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Abstract

We present a two-stage pre-training approach that im-
proves the generalization ability of standard single-domain
pre-training. While standard pre-training on a single large
dataset (such as ImageNet) can provide a good initial rep-
resentation for transfer learning tasks, this approach may
result in biased representations that impact the success of
learning with new multi-domain data (e.g., different artis-
tic styles) via methods like domain adaptation. We propose
a novel pre-training approach called Cross-Domain Self-
supervision (CDS), which directly employs unlabeled multi-
domain data for downstream domain transfer tasks. Our
approach uses self-supervision not only within a single do-
main but also across domains. In-domain instance discrim-
ination is used to learn discriminative features on new data
in a domain-adaptive manner, while cross-domain matching
is used to learn domain-invariant features. We apply our
method as a second pre-training step (after ImageNet pre-
training), resulting in a significant target accuracy boost to
diverse domain transfer tasks compared to standard one-
stage pre-training.

1. Introduction
Real-world image data can come from many sources:

different weather, viewpoints, lighting, artistic styles, etc.
Therefore, many tasks require visual representations that
generalize across multiple domains. For example, domain
adaptation aims to transfer knowledge from a labeled source
domain to an unlabeled target domain [32, 12]. Cross-
domain image retrieval aims to match semantically related
images regardless of domain shift (e.g., see Fig. 1-(b, c)).

Pre-training has been very effective for deep neural net-
works across many visual tasks, providing strong initial
representations [21, 7]. Typically, prior work pre-trains a
model on a large-scale supervised auxiliary domain (mostly
on ImageNet [31]) and assumes the learned features are a
good starting point for downstream tasks. However, Im-
ageNet pre-training learns biased representations [13] and
suffers from domain shift caused by changes in background,
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Figure 1: Top: Two-stage pre-training for domain transfer meth-
ods. To learn discriminative and domain-invariant features on
downstream domains, we propose Cross-Domain Self-supervised
pre-training (CDS) by leveraging unlabeled data from multiple do-
mains. Bottom: An application of CDS to unsupervised cross-
domain image retrieval. CDS learns a better semantic relationship
across domains compared to ImageNet pre-training.

rotation, and viewpoints [1]. This suggests that pre-training
on a single domain does not encourage domain-invariant
features and may not be a good match for downstream tasks
encountering new domains (e.g., Fig. 1-(b), domain adapta-
tion). In this paper, we address the problem of pre-training
representations that are robust to domain shift and useful for
downstream methods that operate on multiple domains.

We propose a two-stage pre-training approach to im-
prove standard ImageNet pre-training with respect to gen-
eralization to new domains for downstream tasks. After the
standard pre-training on a generic supervised dataset (e.g.,
ImageNet), we add a second self-supervised pre-training
stage that uses unlabeled downstream data from multiple
domains as illustrated in Fig. 1-(a). Our second pre-training
stage ensures that the representation gains discriminative
power on the new domains and invariance to domain shift.
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After this two-stage pre-training, the representation can be
used directly for tasks like cross-domain image retrieval or
used to initialize a model for existing transfer methods (e.g.,
train with both labeled source and unlabeled target data).
We compare our two-stage pre-training with standard one-
stage pre-training and show significant gains across mul-
tiple tasks and methods. For example, Fig. 1-(c) shows
that our method is better at learning class-semantic similar-
ity across new domains compared to ImageNet pre-training
(Fig. 1-(b)) and improves cross-domain image retrieval.

Self-supervised learning (SSL) has been shown to be
very effective for pre-training on unlabeled data. SSL
solves pre-text tasks such as predicting rotation [14] or in-
stance discrimination [42, 7]. However, state-of-the-art SSL
(e.g., [42, 7, 16]) focuses on learning from a single do-
main. Naively adapting SSL to multiple domains cannot
learn domain-invariant representations as the images of the
same class across domains can have different visual charac-
teristics, as we will show in our experiments.

To address the issue, we propose a new pre-training
method called Cross-Domain Self-supervision (CDS) that
overcomes the limitations of the prior single-domain SSL
methods. CDS effectively learns the relationship between
domains using unlabeled data (i.e., unsupervised). Specifi-
cally, we devise two types of self-supervision to extract dis-
criminative1 and domain-invariant features across domains.
First, we propose in-domain instance discrimination. This
is motivated by recent SSL [42, 7], but we apply it in a do-
main adaptive manner to learn discriminative features in
each domain. Second, we propose cross-domain match-
ing. This objective matches each sample to a neighbor in
the other domain while forcing it to be far from unmatched
samples. While in-domain instance discrimination encour-
ages a model to learn discriminative features by separating
every instance within a domain, the cross-domain match-
ing enables better knowledge transfer across domains by
performing domain alignment. We hypothesize that such
pre-training optimized for downstream multi-domain data
can gain domain-invariance and discriminability to new do-
mains.

