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Abstract

We address the problem of network quantization, that is,
reducing bit-widths of weights and/or activations to lighten
network architectures. Quantization methods use a rounding
function to map full-precision values to the nearest quan-
tized ones, but this operation is not differentiable. There
are mainly two approaches to training quantized networks
with gradient-based optimizers. First, a straight-through
estimator (STE) replaces the zero derivative of the rounding
with that of an identity function, which causes a gradient
mismatch problem. Second, soft quantizers approximate the
rounding with continuous functions at training time, and
exploit the rounding for quantization at test time. This allevi-
ates the gradient mismatch, but causes a quantizer gap prob-
lem. We alleviate both problems in a unified framework. To
this end, we introduce a novel quantizer, dubbed a distance-
aware quantizer (DAQ), that mainly consists of a distance-
aware soft rounding (DASR) and a temperature controller.
To alleviate the gradient mismatch problem, DASR approx-
imates the discrete rounding with the kernel soft argmax,
which is based on our insight that the quantization can be
formulated as a distance-based assignment problem between
full-precision values and quantized ones. The controller
adjusts the temperature parameter in DASR adaptively ac-
cording to the input, addressing the quantizer gap problem.
Experimental results on standard benchmarks show that
DAQ outperforms the state of the art significantly for various
bit-widths without bells and whistles.

1. Introduction
Convolutional neural networks (CNNs) have made signif-

icant progress in the field of computer vision, such as image
recognition [27, 48], object detection [2, 43], and semantic
segmentation [7, 34]. Deeper [15, 46] and wider [45] CNNs,
however, require lots of parameters and FLOPs, making it
difficult to deploy modern network architectures on edge
devices (e.g., mobile phones, televisions, or drones). Re-
cent works focus on compressing networks to lighten the
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Figure 1: The discretizer takes a full-precision input, and then
assigns it to the nearest quantized value, e.g., q1 in this example.
We interpret the assignment process of a discretizer as follows: It
first computes the distances between the full-precision input and
quantized values, q1 and q2, and then applies an argmin operator
over the distances to choose the quantized value. Since this operator
is non-differentiable, the quantized network cannot be trained end-
to-end with gradient-based optimizers. (Best viewed in color.)

network architectures. Pruning [14] and distillation [16]
are representative techniques for network compression. The
pruning removes redundant weights in a network, and the
distillation encourages a compact network to have features
similar to the ones obtained from a large network. The net-
works compressed by these techniques still exploit floating-
point computations, indicating that they are not suitable for
edge devices favoring fixed-point operations for power effi-
ciency. Network quantization [42] is an alternative approach
that converts full-precision weights and/or activations into
low-precision ones, enabling a fixed-point inference, while
reducing memory and computational cost.

Quantization methods typically use a staircase function as
a quantizer, where it normalizes a full-precision value within
a quantization interval, and assigns the normalized one to the
nearest quantized value using a discretizer (i.e., a rounding
function) [11, 12, 22]. Since the derivative of the rounding is
zero at almost everywhere, gradient-based optimizers could
not be used to train quantized networks. To address this, the
straight-through estimator (STE) [3] replaces the derivative
of the rounding with that of identity or hard tanh functions
for backward propagation. This, however, causes a gradient
mismatch between forward and backward passes at train-
ing time, making the training process noisy and degrading
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the quantization performance at test time [11, 31, 47]. In-
stead of using the STE, recent methods use soft quantizers,
which approximate the discrete rounding with sigmoid [47]
or tanh [12] functions, for both forward and backward passes,
alleviating the gradient mismatch problem, while maintain-
ing differentiability at training time. These approaches, on
the other hand, use the discrete quantizer at inference time.
That is, they exploit different quantizers (soft and discrete
ones) at training and test time, resulting in a quantizer gap
problem [36, 47]. The quantizer gap might be relieved by
raising a temperature parameter in the sigmoid function grad-
ually [47], such that the soft quantizer will be transformed to
the discrete one eventually at training time, but this causes
an unstable gradient flow.

