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Abstract

Continually learning in the real world must overcome
many challenges, among which noisy labels are a common
and inevitable issue. In this work, we present a replay-
based continual learning framework that simultaneously
addresses both catastrophic forgetting and noisy labels for
the first time. Our solution is based on two observations; (i)
forgetting can be mitigated even with noisy labels via self-
supervised learning, and (ii) the purity of the replay buffer is
crucial. Building on this regard, we propose two key compo-
nents of our method: (i) a self-supervised replay technique
named Self-Replay which can circumvent erroneous train-
ing signals arising from noisy labeled data, and (ii) the Self-
Centered filter that maintains a purified replay buffer via
centrality-based stochastic graph ensembles. The empirical
results on MNIST, CIFAR-10, CIFAR-100, and WebVision
with real-world noise demonstrate that our framework can
maintain a highly pure replay buffer amidst noisy streamed
data while greatly outperforming the combinations of the
state-of-the-art continual learning and noisy label learning
methods.

1. Introduction

The most natural form of input for an intelligent agent
occurs sequentially. Hence, the ability to continually learn
from sequential data has gained much attention in recent
machine learning research. This problem is often coined
as continual learning, for which three representative ap-
proaches have been proposed [57, 67, 20] including re-
play [52, 29, 66, 73, 70, 44], regularization [38, 91, 3], and
expansion techniques [71, 89].

At the same time, learning from data riddled with noisy
labels is an inevitable scenario that an intelligent agent must
overcome. There have been multiple lines of work to learn
amidst noisy labels such as loss regularization [84, 96, 31],
data re-weighting [68, 72], label cleaning [64, 42, 61], and
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training procedures [85, 36].
In this work, we aim to jointly tackle the problems of

continual learning and noisy label classification, which to
the best of our knowledge have not been studied in prior
work. Noisy labels and continual learning are inevitable
for real-world machine learning, as data comes in a stream
possibly polluted with label inconsistency. Hence, the two
are bound to intersect; we believe exploring this intersection
may glean evidence for promising research directions and
hopefully shed light on the development of sustainable real-
world machine learning algorithms.

We take on the replay-based approach to tackle continual
learning since it has often shown superior results in terms
of performance and memory efficiency even with simplic-
ity. Yet, we discover that replaying a noisy buffer inten-
sifies the forgetting process due to the fallacious mapping
of previously attained knowledge. Moreover, existing noisy
label learning approaches show great limitations when cop-
ing within the online task-free setting [2, 65, 43, 37]. In
their original forms, they assume that the whole dataset is
given to purify the noise and thus are hampered by a small
amount of data stored only in the replay buffer to either reg-
ularize, re-weight, or decide on its validity.

We begin by backtracking the root of the problem; if we
naively store a sampled set of the noisy input stream into
the replay buffer, it becomes riddled with noise, worsen-
ing the amount of forgetting. Thus, we discover the key to
success is maintaining a pure replay buffer, which is the ma-
jor motive of our novel framework named Self-Purified Re-
play (SPR). At the heart of our framework is self-supervised
learning [16, 12, 30, 24], which allows to circumvent the er-
roneous training signals arising from the incorrect pairs of
data and labels. Within the framework, we present our novel
Self-Replay and Self-Centered filter that collectively cleanse
noisy labeled data and continually learn from them. The
Self-Replay mitigates the noise intensified catastrophic for-
getting, and the Self-Centered filter achieves a highly clean
replay buffer even when restricted to a small portion of data
at a time.

We outline the contributions of this work as follows.
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1. To the best of our knowledge, this is the first work to
tackle noisy labeled continual learning. We discover
noisy labels exacerbate catastrophic forgetting, and it
is critical to filter out such noise from the input data
stream before storing them in the replay buffer.

2. We introduce a novel replay-based framework named
Self-Purified Replay (SPR), for noisy labeled contin-
ual learning. SPR can not only maintain a clean replay
buffer but also effectively mitigate catastrophic forget-
ting with a fixed parameter size.

3. We evaluate our approach on three synthetic noise
benchmarks of MNIST [41], CIFAR-10 [40], CIFAR-
100 [40] and one real noise dataset of WebVision [49].
Empirical results validate that SPR significantly out-
performs many combinations of the state-of-the-art
continual learning and noisy label learning methods.