CDS is applicable to a variety of domain transfer tasks
encountering new domains, where domain-invariant repre-
sentations across downstream multi-domain should be con-
sidered. We present three tasks to evaluate SSL baselines:
(1) unsupervised cross-domain image retrieval, (2) univer-
sal domain adaptation, and (3) few-shot domain adaptation.
In our experiments, we show CDS improves various do-
main transfer methods by providing a better pre-training
approach that outperforms the existing state-of-the-art SSL
methods.

In summary, our work has the following contributions:
1. We present two-stage pre-training to improve the gen-

1This term refers to instance-level discriminative representations [42].

eralization ability of the standard single-stage pre-
training for downstream multi-domain tasks.

2. We propose novel a Cross-Domain Self-supervised
pre-training, which learns discriminative and domain-
invariant features using unlabeled multi-domain data.

3. We show that CDS outperforms standard ImageNet
pre-training and state-of-the-art SSL baselines on var-
ious domain transfer tasks.

2. Related Work
Domain Adaptation. Traditionally, unsupervised domain
adaptation (UDA) addresses the problem of generalization
to a different but related unlabeled target domain from a la-
beled source domain. Conventional UDA assumes a closed
set where categories are fully shared between the source and
target domains. With this assumption, the target features are
aligned with the source features by minimizing domain dis-
tances [2] using: adversarial domain classifier based learn-
ing [12, 19, 24, 38], maximum discrepancy of domain dis-
tributions [35, 45], and entropy optimization [34, 24, 33].
Recently, DANCE [34] addressed the problem of universal
domain adaptation, where arbitrary category shift exists be-
tween the source and target domains (i.e., closed set, open
set [22], partial [4], open-partial [44]). DANCE proposes
neighborhood clustering via entropy optimization on the un-
labeled target domain and entropy-based rejection to iden-
tify private classes in the target domain. In this paper, we
focus on a pre-training approach to be used before applying
UDA methods. While most prior work uses ImageNet pre-
training for initialization, we aim to improve pre-training
on multi-domain data via self-supervised learning which in-
duces both domain-invariant and class-discriminative fea-
tures on new domains without additional labels.
Self-supervised Learning. Self-supervised learning
(SSL) [9, 14, 28, 42, 16, 6] introduces self-supervisory
signals for solving pretext tasks. These pretext tasks enable
a model to learn semantically meaningful features from
unlabeled data for later use in downstream tasks. Prior
work proposes pretext tasks such as: rotation predic-
tion [14] or Instance Discrimination (ID) [20, 42]. Instance
Discrimination and SimCLR [42, 7] achieve very powerful
performance by classifying an image as its own unique
class but treating all other instances as negative instances.
However, these works focus on pre-training a model on a
large-scale single domain dataset such as ImageNet. We
later show that these methods are not very effective for a
downstream dataset that has a domain shift.
Self-supervised Learning for Adaptation. Some unsu-
pervised domain adaptation methods [5, 10, 36, 43] add
existing SSL objectives (e.g., [14, 28]) to improve perfor-
mance by jointly training with source labels. These meth-
ods rely on a large amount of source supervision to guide
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Figure 2: Comparison of Instance Discrimination (ID) [42] and ours (CDS): (a) ID distinguishes every feature from all the others without
considering the domain gap, so that the domain gap between domains increases. (b) In order to reduce the domain gap, CDS jointly uses
In-domain ID and cross-domain matching to learn features that are domain-invariant as well as discriminative (best viewed in color).

unlabeled target data and often assume the initial represen-
tation is already discriminative for the target domain. In
contrast, our method explicitly finds an instance-to-instance
matching across domains for domain alignment without any
source supervision as shown in Fig. 2. Recently, a cluster-
ing method with unlabeled multiple domains [27] is pro-
posed for a domain generalization task. However, it under-
performs ImageNet pre-training while our method outper-
forms ImageNet pre-training by a large margin in our task.

3. Cross-Domain Self-supervision
We explore a pre-training approach called Cross-Domain

Self-supervision (CDS) for multi-domain settings where we
are given a domain A, DA =

{(
xA
i

)}NA

i=1
and a different but

related domain B, DB =
{
(xB

j )
}NB

j=1
. DA and DB contain

the shared categories but there could be some category shift
between DA and DB [44, 34]. For example, DB may con-
tain private classes which are not shared with DA. Our goal
is to learn discriminative features on each DA and DB , and
domain-invariant features across the same categories in DA

and DB . We use a CNN architecture F (·) with L2 normal-
ization [42], which outputs a feature vector f ∈ Rd.

