. Second-best entries: underline.

Task CUB-200-2011 Stanford Cars FGVC-Aircraft Stanford Dogs
Baseline Ours Baseline Ours Baseline Ours Baseline Ours

Rotation [11] 77.21 83.65 (+6.4) 88.69 97.41 (+8.7) 91.86 97.14 (+5.3) 77.79 82.03 (+4.2)
Scale 44.66 83.62 (+39.0) 77.41 91.69 (+14.3) 65.70 96.69 (+31.0) 67.30 82.63 (+15.3)
Translation 22.98 83.05 (+60.1) 61.37 97.40 (+36.0) 47.13 96.36 (+49.2) 58.05 66.72 (+8.7)
Hflip 73.76 75.12 (+1.4) 91.45 96.81 (+5.4) 87.15 94.83 (+7.7) 78.18 80.88 (+2.7)
Vflip 75.94 80.51 (+4.6) 91.96 96.08 (+4.1) 92.85 94.77 (+1.9) 77.07 80.44 (+3.4)
PST [2] 48.92 76.80 (+27.9) 92.89 95.68 (+2.8) 92.41 96.51 (+4.1) 67.91 86.64 (+18.7)

PsyNet Ours PsyNet Ours PsyNet Ours PsyNet Ours

Figure 7: Activation maps and localization outputs of PsyNet [2] and ours on the CUB dataset. The red boxes are the ground-
truth and the green boxes are the predictions.

Mirror image Shadow Overlapping Unclear clue

Figure 8: Some degenerated localization outputs on the
CUB dataset. A mirror image means that an object is re-
flected in the water.

the factors mentioned above, and as a result, the model out-
puts a bounding box larger than the ground truth box.

5. Conclusion

In this paper, we propose a novel method for improving
image co-localization performance based on a contrastive
learning framework. To encode the input image for our
contrastive framework, we propose a pixel-wise top-k at-

tention pooling (PTAP) method that utilizes only the im-
portant channels in the feature map. Then, we build posi-
tive and negative pairs with the encoded images, where we
call them contrastive attention maps. Finally, the proposed
contrastive attention map loss (CAML) encourages consis-
tency between the contrastive attention maps and also pe-
nalizes the background regions during the training phase.
In this way, our method can induce the model to learn the
full extent of the object accurately. Based on the exten-
sive evaluation, we confirm that the proposed method is ef-
fective for improving co-localization performance. Specif-
ically, our method achieves state-of-the-art performance on
CUB-200-2011, Stanford Cars, FGVC-Aircraft, and Stand-
ford Dogs datasets.
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