2. Problem Statement
2.1. Noisy Labeled Continual Learning

We consider the problem of online task-free continual
learning for classification where a sample {xt, yt} enters at
each time step t in a non i.i.d manner without task labels.
While previous works [66, 65, 43] assume {xt, yt} are cor-
rect (clean) samples, we allow the chance that a large por-
tion of the data is falsely labeled.

2.2. Motivation: Noise induced Amnesia

We discover that if the data stream has noisy labels, it
traumatically damages the continual learning model, analo-
gous to retrograde amnesia [75], the inability to recall ex-
perience of the past. We perform some preliminary exper-
iments on a sequential version of symmetric noisy MNIST
and CIFAR-10 [53, 84] using experience replay with the
conventional reservoir sampling technique [69, 94].

The empirical results in Figure 1 show that when trained
with noisy labels, the model becomes much more prone to
catastrophic forgetting [20, 57, 78, 67]. As the noise level
increases from 0% to 60%, sharp decreases in accuracy
are seen. Surprisingly, the dotted red circle in Figure 1(b)
shows that in CIFAR-10 a fatally hastened forgetting occurs
no matter the amount of noise.

We speculate that a critical issue that hinders the contin-
ual model is the corrupted replay buffer. An ideal replay
buffer should shield the model from noisy labels altogether
by being vigilant of all the incoming data for the mainte-
nance of a clean buffer.

3. Approach to Noisy Labeled Continual
Learning

We design an approach to continual learning with noisy
labels by realizing the two interrelated subgoals as follows.

Figure 1. A noisy labeled continual learning on the symmetric
noisy in (a) MNIST [41] and (b) CIFAR-10 [40] when using expe-
rience replay with the conventional reservoir sampling [94, 69]. At
the end of each task, the accuracy of the first task (T1) is plotted.
It shows that the noisy labels accelerate catastrophic forgetting.
Notably, the dotted red circle in (b) indicates the significantly has-
tened forgetting process.

G1. Reduce forgetting even with noisy labels: The ap-
proach needs to mitigate catastrophic forgetting amidst
learning from noisy labeled data.

G2. Filter clean data: The method should learn represen-
tations such that it identifies the noise as anomalies.
Moreover, it should enable this from a small amount of
data since we do not have access to the entire dataset
in online continual learning.

Figure 2 overviews the proposed framework consisting
of two buffers and two networks. The delayed buffer D
temporarily stocks the incoming data stream, and the pu-
rified buffer P maintains the cleansed data. The base net-
work addresses G1 via self-supervised replay (Self-Replay)
training (Section 3.1). The expert network is a key com-
ponent of Self-Centered filter that tackles G2 by obtaining
confidently clean samples via centrality (Section 3.2). Both
networks have the same architecture (e.g., ResNet-18) with
separate parameters.

Algorithm 1 outlines the training and filtering procedure.
Whenever the delayed buffer D is full, The Self-Centered
filter powered by the expert network filters the clean sam-
ples fromD to the purified bufferP . Then, the base network
is trained via the self-supervision loss with the samples in
D ∪ P . The detail will be discussed in Section 3.1–3.2.

At any stage of learning, we can perform downstream
tasks (i.e., classification) by duplicating the base network
into the inference network, adding a final softmax layer, and
finetuning it using the samples in P . Algorithm 2 outlines
this inference phase.
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Figure 2. Illustration of the Self-Purified Replay (SPR) framework.
We specify the training and filtering phase (in the yellow shade) in
Algorithm 1, and the test phase (in the purple shade) in Algor-
tihm 2.

3.1. Self-Replay

Learning with noisy labeled data [64, 5, 54, 28] results
in erroneous backpropagating signals when falsely paired x
and y exist in the training set. Hence, we circumvent this
error via learning only from x (without y) using contrastive
self-supervised learning techniques [7, 12, 30, 24]. That
is, the framework first focuses on learning general repre-
sentations via self-supervised learning from all incoming x.
Subsequently, the downstream task (i.e., supervised classi-
fication) finetunes the representation using only the samples
in the purified buffer P . Building on this concept in terms
of continual learning leads to Self-Replay, which mitigates
forgetting while learning general representations via self-
supervised replay of the samples in the delayed and purified
buffer (D ∪ P).