We initialize the feature extractor F (·) with ImageNet
pre-training, which is generally useful for many visual
tasks. Then, we perform the second pre-training stage
with CDS using downstream data DA and DB to provide
more discriminative and domain-invariant representations
for downstream multi-domain tasks. As shown in Fig. 2-
(b), CDS consists of two objectives: (1) learning visual sim-
ilarity with in-domain instance discrimination for each do-
main and (2) cross-domain matching for domain alignment.
Then, this pre-trained model can be fine-tuned for down-
stream tasks including domain adaptation.

3.1. In-domain Instance Discrimination
The goal of this objective is to learn a discriminative

feature extractor on the downstream data. We aim to im-
prove ImageNet pre-training considering two aspects: (1)
downstream tasks can contain novel categories that do not
appear in ImageNet (category shift); (2) domain shift can
exist between ImageNet and downstream datasets. There-
fore, representations learned only on ImageNet can be less

effective for initialization for downstream tasks. We utilize
in-domain instance discrimination to learn visual similarity
for two new domains to improve discriminative power.

For a single-domain, Instance Discrimination [9, 42, 7]
(ID) learns visual similarity by imposing a unique class on
every image instance and by training a model such that each
image is classified to its own instance identity by treating all
the other images as negative pairs. ID hypothesizes that a
model can discover the underlying class-discriminative se-
mantic similarity from instance similarity, which is helpful
for a recognition task as shown in [42, 7].

A naive deployment of ID to multi-domain data could
increase the domain gap between the DA and DB , because
ID treats all other samples as negatives against a given query
sample without distinguishing domains. Given a query from
the DA, if we treat all other samples in both domains as neg-
atives, the negatives may contain samples in DB belonging
to the same class with the query. Besides, the difference be-
tween domains (i.e., differences in style, color) can be more
easily identified than categorical difference, as illustrated in
Fig. 2-(a). Thus, the naive deployment of ID enlarges the
difference between domains, which we do not aim to do.

In order to alleviate these problems, we propose to use
In-domain ID, where negative pairs are sampled only from
the same domain. This aims to prevent learning features to
discriminate the two domains, as illustrated in Fig. 2-(b).

We sample features from domain-specific memory
banks. We first initialize the memory banks, V A and V B ,
from DA and DB with the feature extractor F (·),

V A = [vA
1 , · · · ,vA

NA
], V B = [vB

1 , · · · ,vB
NB

], (1)

where vi is the “cashed feature” vector of the image xi,
i.e., vA

i = F (xA
i ). After this initialization, the memory

bank features are updated with a momentum in every batch
(described in the later section); as the cached features do not
need gradient computations, this is highly memory efficient.

Using the feature extractor F (·), we obtain “live” feature
vectors fAi = F (xA

i ) and fBj = F (xB
j ) from an image

xA
i ∈ B and an image xB

j ∈ B in a batch. To perform
In-domain ID, we compute the similarity distributions PA

i

and PB
j by measuring the pairwise similarities (dot product)

between features and the corresponding memory bank as
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shown in Fig. 3,

PA
i =

exp((vA
i )

⊤fAi /τ)
NA∑
k=1

exp((vA
k )

⊤fAi /τ)

, PB
j =

exp((vB
j )

⊤fBj /τ)

NB∑
k=1

exp((vB
k )

⊤fBj )/τ)

,

(2)

where the temperature parameter τ determines the concen-
tration level of the similarity distribution [18]. Finally, we
perform In-domain ID by minimizing the averaged negative
log-likelihood over a batch B:

LI-ID = − 1
|B| (

∑
i∈B logP

A
i +

∑
j∈B logP

B
j )), (3)

where i and j denote the unique index of xi and xj .

3.2. Cross-domain Matching

With In-domain ID, we assume a model learns to extract
class-discriminative features in each domain. However, it
does not explicitly promote domain-invariant features be-
tween DA and DB . To encourage domain aligned yet dis-
criminative features across the two related domains, we per-
form cross-domain feature matching as shown in Fig. 2-
(b). This is done by making relatively nearby cross-domain
points closer, while keeping dissimilar points further.