We introduce in this paper a distance-aware quantizer
(DAQ) that alleviates the gradient mismatch and quantizer
gap problems in a unified framework. Our approach builds
upon the insight that the discretizer (i.e., rounding) chooses
the nearest quantized value by first computing the distances
between a full-precision input and quantized values, and
then applying an argmin operator over the distances w.r.t the
quantized values (Fig. 1). Motivated by this, we propose a
distance-aware soft rounding (DASR) that approximates the
discrete rounding accurately using a kernel soft argmax [28],
while maintaining differentiability, alleviating the gradient
mismatch problem. We also introduce a temperature con-
troller that adjusts a temperature parameter in DASR adap-
tively depending on the distances between the full-precision
input and quantized values. This imposes DASR to have
the same output as the discrete rounding, addressing the
quantizer gap problem. We apply our DAQ to quantize
weights and/or activations for various network architectures,
and achieve state-of-the-art results on standard benchmarks,
clearly demonstrating the effectiveness of our approach. To
our knowledge, it is the first approach to alleviating both
gradient mismatch and quantizer gap problems jointly. We
summarize the main contributions of this paper as follows:
• We propose a novel differentiable approximation of the

discrete rounding function, dubbed DASR, allowing to
train quantization networks end-to-end, while alleviating
the gradient mismatch problem.
• We introduce a temperature controller, which adjusts the

temperature parameter in DASR adaptively, to address the
quantizer gap problem.
• We set a new state of the art on standard benchmarks, and

provide an extensive analysis of our approach, demonstrat-
ing the effectiveness of DAQ.

2. Related work
Network quantization. Early works on network quanti-
zation focus on discretizing network weights alone into bi-
nary [9, 19, 32], ternary [29, 52], or multi bits [18, 50],
which however still requires lots of computational cost to

Method Gradient mismatch Quantizer gap
Forward Backward Training Test

STE-based [3] rounding identity rounding rounding
QNet [47] sigmoid sigmoid sigmoid rounding

Ours DASR w/ β∗ DASR w/ β∗ DASR w/ β∗ rounding

Table 1: Comparison of quantization methods for gradient mis-
match (left) and quantizer gap (right) problems. We denote by β∗

a temperature parameter adjusted by our temperature controller.
We exploit the same DASR with β∗ in both forward and backward
passes, alleviating the gradient mismatch problem. In addition,
adjusting the temperature enables DASR, used in the training stage,
to have the same output as the discrete rounding at test time, ad-
dressing the quantizer gap problem.

process full-precision activations. Later, both weights and
activations are quantized [20, 42, 51], achieving a better
compromise in terms of memory and accuracy. Recent ap-
proaches exploit non-uniform quantization levels [5, 49] or
transition points [39] to minimize quantization errors. Other
methods propose to learn quantization intervals [11, 12, 22]
or clipping ranges of activations [8]. These approaches use
a staircase function as a quantizer with a discretizer being
a rounding function. Since the gradients of the rounding
function are zero at almost everywhere, training quantization
networks suffers from a vanishing gradient problem. The
STE avoids this problem by replacing the zero derivative
of the rounding function with that of a continuous one [3].
More specifically, it exploits the rounding in a forward pass,
while using e.g., identity or tanh functions, in a backward
pass. Although the STE allows to train quantized networks
with gradient-based optimizers, the gradient mismatch be-
tween forward and backward passes degrades the quantiza-
tion performance drastically. In contrast, we exploit the same
quantizer in both forward and backward passes, alleviating
the gradient mismatch problem (Table. 1(left)).

Soft quantizers approximate the discrete rounding with
sigmoid [47] or tanh [12] functions. This allows to use con-
tinuous functions in both forward and backward passes at
training time, alleviating the gradient mismatch problem.
These approaches, however, use the rounding function for
quantization at inference time, which causes a quantizer gap
problem. That is, the outputs of soft and discrete quantizers
are different, degrading the quantization performance sig-
nificantly. To avoid the quantizer gap problem, QNet [47]
transforms the soft quantizer towards the discrete one grad-
ually at training time by raising a temperature parameter
in a sigmoid function. The gradients of the soft quantizer,
however, vanish or explode, as the parameter increases, caus-
ing an unstable gradient flow. DSQ [12] incorporates the
soft quantizer with the STE. Specifically, it uses the discrete
quantizer as in the STE for a forward pass, while exploit-
ing the derivative of the soft quantizer in a backward pass.
This alleviates the quantizer gap problem at inference, but
the use of STE causes the gradient mismatch. Our method
is similar to soft quantizers in that both approximate the
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Figure 2: An overview of DAQ. Our quantizer Q mainly consists of DASR with a temperature controller. DAQ first normalizes a full-
precision input x̂. DASR inputs the normalized input, and computes distance scores w.r.t quantized values. It then assigns the input to
the nearest quantized value Q(x̂). For the assignment, we exploit a differentiable version of the argmax with an adaptive temperature β∗,
obtained from our controller.