Specifically, we add a projection head g(·) (i.e., a one-
layer MLP) on top of the average pooling layer of the base
network, and train it using the normalized temperature-
scaled cross-entropy loss [12]. For a minibatch from D and
P with a batch size of Bd, Bp ∈ N respectively, we apply
random image transformations (e.g., cropping, color jitter,
horizontal flip) to create two correlated views of each sam-
ple, referred to as positives. Then, the loss is optimized to
attract the features of the positives closer to each other while
repelling them from the other samples in the batch, referred

Algorithm 1 Training and filtering phase of SPR
Input: Training data (xt, yt), ..., (xT , yT ) and initial pa-
rameters of base network θ.
D = P = {} // Initialize delayed and purified buffer
for t = 1 to T do

if D is full then
P ← P ∪ Self-Centered Filter(D) (section 3.2)
θ ← Self-Replay using D ∪ P (section 3.1)
reset D

else
update D with (xt, yt)

end if
end for

Algorithm 2 Test phase of SPR
Input: Test data (xt, yt), ..., (xT , yT ), parameters of the
base network θ, and purified buffer P
ψ = copy(θ) // Duplicate base model to inference model
ψ ← supervised finetune using P
for t = 1 to T do

downstream classification for (xt, yt) using ψ
end for

to as the negatives. The updated objective becomes

Lself = −
2(Bd+Bp)∑

i=1

log
eu

T
i uj/τ∑2(Bd+Bp)

k=1 1k ̸=ieu
T
i uk/τ

. (1)

We denote (xi, xj) as the positives and xk as the negatives.
ui =

g(xi)
||g(xi)||2 is the ℓ2 normalized feature, and τ > 0 is the

temperature. Every time when the delayed buffer is full, we
train the base network with this loss.

Empirical supports. Figure 3 shows some empirical re-
sults about the validity of Self-Replay for noisy labeled con-
tinual learning.

• Figure 3(a) shows a quantitative examination on down-
stream classification tasks. It indicates that self-
supervised learning leads to a better representation,
and eventually outperforms the supervised one by no-
ticeable margins.

• Figure 3(b) exemplifies the superiority of Self-Replay
in continual learning. We contrast the performances of
continually trained Self-Replay (as proposed) against
intermittently trained Self-Replay, which trains offline
with only the samples in the purified buffer at the end
of each task. The colored areas in Figure 3(b) indicate
how much the continually learned representations alle-
viate the forgetting and benefit the knowledge transfers
among the past and future tasks.
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Figure 3. Empirical support for Self-Replay with ResNet18 as
the base network on CIFAR-10. (a) Comparison of overall ac-
curacy of the finetuned downstream classification between self-
supervised and supervised representations trained on various noise
rates. The self-supervised indicates that the base network trained
using only x as proposed, while the supervised means training
with possibly noisy (x, y) pairs. (b) The benefits of continual Self-
Replay over the intermittent Self-Replay by comparing the test set
accuracy of finetuned models. The intermittent Self-Replay means
training only with contents of the purified buffer up to and includ-
ing the current task.

3.2. Self-Centered Filter

The goal of the Self-Centered filter is to obtain confi-
dently clean samples; specifically, it assigns the probability
of being clean to all the samples in the delayed buffer.

Expert Network. The expert network is prepared to fea-
turize the samples in the delayed buffer. These features
are used to compute the centrality of the samples, which
is the yardstick of selecting clean samples. Inspired by the
success of self-supervised learning good representations in
Self-Replay, the expert network is also trained with the self-
supervision loss in Eq. 1 with only difference that we use the
samples in D only (instead of D ∪P for the base network).

Centrality. At the core of the Self-Centered filter lies
centrality [59], which is rooted in graph theory to identify
the most influential vertices within a graph. We use a variant
of the eigenvector centrality [6], which is grounded on the
concept that a link to a highly influential vertex contributes
to centrality more than a link to a lesser influential vertex.

First, weighted undirected graphs G := (V,E) are con-
structed per unique class label in the delayed buffer. We
assume that the clean samples form the largest clusters in
the graph of each class. Each vertex v ∈ V is a sample of
the class, and the edge e ∈ E is weighted by the cosine sim-
ilarity between the features from the expert network. For the
adjacency matrix A = (av,u)|V |×|V |. Then the eigenvector
centrality is formulated as

cv =
1

λ

∑
u∈N(v)

cu =
1

λ

∑
u∈V

av,ucu, (2)

where N(v) is the neighboring set of v, λ is a constant and
av,u is the truncated similarity value within (0, 1]. Eq. 2
can be rewritten in vector notation as Ac = λc, where c
is a vectorized centrality over V . The principal eigenvector
c can be computed by the power method [82], and it corre-
sponds to the eigenvector centrality for the vertices in V .