The key difference is that prior alignment methods using
an adversarial domain classifier [12], MMD [25], or optimal
transport [8, 3] focus on minimizing the domain gap be-
tween distributions of the two domains DA and DB . These
do not consider class-class semantic similarity between the
two domains and may lose class-discriminative power [23].
We propose to use the knowledge that samples of the same
class are closer than other samples of different classes in the
feature space across different domains (e.g., a chair image
in DA share more similar property (shape, pattern) to a chair
image in DB than other classes such as bike or computer.
We discover both positive and negative cross-domain pairs

in an unsupervised way. Then, we maximize distances of
negative matchings while minimizing a distance of a pos-
itive matching to enhance class-discriminative features in
different domains. In comparison, optimal transport [3]
scales poorly and is limited to finding a match in a batch,
while we find a match globally in all cross-domain samples
by using “cached” features in the memory bank instead of
“live” features in the batch.

To discover positive and negative pairs, we minimize
the entropy of the pairwise similarity distribution between
a feature in one domain and features in the other domain
memory bank. Since entropy minimization encourages a
model to make a confident prediction, the model chooses a
sample to match and enforces the query feature (i.e., fAi or
fBj ) to be closer to the matched sample. At the same time,
the model enforces the query feature to be far from all the
other unmatched examples in another domain, which makes
it learn class-discriminative features across domains.

To be specific, given the query vectors, fAi =F (xA
i ) and

fBj =F (xB
j ) from xA

i and xB
j in a batch B, we first measure

cross-domain pairwise similarities between the live features
and the cross-domain memory bank features (i.e., vB, vA)
in Fig. 3:

PA )B
j′,i =

exp((vB
j′)

⊤fAi /τ)

NB∑
k=1

exp((vB
k )

⊤fAi /τ)

, PB )A
i′,j =

exp((vA
i′ )

⊤fBj /τ)

NA∑
k=1

exp((vA
k )

⊤fBj /τ)

.

(4)

Then we minimize the averaged entropy of the similarity
distributions in a batch:

LCDM = 1
|B| (

∑
i∈B H(PA )B

i ) +
∑

j∈B H(PB )A
j )), (5)

H(PA )B
i ) = −

∑NA

j′
PA )B
j′,i logPA )B

j′,i ,

H(PB )A
j ) = −

∑NB

i′
PB )A
i′,j logPB )A

i′,j ,
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(a) CDS w/o I-ID (Eq. 5 only) (b) CDS (Eq. 3 + Eq. 5)

Figure 4: t-SNE visualization from CDS w/o In-domain ID and
CDS. Red / blue / black dots represent shared classes in DA and
DB and private classes in DB , respectively. We observe that In-
domain ID distinguishes the private classes (black) from shared
classes in DB (blue).

where H(·) represents the entropy measured from the prob-
ability in Eq. 4.

The overall objective function for CDS is to minimize:

LCDS = LI-ID + LCDM. (6)

We also update the memory banks with the features in
the batch with a momentum η to encourage smoothness of
training following [42]:

∀i ∈ B,vA
i = (1− η)vA

i + ηfAi ,

∀j ∈ B,vB
j = (1− η)vB

j + ηfBj . (7)

After we pre-train a model with CDS, we fine-tune the
pre-trained model with existing domain transfer methods
and evaluate performance gains.

3.3. Category Shift between DA and DB

In the setting of universal domain adaptation [34], DA

and DB may contain private classes not shared between
them. Assuming we have private classes in DB , a method
should align shared classes in DA and DB and while sep-
arating these from private classes. As In-domain ID learns
class-semantic similarity by separating visually dissimilar
images in each domain, the private classes can be embed-
ded far from the shared classes. Fig. 4 shows the feature
visualization of shared classes in DA (red) and DB (blue)
and private classes in DB (black) on Art and Painting do-
mains in Office-Home. In Fig. 4-(a), some private classes
can be aligned with the shared classes without In-domain
ID. However, Fig. 4-(b) shows that In-domain ID (Eq. 3) on
DB keeps the blue and black dots to be distinctive, which
prevents aligning the private classes with the shared classes.
Thus, In-domain ID serves as a good regularizer for sepa-
rating the private classes from the shared classes.

4. Experiments
We evaluate Cross-Domain Self-supervision (CDS) in

the variety of domain transfer applications: (1) unsuper-
vised cross-domain image retrieval (Sec 4.2), (2) univer-
sal domain adaptation (Sec. 4.3), and (3) few-shot domain

adaptation (Sec. 4.4). We summarize key findings: (1) ex-
isting SSL baselines do not work well under a domain shift,
(2) In-domain ID tends to perform better than the naive ID,
and (3) our cross-domain matching performs better than the
adversarial domain alignment [12].