discrete one, while maintaining differentiability, alleviating
the gradient mismatch problem. On the contrary, we do not
exploit continuous functions such as sigmoid or tanh for the
approximation, and also address the quantizer gap problem
in a unified framework by adjusting a temperature parameter
adaptively (Table. 1(right)).

Closely related to our work, RQ [36] defines categor-
ical distributions over quantization grids, and samples a
quantized value with the Gumbel soft argmax operator [21].
SHVQ [1] designs a codebook which is a finite set of vectors
(i.e., codewords) for vector quantization, and then assigns
vectors, e.g., network parameters, to one of the codewords
using the soft argmax [6]. They [1, 36], however, also suffer
from the quantizer gap problem, since the outputs of soft and
discrete quantizers are not the same. In addition, RQ per-
forms a stochastic quantization during training, while quan-
tizing networks in a deterministic manner at inference. This
mismatch between training and inference stages degrades
the performance significantly [25]. We avoid this problem by
designing DASR using a kernel soft argmax [28], quantizing
networks deterministically in both training and inference
stages.

Differentiable argmax. The argmax operator finds an in-
dex of the largest value in an array. CNNs involving the
argmax operator cannot be trained via gradient-based opti-
mizers, since it is not differentiable. Soft argmax [6] is a
differentiable version of the argmax, and it has been applied
to stereo matching [23] and landmark detection [17]. Incor-
porating the soft argmax operator with the Gumbel noise [13]
relaxes a categorical distribution to a concrete one, enabling
a differentiable sampling process [21, 37]. The soft argmax
operator becomes the discrete one, as the temperature in the
operator increases, but at the cost of unstable gradient flow.
SFNet [28] introduces a kernel soft argmax which combines
a Gaussian kernel with the soft argmax, approximating the
discrete argmax more accurately without using a large tem-
perature parameter. We exploit the kernel soft argmax for
network quantization. We propose to adjust the temperate
parameter in the kernel soft argmax adaptively. As will be

shown later, this addresses the quantizer gap problem, elimi-
nating the discrepancies between the kernel soft argmax and
the discrete one.

3. Approach
In this section, we provide a brief description of our

DAQ (Sec. 3.1). We then describe each component of DAQ
in detail, including DASR (Sec. 3.2) and a temperature con-
troller (Sec. 3.3).
3.1. Overview

Using a uniform b-bit quantization, our quantizer Q maps
full-precision inputs x̂, which could be weights ŵ or ac-
tivations â, to quantized values Q(x̂) ∈ {0, 1, .., 2b − 1}
uniformly (Fig. 2). To this end, we first clip and normal-
ize a full-precision input x̂ within a quantization interval,
parameterized by upper u and lower l bounds [12, 22], as
follows:

x = (2b − 1)
clip(x̂,min = l,max = u)− l

u− l
, (1)

where x is a normalized input. We then apply DASR with
a temperature controller, and rescale the output of DASR
to assign the normalized input x to the nearest quantized
value Q(x̂), which will be described in Sec. 3.2 and Sec. 3.3,
respectively. Finally, we scale quantized weights Q(ŵ) or
activations Q(â) linearly to the ranges of [-1,1] and [0,1],
respectively, as follows:

wq = 2
Q(ŵ)

2b − 1
− 1, aq =

Q(â)