Beta Mixture Models. The centrality quantifies which
samples are the most influential (or the cleanest) within the
data of identical class labels. However, the identically la-
beled data contains both clean and noisy labeled samples, in
which the noisy ones may deceptively manipulate the cen-
trality score, leading to an indistinct division of the clean
and noisy samples’ centrality scores. Hence, we compute
the probability of cleanliness per sample via fitting a Beta
mixture model (BMM) [33] to the centrality scores as

p(c) =
Z∑

z=1

πzp(c|z), (3)

where c > 0 is the centrality score, πz is the mixing co-
efficients, and Z ∈ N is the number of components. Beta
distribution for p(c|z) is a suitable choice due to the skewed
nature of the centrality scores. We set Z = 2, indicating the
clean and noisy components, and it is empirically the best
in terms of accuracy and computation cost. We use the EM
algorithm [15] to fit the BMM through which we obtain the
posterior probability

p(z|c) = πzp(c|αz, βz)∑Z
j=1 πjp(c|αj , βj)

, (4)

where αz, βz > 0 are the latent distribution parameters.
Please refer to the appendix for details of computing p(z|c).

Among the Z = 2 components, we can easily iden-
tify the clean component as the one that has the higher
c scores (i.e., a larger cluster). Then, the clean posterior
p(z = clean|c) defines the probability that centrality c be-
longs to the clean component, which is used as the proba-
bility to enter and exit the purified buffer, P . After the se-
lected samples enters our full purified buffer, the examples
with the lowest p(z = clean|c) are sampled out accordingly.

3.2.1 Stochastic Ensemble

Since our goal is to obtain the most clean samples as pos-
sible, we want to further sort out the possibly noisy sam-
ples. We achieve this by introducing a stochastic ensemble
of BMMs, enabling a more noise robust posterior than the
non-stochastic posterior p(z = clean|c) in the previous sec-
tion.

First, we prepare for stochastic ensembling by sampling
multiple binary adjacency matrices {A} from a Bernoulli
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Figure 4. Illustration of graph manipulation via Stochastic Ensem-
ble, which severs weak and uncommon connections and proba-
bilistically focus on confident and clean data within the graph.

distribution over A. For each class l, we impose a condi-
tional Bernoulli distribution over A as

p(A|Dl) =
∏

di,dj∈Dl

Bern
(
Aij |ReLU

(
di · dj
||di||||dj ||

))
, (5)

where Dl is the set of penultimate feature of class l from
the expert network. We find that it is empirically helpful to
truncate the dissimilar values to 0 (ReLU) and use the co-
sine similarity value as the probability. We replace the zeros
in A with a small positive value to satisfy the requirement
of Perron-Frobenius theorem1. Then, our reformulated ro-
bust posterior probability is

p(z|Dl) ∝
∫
A

p(z|cent(A))dp(A|Dl), (6)

where cent(·) is the centrality scores from Eq. 2, and
p(z|cent(A)) can be obtained in the same manner as the
non-stochastic posterior in the previous section. We ap-
proximate the integral using Monte Carlo sampling for
which we use Emax as the sample size. Essentially, we fit
the mixture models on different stochastic graphs to prob-
abilistically carve out more confidently noisy samples by
retaining the strong and dense connections while severing
weak or uncommon connections. This is conceptually illus-
trated in Figure 4.

Empirical Supports. Figure 5 shows some empirical
evidence where the stochastic ensemble addresses the two
issues to achieve a noise robust posterior p(z|Dl).

• First, a small portion of noisy samples are falsely con-
fident and are consequently assigned a high central-
ity score. Stochastic ensembling is able to suppress

1 Perron-Frobenius theorem states when A has positive entries, it has
a unique largest real eigenvalue, whose corresponding eigenvector have
strictly positive components.
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Figure 5. Comparison of non-stochastic and Stochastic Ensem-
ble on CIFAR-10 with 40% noise. Stochastic Ensemble produces
more confidently clean samples by shifting p(c|z = noisy) ·p(z =
noisy) to the left, and suppressing the cases where p(c|z =
noisy) · p(z = noisy) dips below p(c|z = clean) · p(z = clean).

these noisy samples, as indicated in Figure 5, where
the mode of p(c|z = noisy) · p(z = noisy) (red curve)
is shifted to the left by a noticeable margin.