4.1. Experiment Setting
Datasets. We utilize three standard domain adaptation
benchmarks: CUB which is a fine-grained bird classifica-
tion dataset [40, 41]) with Real and Painting domains and
200 categories; Office-Home [39] with Art (Ar), Clipart
(Cl), Real (Rw), and Product (Pr) domains, and 65 cate-
gories; Office [32] with Amazon (A), Dslr (D), and Web-
cam (W) domains and 31 categories; In the supplementary,
we show the overall statistics of the datasets. While most
of the categories in Office and Office-Home are shared with
ImageNet, CUB contains many novel categories.
Implementation details. Our method is implemented in
PyTorch [30] with a single GTX1080Ti. We use a ResNet-
50 [17] pre-trained on ImageNet followed by a FC layer
and a L2 normalization layer as a feature extractor. In the
pre-training with CDS, we use SGD with the moment pa-
rameter 0.9, a learning rate of 0.003, a batch size of 64,
weight decay rate 5e−4. As for the parameters τ and η, we
set τ = 0.1 and η = 0.5 for all experiments. We apply
standard data augmentation including random cropping and
horizontal flipping. In the supplementary, we show addi-
tional details and sensitivity analysis.
Evaluation. Conventional unsupervised domain adapta-
tion (DA) uses ImageNet pre-training as initialization. The
goal is to evaluate whether self-supervised learning (SSL)
on downstream multi-domain can provide better initializa-
tion to domain transfer methods. We choose one domain
as DA and one of the remaining domains as DB in each
dataset following domain adaptation settings [32, 25, 12].
We compare our CDS with ImageNet pre-training, which is
a strong and widely used baseline and existing SSL base-
lines: Instance Discrimination (ID) [7], SimCLR [7], Jig-
saw Puzzle [28], Predicting Rotation [14], MoCo [16], and
SwAV [6]. We also integrate domain alignment with an ad-
versarial domain classifier (DC) [12] to build a fair yet com-
monly used baseline. All the baselines start with ImageNet
pre-training and each SSL is applied on the union set of DA

and DB . Then each pre-trained model is finetuned on down-
stream tasks. We report average accuracy of three runs. We
report mean accuracy on all settings in Office-Home (Ar,
Cl, Rw, and Pr), CUB (Real and Painting), Office (A, D,
and W). Detailed results are shown in the supplementary.

4.2. Unsupervised Cross-domain Image Retrieval

From the unsupervised pre-training, SSLs can be directly
applied to an unsupervised cross-domain image retrieval
task between DA and DB . We query an image from DA
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Figure 5: Retrieval of the cross-domain neighbors using (a) standard ImageNet pre-trained features and (b) ours (CDS). While ImageNet
pre-trained features are biased to wrong textures and colors, our method learns better semantic similarity across domains.

(a) ImageNet Pre-trained (c) Ours(b) In-domain ID + Domain Classifier

Figure 6: t-SNE visualization of ours and baselines. Each color represents different classes in left subfigures and red and blue represents
DA and DB in right subfigures. Ours (CDS) extracts features that are clearly class-discriminative as well as domain-invariant.

Pre-train Office-Home CUB
P@1 P@5 P@15 P@1 P@5 P@15

ImageNet 49.9 44.9 39.5 22.6 18.8 16.2
ID [42] 42.2 36.2 31.8 22.4 18.0 14.9
SimCLR [7] 48.0 43.6 38.3 13.4 11.6 10.1
SimCLR+DC 48.0 43.5 38.4 13.5 11.7 10.1
In-domain ID 44.2 39.1 32.6 22.8 18.9 15.8
CDS 56.3 53.9 50.2 40.9 37.5 35.2

Table 1: Precision@k (P@k) comparison of different pre-training
methods on the unsupervised cross-domain image retrieval task.

and retrieve images in DB . If a retrieval is the same class as
the query, we consider this as correct. Fig. 1 and 5 compare
the retrieval results from the ImageNet pre-training and ours
on CUB and Office-Home. We observe that the ImageNet
weights are biased to wrong color or texture information,
whereas CDS tends to capture better shape representation
with proper shape and texture information. Table 1 reports
precision@k (P@k) averaged on all cross-domain settings
from cross-domain retrievals in Office-Home and CUB. We
observe that the ImageNet pre-training is strong and outper-
forms the existing SSL baselines. CDS outperforms all the
other baselines. Especially, CDS significantly improves the
score on CUB. These show that CDS can adapt well to new
datasets under domain shift. We show more visualization in
the supplementary.
Feature visualization. Fig. 6 shows t-SNE visualiza-
tion [26] of features from the ImageNet pre-training and
ours on the setting Rw→Cl of Office-Home. Compared
to (b) DC for feature alignment [12], it qualitatively shows
that (c) CDS clusters examples in the same class in the fea-
ture space; thus, CDS favors more discriminative features.
The red-blue dot plots represent the DA and DB domains,
which illustrates that CDS can yield well-aligned features
while preserving the class-discriminative power.