2b − 1
, (2)

where we denote by wq and aq elements of (scaled) quan-
tized tensors for weights wq and activations aq , respectively.
With the quantized weights and activations, a convolutional
output o is obtained as follows:

o = swq ∗ aq, (3)

where ∗ and s are a convolutional operator and a learnable
scalar parameter that adjusts the scale of the convolution
output, respectively.
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3.2. DASR
The rounding function maps a full-precision input to

its nearest quantized value. This assignment process can
be thought of as the following two steps: First, distances
between full-precision and quantized values are computed.
Second, the nearest quantized value is chosen by applying
the argmin operator over the distances, which is however
not differentiable. Motivated by this, we propose DASR to
approximate the discrete rounding function with a differen-
tiable assignment operator. The approximation allows to use
the same quantizer in both forward and backward passes,
which alleviates the gradient mismatch problem. Similar to
the two-step process, DASR takes a normalized input x in
Eq. (1), and computes distance scores w.r.t quantized val-
ues q ∈ q, where we denote by q a set of possible quantized
values, i.e., {0, 1, .., 2b − 1}. It then assigns the input to a
floating-point number, very close to the nearest quantized
value, by a kernel soft argmax [28]. In the following, we
describe DASR in detail.
Distance score. Given the normalized input x, we com-
pute distance scores for individual quantized values q ∈ q
as follows:

dx(q) = exp(−|x− q|). (4)

The distance score increases as the normalized input x be-
comes closer to the quantized value q, and vice versa. Note
that the computational cost of computing distance scores
increases exponentially in accordance with the increase of
the bit-widths, i.e., possible quantization values. To address
this problem, we compute the distance scores only for the
two nearest quantized values, qf and qc, w.r.t the normalized
input x, where qf and qc are obtained by floor and ceil
functions, respectively, i.e., qc − qf = 1.
Soft assignment. We can assign the normalized input x to
the nearest quantized value by applying the discrete argmax
function over the distance scores w.r.t the two quantized val-
ues, qf and qc, but this function is not differentiable. We
instead propose to use the kernel soft argmax [28] that ap-
proximates the discrete argmax, while maintaining differ-
entiability. We define a soft assignment φ(x;β) for the
normalized input x, with a temperature parameter β, as an
average of two quantized values, qf and qc, weighted by a
distance probability mx (Fig. 3(top)):

φ(x;β) =
∑

i∈{f,c}

mx(qi;β)qi. (5)

The distance probability mx is obtained by applying a soft-
max function, with the temperature parameter β, to the dis-
tance scores dx as follows:

mx(qi;β) =
exp(βkx(qi)dx(qi))∑

j∈{f,c} exp(βkx(qj)dx(qj))
, (6)

where we denote by kx a 1-dimensional Gaussian kernel
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Figure 3: Illustrations of soft assignments with different tempera-
ture parameters β (top) and corresponding derivatives (bottom), for
the case of the normalized input x being limited within the range of
[0,1]. For comparison, we also plot a sigmoid function, exploited as
a soft quantizer in [47]. We can see that the discrepancies between
soft assignments and the rounding are significant especially near
the transition point. They can be reduced by raising the temperature
parameter. This, however, causes a vanishing gradient problem for
the inputs near quantized values. (Best viewed in color.)

centered on the nearest quantized value (i.e., qf or qc) for the
normalized input x. The output of the kernel kx(q) becomes
larger as q approaches to the nearest quantized value, which
has an effect of retaining the distance score for the nearest
quantized value, while suppressing the other one. This sug-
gests that the distance probability is distributed with one
clear peak around the nearest quantized value, and our soft
assignment process approximates the discrete argmax well.
For example, we can see from Fig. 3(top) that the soft assign-
ment φ approximates the discrete rounding more accurately
than the sigmoid function adopted in soft quantization [47],
even with a much smaller temperature, preventing a gradient
exploding problem.

3.3. Temperature
The temperature parameter β adjusts a distribution of

the distance probability mx, and it thus influences the soft
assignment φ. The soft assignment with a fixed temper-
ature parameter has the following limitations. (1) Small
temperature parameters (e.g., β = 4 in Fig. 3(top)) cause
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Figure 4: Illustrations of the output φ(x;β = β∗) in Eq. (9) (gray
line), and its rescaled version using a function f in Eq. (10) (black
line). Computing the soft assignment with the adaptive tempera-
ture β∗ has an effect of sampling output values (colored circles)
from different functions for individual inputs (dotted lines). (Best
viewed in color.)