• Second, there are some cases where p(c|z = noisy) ·
p(z = noisy) drops below the p(c|z = clean) · p(z =
clean) leading to a high p(z = clean|c) for the noisy
instances, indicated with red circles in Figure 5. The
stochastic ensemble of differing As can mitigate such
problematic cases to drown out the unexpected noise.

4. Related Works
4.1. Continual Learning

There have been three main branches to train a model
from continual data streams: regularization [51, 19, 38, 3],
expansion [71, 89, 43], and replay [52, 9, 10, 69, 34].
Replay-based approaches maintain a fixed-sized memory
to rehearse back to the model to mitigate forgetting. Sev-
eral works [52, 9, 10] reserve the space for data sam-
ples of previous tasks, while others [73] uses a generative
model. Some works [69, 34] combine rehearsal with meta-
learning to find the balance between transfer and interfer-
ence. We defer more comprehensive survey including all
three branches of continual learning to the appendix.

Online Sequential Learning. In the online sequential
learning scenario, a model can only observe the training
samples once. Hence, many works propose methods for
maintaining the buffer [29, 66, 37] or selecting the sam-
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ples to be rehearsed [2]. Recently, [77] adopts graphs to
represent relational structures between samples, and [25]
employs the meta-loss for learning per-parameter learning
rates along with model parameters.

Akin to our work, Gdumb [65] and MBPA++ [14] also
train the model at inference time. However, greedily select-
ing samples to be reserved inevitably leads to degradation
from noisy labeled data. Furthermore, discarding the sam-
ples that cannot enter the buffer as done in Gdumb may lead
to information loss since it only relies on the buffer as its
source of training.

4.2. Noisy Labels

Learning with noisy labeled data has long been stud-
ied [92, 5, 54, 35]. Several works design the noise cor-
rected losses [86, 28, 46, 4, 84] so that the loss minimiza-
tion of the whole data becomes similar to that of clean
samples. Other works propose to use a noise transition
matrix to correct the loss [63, 23, 31, 96]. There have
been approaches that aim to suppress the contribution of
noisy samples by re-weighting the loss [83, 68]. Tech-
niques that repair labels [39, 80, 50, 74, 27, 56] or directly
learn them [76, 88] are also viable options for learning from
noisy labeled data. Recently, filtering methods based on
training dynamics [32, 64, 58] have gained much popular-
ity, based on the observation that models tend to learn clean
data first and memorize the noisy labeled data later. Small
loss sample selection [36, 72, 45] techniques by co-teaching
[85, 21, 26, 90, 55, 11] identify noisy samples with multi-
ple models in the same vein. Some works use graphs for
offline learning from a large-scale noisy dataset [95, 93].
On the other hand, we use a small dataset in the delayed
buffer from an online data stream without ground-truth la-
bels; instead we adopt self-supervision to obtain features for
the Self-Centered filter.

None of the works mentioned above address continual
learning from noisy labeled data streams. Although [56, 47]
also use self-supervised learning with noisy labeled data,
they focus on the loss or prediction from the model for se-
lecting suspicious samples. In the experiments on Table 3,
we will show that training dynamics-based filtering tech-
niques are not viable in noisy labeled continual learning.
On the other hand, we provide the algorithm that identifies
the clean samples while learning from a purified buffer in
an online manner.

4.3. Self-supervised learning

Self-supervised learning is currently receiving an enor-
mous amount of attention in machine learning research. The
pretext task that trains a model by predicting hidden infor-
mation within the data includes patch orderings [17, 60],
image impainting [62], colorization [87], and rotations [22,
13], to name a few. There also have been works that utilize

the contrastive loss [12, 30, 48]; especially, SimCLR [12]
proposes a simplified contrastive learning method, which
enables representation learning by pulling the randomly
transformed samples from the same image closer while
pushing ones apart from other images within the batch. Re-
cently, this instance-wise contrastive learning is extended to
prototypical contrastive learning [48] to encode the seman-
tic structures within the data.