|C|/|C̄s|/|C̄t| CUB Office-Home Office
Closed-set 200 / 0 / 0 65 / 0 / 0 35 / 0 / 0

Partial 100 / 100 / 0 25 / 45 / 0 10 / 21 / 0
Open set 100 / 0 / 100 15 / 0 / 50 10 / 0 / 11

Open-partial 100 / 50 / 50 10 / 5 / 50 10 / 10 / 11

Table 2: Statistics on category shift under different UDA settings.

4.3. Universal Domain Adaptation

Setup. Unsupervised domain adaptation is the task of
transferring knowledge from a labeled source domain to an
unlabeled target domain. DA denotes the labeled source
domain and DB denotes the unlabeled target domain (i.e.,
Adapting DA to DB : DA → DB). The source and target
domain may contain private classes: closed set [24], open
set [22], partial [4], or open-partial [44]. |C| denotes the
numbers of the shared classes (|Cs∩Ct|) and C̄s, C̄t denotes
the number of source private and target private classes. For
Office and Office-Home, we use the same split in [34]. The
overall statistics are in Table 2. We classify target private
classes as the “unknown” class. DANCE [34] is the re-
cently proposed method, which achieves state-of-the-art re-
sults including closed set, open set, partial, and open-partial
DA. We employ SO (Source-only) and DANCE [34], which
achieve higher performances than all the other DA base-
lines. DANCE utilizes target neighborhood clustering and
entropy-based sample rejection. SO also uses the entropy-
based rejection as DANCE to identify unknown classes. We
report the overall target accuracy for all UDA scenarios. For
open set DA, we additionally report the mean class accu-
racy and H-score [11], which is a harmonic mean of accu-
racy on known classes and accuracy on unknown classes.
In open set DA, it is important to consider both metrics, as
the number of unknown samples can overwhelm the num-
ber of known samples. After pre-training a model with SSL
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Pre-train CUB Office-Home
Closed Partial Open Closed Partial Open

ImageNet 54.5 58.1 54.6 69.1 71.1 78.1
ID [42] 55.6 54.7 40.5 66.3 67.3 71.0
ID+DC 56.0 54.8 38.1 66.1 67.0 71.0
SimCLR [7] 49.1 52.7 33.2 66.6 68.1 72.5
MoCo [16] 52.4 52.5 32.2 65.9 66.6 72.0
SwAV [6] 55.4 56.1 45.2 67.4 69.0 73.2
In-domain ID 56.6 56.2 39.5 66.4 66.8 71.9
CDS 59.0 65.4 55.9 69.9 69.7 78.7

Table 3: Comparison with SSL baselines using DANCE [34] on
each setting. We report mean class accuracy for open set DA.

baselines, we compare the performances of SO and DANCE
from different SSL baselines.
Results. Table 3 shows the comparison with ours and SSL
baselines on closed set, partial, and open set DA using
DANCE [34]. SSL baselines obtain mixed results compared
to ImageNet pre-training while CDS outperforms ImageNet
pre-training and SSL baselines except the Office-Home par-
tial. These results show that representations learned from
CDS are more discriminative, domain-aligned, and effec-
tive for DA. By comparing CDS with ID + DC, our cross-
domain matching clearly performs better than DC. In Ta-
ble 4, we show the results on open set and open-partial
DA. DANCE obtains good performance on mean class ac-
curacy but low H-scores, which means DANCE is less ef-
fective in classifying unknown classes. CDS significantly
improves the H-scores and overall accuracy (Acc) of SO
and DANCE while improving/maintaining mean class ac-
curacy compared to ImageNet pre-training.
The impact of category shift between ImageNet and
downstream datasets. We observe that CDS is more ben-
eficial to CUB than Office-Home. This is because most of
the categories in Office-Home are shared with ImageNet,
but there are many novel classes in CUB. CDS can be more
useful for downstream tasks, which has a bigger category
shift from ImageNet.
Comparison with other DA baselines. We show that
DANCE with CDS can achieve the state-of-the-art results
by comparing with other DA baselines in Table 5 on the
open-partial setting. We report the results of DANN [12],
Universal Adaptation Network (UAN) [44], and Calibrated
Multiple Uncertainties (CMU) [11]. DANCE obtains the
state-of-the-art mean class accuracy but achieves lower H-
scores than CMU on Office-Home. When CDS is applied
to DANCE (DANCE+CDS), it improves the mean class ac-
curacy by 0.6% and H-score by 21.6% on Office-Home. In
Office, CDS slightly decreases the class mean accuracy but
improves H-score by a large margin.