a quantizer gap problem, which is problematic particularly
when a normalized input x is close to a transition point. (2)
Large temperature parameters (e.g., β = 24 in Fig. 3(top))
alleviate the quantizer gap problem. This, however, leads
to a vanishing gradient problem. For example, the deriva-
tive of the soft assignment converges to zero rapidly, as the
normalized input x moves away from a transition point in
Fig. 3(bottom), i.e., approaches to a quantized value. Accord-
ingly, exploiting a temperature parameter fixed for all inputs
suffers from quantizer gap or vanishing gradient problems.
Temperature controller. We adjust the temperature pa-
rameter β adaptively according to the distance between a
normalized input and a transition point, such that we mini-
mize the quantizer gap without suffering from the vanishing
gradient problem. Specifically, we raise the temperature for
the inputs near the transition point in order to address the
quantizer gap problem. On the other hand, we lower the
temperature for the inputs distant from the transition point,
alleviating the vanishing gradient problem. To implement
this idea, we define an adaptive temperature β∗ as follows:

β∗ =
γ

|sx(qf )− sx(qc)|
, (7)

where γ is a positive constant, and sx(qi) is a weighted
(distance) score defined as:

sx(qi) = kx(qi)dx(qi). (8)

As the input approaches to the transition point, the weighted
scores, sx(qf ) and sx(qc), become similar. In this case, the
denominator in Eq. (7) decreases, and the adaptive temper-
ature thus increases, alleviating the quantizer gap problem.
On the contrary, the adaptive temperature decreases, when
the input moves away from the transition point, avoiding the
vanishing gradient problem.

The adaptive temperature β∗ varies according to the input,
and the temperature in turn changes the shape of the soft
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Figure 5: Illustrations of derivatives of soft assignment functions
with different temperatures (dotted lines), and a set of gradients for
individual inputs (gray line), obtained with different functions. The
gradients for individual inputs are computed using the functions
with corresponding adaptive temperature β∗ (colored circles). (Best
viewed in color.)

assignment function (Fig. 3), suggesting that different soft
assignment functions are applied for individual inputs. As
an example, for the point of x1 in Fig. 4, where a value of
the corresponding adaptive temperature is 4, its assignment
is computed with the function of φ(x;β = 4). For the
point of x2, the assignment is obtained with the function
of φ(x;β = 6), which differs from the one used for x1
since the temperature is changed. By applying different
functions for all inputs, we can obtain a set of assignments
that can be represented analytically by plugging the adaptive
temperature β∗ into the soft assignment in Eq. (5) as follows
(see the supplement for details):

φ(x;β = β∗) =

{
qf + λ, x ≤ qt
qc − λ, x > qt,

(9)

where λ = 1/(eγ + 1), and we denote by qt a transition
point, defined as (qf + qc)/2. We can see from Fig. 4 that
the set of assignments, sampled from different soft assign-
ment functions for individual inputs, are the same as output
values of a single discrete function (Fig. 4(gray line)). Anal-
ogous to the process of obtaining the set of assignments in a
forward pass, the gradients for individual inputs are obtained
with different functions for backward propagation (Fig. 5).
That is, the gradient for each input is obtained from the soft
assignment function with the corresponding adaptive temper-
ature. For example, the gradients for the points, x1 and x2 in
Fig. 5, are computed using the derivatives of the correspond-
ing functions, φ′(x;β = 4) and φ′(x;β = 6), respectively.
This is effective in alleviating the vanishing gradient prob-
lem, which is particularly severe, when the temperature is
set to a large value (e.g., β = 24 in Fig. 3(top)). Note that
the adaptive temperature β∗ is regarded as a hyperparameter
for each input in both forward and backward passes. In sum-
mary, leveraging a different function for each input enables
computing the gradient for backward propagation, while pro-
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Method
Bit-width (W/A)