5. Experiments

In our evaluation, we compare SPR with other state-of-
the-art models in the online task-free continual learning sce-
nario with label noise. We test on three benchmark datasets
of MNIST [41], CIFAR-10 [40] and CIFAR-100 [40] with
symmetric and asymmetric random noise, and one large-
scale dataset of WebVision [49] with real-world noise on
the Web. We also empirically analyze Self-Replay and the
Self-Centered filter from many aspects.

5.1. Experimental Design

We explicitly ground our experiment setting based on the
recent suggestions for robust evaluation in continual learing
[1, 18, 79] as follows. (i) Cross-task resemblance: Consecu-
tive tasks in MNIST [41], CIFAR-10 [40], CIFAR-100 [40],
WebVision [49] are partly correlated to contain neighbor-
ing domain concepts. (ii) Shared output heads: A single
output vector is used for all tasks. (iii) No test-time task
labels: Our approach does not require explicit task labels
during both training and test phase, often coined as task-
free continual learning in [66, 43, 37]. (iv) More than two
tasks: MNIST [41], CIFAR-10 [40], CIFAR-100 [40] and
WebVision [49] contain five, five, twenty, and seven tasks,
respectively.

We create a synthetic noisy labeled dataset from MNIST
and CIFAR-10 using two methods. First, the symmetric la-
bel noise assigns {20%, 40%, 60%} samples of the dataset
to other labels within the dataset by a uniform probability.
We then create five tasks by selecting random class pairs
without replacement. Second, the asymmetric label noise
attempts to mimic the real-world label noise by assigning
other similar class labels (e.g., 5 ↔ 6, cat ↔ dog). We
use the similar classes chosen in [63] to contaminate {20%,
40%} samples of the dataset with similar class pairs. Each
task consists of the samples from each corrupted class pair.
CIFAR-100 has 20 tasks where the random symmetric set-
ting has 5 random classes per task with uniform noise across
100 classes. The superclass symmetric setting uses each su-
perclass [40, 43] containing 5 classes as a task where the
noise is randomized only within the classes in the super-
class. In WebVision, we use the top 14 largest classes in
terms of the data size, resulting in 47,784 images in total.
We curate seven tasks with randomly paired classes.
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MNIST CIFAR-10 WebVision
symmetric asymmetric symmetric asymmetric real noise

noise rate (%) 20 40 60 20 40 20 40 60 20 40 unknown

Multitask 0% noise [8] 98.6 84.7 -
Multitask [8] 94.5 90.5 79.8 93.4 81.1 65.6 46.7 30.0 77.0 68.7 55.5
Finetune 19.3 19.0 18.7 21.1 21.1 18.5 18.1 17.0 15.3 12.4 11.9
EWC [38] 19.2 19.2 19.0 21.6 21.1 18.4 17.9 15.7 13.9 11.0 10.0
CRS [81] 58.6 41.8 27.2 72.3 64.2 19.6 18.5 16.8 28.9 25.2 19.3
CRS + L2R [68] 80.6 72.9 60.3 83.8 77.5 29.3 22.7 16.5 39.2 35.2 -
CRS + Pencil [88] 67.4 46.0 23.6 72.4 66.6 23.0 19.3 17.5 36.2 29.7 26.6
CRS + SL [84] 69.0 54.0 30.9 72.4 64.7 20.0 18.8 17.5 32.4 26.4 21.5
CRS + JoCoR [85] 58.9 42.1 30.2 73.0 63.2 19.4 18.6 21.1 30.2 25.1 19.5
PRS [37] 55.5 40.2 28.5 71.5 65.6 19.1 18.5 16.7 25.6 21.6 19.0
PRS + L2R [68] 79.4 67.2 52.8 82.0 77.8 30.1 21.9 16.2 35.9 32.6 -
PRS + Pencil [88] 62.2 33.2 21.0 68.6 61.9 19.8 18.3 17.6 29.0 26.7 26.5
PRS + SL [84] 66.7 45.9 29.8 73.4 63.3 20.1 18.8 17.0 29.6 24.0 21.7
PRS + JoCoR [85] 56.0 38.5 27.2 72.7 65.5 19.9 18.6 16.9 28.4 21.9 20.2
MIR [2] 57.9 45.6 30.9 73.1 65.7 19.6 18.6 16.4 26.4 22.1 17.2
MIR + L2R [68] 78.1 69.7 49.3 79.4 73.4 28.2 20.0 15.6 35.1 34.2 -
MIR + Pencil [88] 70.7 34.3 19.8 79.0 58.6 22.9 20.4 17.7 35.0 30.8 22.3
MIR + SL [84] 67.3 55.5 38.5 74.3 66.5 20.7 19.0 16.8 28.1 22.9 20.6
MIR + JoCoR [85] 60.5 45.0 32.8 72.6 64.2 19.6 18.4 17.0 27.6 23.5 19.0
GDumb [65] 70.0 51.5 36.0 78.3 71.7 29.2 22.0 16.2 33.0 32.5 30.4
GDumb + L2R [68] 65.2 57.7 42.3 67.0 62.3 28.2 25.5 18.8 30.5 30.4 -
GDumb + Pencil [88] 68.3 51.6 36.7 78.2 70.0 26.9 22.3 16.5 32.5 29.7 26.9
GDumb + SL [84] 66.7 48.6 27.7 73.4 68.1 28.1 21.4 16.3 32.7 31.8 30.8
GDumb + JoCoR [85] 70.1 56.9 37.4 77.8 70.8 26.3 20.9 15.0 33.1 32.2 24.2