4.4. Few-shot Domain Adaptation

Setup. In this section, we explore domain adaptation with
a source domain with few-source labels and an unlabeled

Adapt. Pre-train Open-set Open-partial
Acc Class Acc H-score Acc Class Acc H-Score

(a) CUB
SO ImageNet 51.8 47.9 49.9 51.3 44.9 50.5
SO CDS 56.6 50.9 54.0 57.4 46.0 56.3
DANCE ImageNet 42.0 54.6 32.9 53.0 51.6 49.1
DANCE CDS 56.8 55.9 53.6 64.2 50.7 62.8

(b) Office-Home
SO ImageNet 55.7 69.6 57.8 54.0 72.5 57.8
SO CDS 60.5 73.1 62.5 59.1 74.3 62.3
DANCE ImageNet 46.8 78.1 46.6 45.5 80.4 49.2
DANCE CDS 66.1 78.7 68.6 66.7 81.0 70.8

(c) Office
SO ImageNet 76.4 89.1 73.5 72.6 85.5 73.5
SO CDS 79.8 89.4 77.9 75.5 86.9 77.9
DANCE ImageNet 79.3 94.1 74.5 82.4 93.7 80.3
DANCE CDS 91.8 94.7 92.1 87.3 91.2 87.3

Table 4: Target accuracy (%) on open set and open-partial DA
averaged on all settings in each dataset.

Method Office-Home Office
H-score Class Acc H-score Class Acc

SO [11] 47.3 73.2 50.9 82.7
DANN [12] 46.2 73.2 50.6 81.8
UAN [44] 56.6 77.0 63.5 89.2
CMU [11] 61.6 78.0 73.1 91.1
DANCE [34] 49.2 80.4 80.3 93.7
DANCE+CDS 70.8 81.0 87.3 91.2

Table 5: Comparison with other DA methods on open-partial DA.
We report the mean class accuracy and H-score averaged on all
settings in Office-Home and Office.

target domain with closed set DA, where categories be-
tween source and target are fully shared. Similarly, DA

denotes the source domain with few-labels and many un-
labeled data and DB denotes the unlabeled target domain
(i.e., Adapting DA to DB : DA → DB). Conventional
DA assumes many source labels are available, which may
limit the wide-spread application of DA as highlighted in
semi-supervised learning literature [29]. SSL is shown to
be effective in semi-supervised learning [42, 7]. Follow-
ing the semi-supervised learning evaluation protocols, we
randomly select few-source labels (i.e. 1-shot / 3-shots) as
labeled and treat others as unlabeled. To show the benefit
of SSL to diverse DA methods, we consider DANN [12],
CDAN [24] with entropy conditioning, SRDC [37], and
MME [33]. DANN and CDAN are based on an adversarial
domain classifier (DC). SRDC uses clustering and MME
uses adversarial entropy optimization for domain align-
ment. We apply entropy minimization [15] on unlabeled
source data for all baselines and ours. We report average
accuracy over three different random splits.
Results. Table 6 shows the comparison of CDS with
ImageNet pre-trained weights on Office-Home and CUB,
where CDS improves the performance in all cases. CDS
shows higher performance gains on 1-shot settings than 3-
shots settings against the baselines, which shows the label-
efficiency of CDS. Even with the source-only model (SO),
CDS largely improves the performance by domain-aligned
features. In CUB, which is a challenging fine-grained clas-
sification dataset with few labels, CDS significantly im-
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Pre-train CUB: Target Acc. (%) on 1-shot / 3-shots
SO DANN CDAN MME

ImageNet 5.1 / 15.0 6.1 / 17.6 6.5 / 18.5 12.0 / 41.9
CDS 20.8 / 33.4 20.2 / 34.6 23.2 / 38.5 28.7 / 47.4

Pre-train Office-Home: Target Acc. (%) on 1-shot / 3-shots
SO CDAN MME SRDC

ImageNet 18.7 / 34.2 19.6 / 35.0 28.9/ 50.3 28.2 / 48.9
CDS 33.8 / 45.7 35.0 / 51.1 36.3 / 55.2 41.3 / 55.9

Pre-train Office: Target Acc. (%) on 1-shot / 3-shots
SO CDAN MME SRDC

ImageNet 37.3 / 61.9 46.0 / 74.0 59.1 / 74.6 60.5 / 75.7
CDS 60.9 / 73.9 65.2 / 79.2 65.8 / 79.8 69.2 / 79.8

Table 6: Target accuracy (%) on 1-shot and 3-shots averaged on
all settings in the Office-Home and CUB datasets.