FP 1/1 1/2 2/2 3/3 4/4 1/32 2/32 3/32

LQ-Nets [49] 70.3 - 62.6 (−7.7) 64.9 (−5.4) 68.2 (−2.1) 69.3 (−1.0) - 68.0 (−2.3) 69.3 (−1.0)
PACT [8] 70.4 - 62.9 (−7.5) 64.4 (−6.0) 68.1 (−2.3) 69.2 (−1.2) - 68.1 (−2.3) 69.9 (−0.5)
QIL [22] 70.2 - - 65.7 (−4.5) 69.2 (−1.0) 70.1 (−0.1) 65.8 (−4.4) - -
QNet [47] 70.3 53.6 (−16.7) 63.4 (−6.9) - - - 66.5 (−3.8) 69.1 (−1.2) 70.4 (+0.1)
RQ [36] 69.5 - - - - 62.5†(−7.0) - - -
DSQ [12] 69.9 - - 65.2 (−4.7) 68.7 (−1.2) 69.6†(−0.3) - - -
LSQ [11] 70.1 - - 66.8 (−3.3) 69.3 (−0.8) 70.7 (+0.6) - - -
LSQ+ [4] 70.1 - - 66.7 (−3.4) 69.4 (−0.7) 70.8 (+0.7) - - -
IRNet [41] 69.6 - - - - - 66.5 (−3.1) - -
Ours 69.9 56.2 (−13.7) 64.6 (−5.3) 66.9 (−3.0) 69.6 (−0.3) 70.5 (+0.6) 67.2 (−2.7) 69.8 (−0.1) 70.8 (+0.9)

Table 2: Quantitative results of ResNet-18 [15] on the validation split of ImageNet [10]. We report the top-1 accuracy for comparison. We
denote by “W” and “A” the bit-precision of weights and activations, respectively. “FP” and † represent accuracies for full-precision and fully
quantized models, respectively. Numbers in bold indicate the best performance. Numbers in parentheses are accuracy improvements or
degradations compared to the full-precision one.

viding the outputs that coincide with those obtained from a
discrete rounding but with offsets of λ (Fig. 4). Rescaling
the output in Eq. (9) with the following function,

f(y) =
y − qt
1− 2λ

+ qt, (10)

we can obtain

f(φ(x;β = β∗)) =

{
qf , x ≤ qt
qc, x > qt,

(11)

which corresponds to the output of DAQ (i.e., Q(x̂)). It is
clear that the rescaled output in Eq. (11) provides the exactly
same values as the rounding function, suggesting that our
DAQ is free from the quantizer gap problem, even using the
rounding at test time (see the last row in Table. 6). We sum-
marize the overall quantization process in the supplement.

4. Experiments
4.1. Experimental details
Implementation details. We quantize weights and/or ac-
tivations for ResNets [15] (i.e., ResNet-18, -20, and -34) and
MobileNet-V2 [44]. Following [22, 38], we do not quantize
the first and last layers for all network architectures except
for MobileNet-V2, where all layers are quantized. We em-
pirically set the constant γ in Eq. (7) to 2 for both weight
and activation quantizers, and the standard deviation of the
Gaussian kernel kx to 1 and 2 for quantizers of weight and
activation, respectively. We use a grid search to set these pa-
rameters. We choose the ones that give the best performance
on the validation split1 of CIFAR-10 [26], and fix them for
all experiments.

Training. Network weights are trained using the SGD op-
timizer with learning rates of 1e-2 and 5e-3 for ResNets
and MobileNet-V2, respectively. We learn quantization pa-
rameters, such as the lower and upper bounds, l and u in
Eq. (1), and the scale factor s in Eq. (3), using the Adam

1We divide the training split of CIFAR-10 [26] into training and valida-
tion sets for the grid search.

optimizer [24] with a learning rate of 1e-4. The learning
rates for all parameters are scheduled by the cosine anneal-
ing strategy [35]. For the ResNet-20 architecture, we train
the quantized networks for 400 epochs on CIFAR-10 [26]
with a batch size of 256, and the weight decay is set to 1e-4.
Other networks are trained for 100 epochs on ImageNet [10]
with batch sizes of 256 and 160 for ResNets (i.e., ResNet-18
and -34) and MobileNet-V2, respectively. For ResNet-18
and -34, the weight decay is set to 1e-4, except for low-bit
quantizations (i.e., 1/1, 1/2, and 2/2-bit settings), where we
use a smaller weight decay of 5e-5, following [11]. For
MobileNet-V2, the weight decay is set to 4e-5. We do not
use weight decay for learning quantization parameters.
Initialization. The weights in all quantized networks are
initialized from the full-precision pretrained models. We
apply standardization to the weights [30] before feeding
them into quantizers. We initialize lower and upper bounds
in the weight quantizer to -3 and 3, respectively. Lower
and upper bounds in the activation quantizer are initialized
by −3σA and 3σA, respectively, where σA is a standard
deviation of input activations in a layer, except when an
input of the quantizer is pre-activated by a ReLU. In this
case, we fix a lower bound to zero, and learn an upper bound
only with an initialization of 3σA.