Self-Centered filter 80.1 79.0 77.4 80.0 79.6 36.5 35.7 32.5 37.1 36.9 33.0
Self-Replay 81.5 69.2 43.0 86.3 78.9 40.1 31.4 22.4 44.1 43.2 48.0
SPR 85.4 86.7 84.8 86.8 86.0 43.9 43.0 40.0 44.5 43.9 40.0

Table 1. Overall accuracy of noisy labeled continual learning after all sequences of tasks are trained. The buffer size is set to 300, 500,
1000 for MNIST, CIFAR-10 and WebVision, respectively. Some empty slots on WebVision are due to the unavailability of clean samples
required by L2R for training [68]. The results are the mean of five unique random seed experiments. We report best performing baselines
on different episodes with variances in the appendix.

We fix the delayed buffer and the replay (purified) buffer
size to 300, 500, 1000, 5000 for MNIST, CIFAR-10, Web-
Vision, and CIFAR-100, respectively. The purified buffer
maintains balanced classes as in [37, 65]. We fix the
stochastic ensemble size, Emax = 5 unless stated oth-
erwise. For the base model, we use an MLP with two
hidden layers for all MNIST experiments and ResNet-18
for CIFAR-10, CIFAR-100, and WebVision experiments.
Please refer to the appendix for experiment details.

5.2. Baselines

Since we opt for continual learning from noisy labeled
data streams, we design the baselines combining existing
state-of-the-art methods from the two domains of continual
learning and noisy label learning.

We explore the replay-based approaches that can learn
in the online task-free setting. We thus choose (i) Con-
ventional Reservoir Sampling (CRS) [69], (ii) Maximally

Interfered Retrieval (MIR) [2], (iii) Partitioning Reservoir
Sampling (PRS) [37] and (iv) GDumb [65].

For noisy label learning, we select six models to cover
many branches of noisy labeled classification. They in-
clude (i) SL loss correction [84], (ii) semi-supervised Jo-
CoR [85], (iii) sample reweighting L2R [68], (iv) label re-
pairing Pencil [88], (v) training dynamic based detection
AUM [64] and (vi) cross-validation based INCV [11].

5.3. Results

Overall performance. Table 1 compares the noisy la-
beled continual learning performance (classification accu-
racy) between our SPR and baselines on MNIST, CIFAR-
10 and WebVision. Additionally, Table 2 compares SPR
against the best performing baselines on CIFAR-100 with
random symmetric noise and superclass symmetric noise.
SPR performs the best in all symmetric and asymmetric
noise types with different levels of 20%, 40%, and 60% as
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random symmetric superclass symmetric
noise rate (%) 20 40 60 20 40 60

GDumb + L2R [68] 15.7 11.3 9.1 16.3 12.1 10.9
GDumb + Pencil [88] 16.7 12.5 4.1 17.5 11.6 6.8
GDumb + SL [84] 19.3 13.8 8.8 18.6 13.9 9.4
GDumb + JoCoR [85] 16.1 8.9 6.1 15.0 9.5 5.9
SPR 21.5 21.1 18.1 20.5 19.8 16.5

Table 2. CIFAR100 results of noisy labeled continual learning
after all sequences of tasks are trained. The results are the mean of
five unique random seed experiments.