Pre-train Feature Analysis Adaptation
Linear kNN CDAN 1-shot

ImageNet 61.9±1.6 53.5±0.0 46.6±4.3
Jigsaw [28] 50.7±0.4 32.3±4.5 48.9±5.2
Rotation [14] 41.1±5.3 36.4±3.0 44.7±4.1
ID 62.2±0.6 59.6±0.4 45.2±2.8
SimCLR 62.5±0.6 60.2±0.2 54.0±3.0
SimCLR+DC 62.7±0.6 60.9±0.2 53.8±3.3
In-domain ID (Eq. 3) 63.0±0.4 61.7±1.1 49.7±0.6
CDS (Eq. 5) 71.3±0.4 68.5±0.5 66.8±2.1

Table 7: Comparison with the baselines under each evaluation
protocol on Office D→A. CDS outperforms the baselines.

proves accuracy compared to the baseline. These results
show that CDS is more effective than just naive adaptation
of ImageNet pre-trained weights, which is a strong and gen-
erally used baseline in prior DA works.
Feature analysis. To see where this performance gain
comes from, we conduct feature analysis in Table 7. Ta-
ble 7 shows the comparison of ours with the SSL baselines
on the Office D→A setting. First, following the SSL eval-
uation protocols in [42, 7], we evaluate the learned repre-
sentations with a linear classifier and weighted k-Nearest
Neighbor (kNN) classifier. We freeze the feature extractor
but train a linear classifier or kNN classifier on top of the
frozen features with full source labels and measure accuracy
on the target domain. We observe that Jigsaw and Rotation
hurt the performance of the ImageNet pre-training. Second,
we fine-tune the whole network for the few-shot domain
adaptation task in the column of Adaptation using CDAN
on the 1-shot setting. CDS outperforms the baselines by a
large margin in all cases.
Label efficiency comparison with SSL. Fig. 7 shows the
results of ours and baselines with different fractions of la-
bels using CDAN on Office-Home. Our method consis-
tently outperforms the baselines and stably improves with
the additional labels even with the full source labels, while
the SSL baselines obtain similar accuracy as ImageNet.
CDS greatly improves when there are a few source labels.
Consistency of SSL and downstream task objectives. A
good SSL method should match SSL objectives with down-
stream performance [42]. We analyze this consistency by
measuring downstream target accuracy according to the
SSL learning training epoch in Fig. 8. In Fig. 8-(a), we
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Figure 7: Target accuracy on different fractions of source labels.
While other SSL baselines achieve similar results as ImageNet
pre-training, ours consistently performs better.
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Figure 8: (a): Target accuracy using Weighted kNN according
to training epochs of each self-supervised learning. (b): Target
accuracy using CDAN according to training epochs of CDS.

measure the target accuracy using the same kNN classi-
fier in Table 7 according to the SSL training epochs on the
D→A setting on Office. The accuracy at epoch 0 reports
the accuracy of ImageNet pre-training. Jigsaw and Rota-
tion decrease in accuracy over training, i.e., overfitting to
the respective proxy tasks. Compared to the baselines, CDS
improves the performance in early training epochs of SSL
and converges. In Fig. 8-(b), we also show the target accu-
racy and standard deviation over three random splits from
CDAN according to the training epochs on D→A in Of-
fice and Rw→Cl in Office-Home. We observe that CDS
improves the accuracy compared to the ImageNet weights.
The standard deviations show that the accuracy is not very
sensitive to different random splits. Please refer to our sup-
plementary for more detailed results of our experiments.

5. Conclusion
Conventional domain adaptation (DA) method uses Ima-

geNet pre-training as a weight initialization. With two-stage
pre-training with CDS, we aim to standard ImageNet pre-
training by learning discriminative and domain-aligned fea-
tures with SSL for downstream multi-domain data. We pro-
pose a novel Cross-Domain Self-supervised learning lever-
aging unlabeled data from multiple domains. CDS can
be easily applied to boost performance of diverse domain
transfer tasks and outperforms the standard pre-training and
existing SSL baselines.
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