4.2. Results
We evaluate our approach with network architectures,

including ResNet-18, -20, -34 [15], and MobileNet-V2 [44],
for various bit-widths, and compare the performance with
the state of the art for image classification on CIFAR-10 [26]
and ImageNet [10].
ImageNet. The ImageNet dataset [10] provides approxi-
mately 1.2 million training and 50K validation images of
1,000 categories with corresponding ground-truth class an-
notations. We train and evaluate a quantized network on the
training and validation splits, respectively. We use the top-1
accuracy to quantify the performance.

We show in Table 2 the top-1 accuracy on ResNet-18, and
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Method
Bit-width (W/A)

FP 1/1 1/2 2/2 3/3 4/4 1/32

LQ-Nets [49] 73.8 - 66.6 (−7.2) 69.8 (−4.0) 71.9 (−1.9) - -
QIL [22] 73.7 - - 70.6 (−3.1) 73.1 (−0.6) 73.7 (+0.0) -
DSQ [12] 73.3 - - 70.0 (−3.3) 72.5 (−0.8) 72.8 (−0.5) -
IRNet [41] 73.3 - - - - - 70.4 (−2.9)
Ours 73.3 62.1 (−11.2) 69.4 (−3.9) 71.0 (−2.3) 73.1 (−0.2) 73.7 (+0.4) 71.9 (−1.4)

Table 3: Quantitative results of ResNet-34 [15] on the validation split of ImageNet [10]. We report the top-1 accuracy for comparison. W/A:
Bit-precision of weights/activations; FP: Results obtained by full-precision models.

Method
Bit-width (W/A)

FP 4/4

PACT [8] 71.8 61.4 (−10.4)
DSQ [12] 71.9 64.8 (−7.1)
PROFIT [38] 71.9 71.6† (−0.3)
Ours 71.9 70.0† (−1.9)

Table 4: Quantitative results of MobileNet-V2 [44] on the vali-
dation split of ImageNet [10]. We report the top-1 accuracy for
comparison. W/A: Bit-precision of weights/activations; FP: Results
obtained by full-precision models; †: Results from fully quantized
models.

compare our approach with the state of the art. All numbers
in Table 2 are taken from each paper, except for LSQ [11]2.
We observe five things from this table: (1) Our method
outperforms the state of the art by a significant margin in
terms of the top-1 accuracy especially for low-bit quantiza-
tions (i.e., 1/1, 1/2, 1/32, 2/32-bit settings). LSQ [11] and
LSQ+ [4] show better results than ours slightly in a 4/4-bit
setting, but using a more accurate full-precision model. The
high-performance model provides a better initialization to
optimize quantized networks. (2) Our approach is effective
to binarize networks (i.e., 1/1 and 1/32-bit settings), out-
performing IRNet [41]3 designed for network binarization.
This also demonstrates the effectiveness of DASR on alle-
viating the gradient mismatch problem. As stated in [31],
the gradient mismatch problem becomes even worse, as the
bit-width of weights and/or activations is small. (3) Ours
performs better than soft quantizers [12, 36, 47], even they
also alleviate the gradient mismatch problem. This indi-
cates that addressing the quantizer gap problem improves
the performance significantly. (4) Our method gives better
results than other quantizers, similar to ours, that learn ei-
ther quantization intervals [11, 12, 22] or clipping ranges
of activations [8] using the STE. (5) We can employ our
quantization method in various bit-widths, and achieve the
state-of-the-art performance consistently, while others may
apply for specific settings.

Tables 3 and 4 show quantitative comparisons with the
2It uses a pre-activated version of ResNet, which is different from the

standard architecture. We take the numbers from the work of LSQ+ [4],
where LSQ is reproduced with the standard ResNet.