MNIST CIFAR-10
symmetric asymmetric symmetric asymmetric

noise rate (%) 20 40 60 20 40 20 40 60 20 40

AUM [64] 7.0 16.0 11.7 30.0 29.5 36.0 24.0 11.7 46.0 30.0
INCV [11] 23.0 22.5 14.3 37.0 31.5 22.0 18.5 9.3 37.0 30.0
Non-stochastic 79.5 96.3 84.5 96.0 88.5 50.5 54.5 38.0 53.0 50.5
SPR 96.0 96.5 93.0 100 96.5 75.5 70.5 54.3 69.0 60.0

Table 3. Filtered noisy label percentage in the purified buffer
(e.g., out of 20% symmetric noise, SPR filters 96% of noise). We
compare SPR with Emax = 5 to two other state-of-the-art label
filtering methods.

well as real noise. Multitask is an upper-bound trained with
an optimal setting with perfectly clean data (i.e., the 0%
noise rate) and offline training. Finetune is reported as a
lower-bound performance since it performs online training
with no continual or noisy label learning technique.

Notably, SPR works much better than L2R [68], which
additionally uses 1000 clean samples for training, giving it a
substantial advantage over all the other baselines. SPR also
proves to be much more effective than GDumb [65], which
is the most related method to ours, even when combined
with different noisy label learning techniques.

Moreover, the addition of state-of-the-art noisy label
techniques is not always beneficial. This may be be-
cause existing noisy label techniques usually assume a large
dataset, which is required to reliably estimate the training
dynamics to mitigate the noise by regularizing, repairing,
and or filtering. However, the online learning setting is lim-
ited by a much smaller dataset (i.e., in the purified buffer),
leading to a difficult training of the noisy label techniques.

Ablation Study. To study the effectiveness of each com-
ponent, two variants of our model that only use Self-Replay
or the Self-Centered filter is tested. That is, the Self-Replay
variant does not use any cleaning methods (i.e., use conven-
tional reservoir sampling to maintain the purified buffer).
The Self-Centered filter variant finetunes a randomly initial-
ized inference network on the purified buffer instead of fine-
tuning it on the duplicate of the base network. Both variants
outperform all the baselines (excluding L2R) in all three
datasets, and combining them our model performs the best
on MNIST and CIFAR-10 with all noise levels. However,

WebVision is the only dataset where no synergetic effect is
shown, leaving Self-Replay alone to perform the best. This
may be because the WebVision contains highly abstract and
noisy classes such as “Spiral” or “Cinema,” making it diffi-
cult for Self-Centered filter to sample from correct clusters.
Please refer to the appendix for further detail.

Purification Comparison. Table 3 compares the pu-
rification performance with the state-of-the-art noise de-
tection methods based on the training dynamics, including
AUM [64] and INCV [11]. We notice that the performance
of AUM and INCV dreadfully declines when detecting la-
bel noise among only a small set of data, which is inevitable
in online task-free setting, whereas SPR can filter superbly
even with a small set of data. Even a non-stochastic version
of our Self-Centered filter performs better than the base-
lines. Encouragingly, our method is further improved by
introducing stochastic ensembles.

Additional Experiments. The appendix reports more
experimental results, including SPR’s noise-free perfor-
mance, CIFAR-100 filtering performance, episode robust-
ness, purified & delayed buffer size analysis, ablation of
stochastic ensemble size, variance analysis, and data effi-
ciency of Self-Replay.

6. Conclusion

We presented the Self-Purified Replay (SPR) framework
for noisy labeled continual learning. At the heart of our
framework is Self-Replay, which leverages self-supervised
learning to mitigate forgetting and erroneous noisy label
signals. The Self-Centered filter maintains a purified replay
buffer via centrality-based stochastic graph ensembles. Ex-
periments on synthetic and real-world noise showed that our
framework can maintain a very pure replay buffer even with
highly noisy data streams while significantly outperform-
ing many combinations of noisy label learning and contin-
ual learning baselines. Our results shed light on using self-
supervision to solve the problems of continual learning and
noisy labels jointly. Specifically, it would be promising to
extend SPR to maintain a not only pure but also more diver-
sified purified buffer.
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