3It shows top-1 accuracy of 58.1 in an 1/1-bit setting, but using ResNet-
18 with the Bi-Real structure [33] that adds additional residual connections.
For fair comparison, we only report the results of IRNet using the same
network architectures as ours

Method
Bit-width (W/A)

FP 1/1 1/32

DoReFa [51] 90.8 79.3 (−11.5) 90.0 (−0.8)
LQ-Net [49] 92.1 - 90.1 (−2.0)
DSQ [12] 90.8 84.1 (−6.7) 90.2 (−0.6)
IRNet [41] 91.7 85.4 (−6.3) 90.8 (−0.9)
Ours 91.4 85.8 (−5.6) 91.2 (−0.2)

Table 5: Quantitative results of ResNet-20 [15] on the test split
of CIFAR-10 [26]. We report the top-1 accuracy for comparison.
W/A: Bit-precision of weights/activations; FP: Results obtained by
full-precision models.

state of the art using ResNet-34 [15] and MobileNet-V2 [44],
respectively. Our method outperforms the state of the art in
low-bit quantizations (e.g., 1/1, 2/2, and 1/32-bit), and shows
the same accuracy as QIL [22] in 3/3 and 4/4-bit settings.
QIL uses a progressive learning technique [53] training a
quantized network sequentially from high- to low-bit preci-
sion, which is computationally demanding. In contrast, our
approach fine-tunes a full-precision model directly to achieve
quantized networks with the target precision. Note that our
method shows the best performance in terms of an accuracy
improvement/degradation from a full-precision model. Ta-
ble 4 demonstrates that our method is also effective to quan-
tize a light-weight network architecture (i.e., MobileNet-V2).
Note that PROFIT [38] is specially designed for quantizing
the light-weight network architectures, and also uses many
heuristics (e.g., progressive learning [22, 53] and distilla-
tion [40, 53]) at training time, which requires more training
time and computational cost, compared to our approach.

CIFAR-10. The CIFAR-10 dataset [26] consists of 50k
training and 10K test images of 10 object categories for
image classification. We train a quantized network with the
training set, and report the top-1 accuracy on the test split.
We show in Table 5 a quantitative comparison with the state
of the art using the ResNet-20 architecture [15]. We can
clearly see that our method outperforms the state of the art,
confirming the effectiveness of our approach again.

4.3. Discussion
We present an ablation analysis on DASR and compare

our temperature controller with other methods alleviating the
quantizer gap problem. We report the top-1 accuracy with
1/1-bit ResNet-20 [15] on the test split of CIFAR-10 [26].
More analysis on DAQ can be found in the supplement.
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Type
Temperature Test time

(β) Rounding DASR
So

ft
ar

gm
ax

10 11.7 (−75.1) 86.8
20 10.2 (−44.4) 54.6
60 10.0 (−27.3) 37.3
150 - -

K
er

ne
ls

of
t

ar
gm

ax

4 13.5 (−76.2) 89.7
8 48.8 (−37.2) 86.0

12 69.9 (−10.9) 80.8
24 59.6 (−3.8) 63.8
β∗ 85.8 (−0.0) 85.8

Table 6: Quantitative comparison for variants of our method with
different argmax operators and temperature parameters. We also
report the results obtained by DASR at test time, instead of the
rounding function, that is, we use the same quantization function for
both training and test time to quantify the influence of the quantizer
gap problem on quantization. Note that weights and activations
in this case, except the result for the adaptive temperature β∗, are
full-precision values, not quantized ones. Numbers in parentheses
are accuracy drops between full-precision and quantized models.

Differentiable argmax. We compare in the third column
of Table 6 the quantization performance for variants of our
method. We use DASR to train quantized networks with
different argmax operators and temperature parameters, and
exploit the rounding function as a discretizer at test time. To
quantify the influence of the quantizer gap problem, we also
report the results when exploiting DASR at test time in the
fourth column of Table 6, such that we use the same quantiza-
tion function for both training and test time. Note that DASR
with a fixed temperature outputs floating-point numbers as
described in Sec. 3.3, indicating that the results in the fourth
column, except for the one for the adaptive temperature β∗,
are obtained with full-precision weights and activations, not
quantized ones. We can see from the first four rows that
an accuracy drop caused by the quantizer gap decreases, ac-
cording to the increase of the temperature parameter. This,
however, results in an unstable gradient flow, degrading
the performance, even for the cases without the quantizer
gap (e.g., 86.8 for β=10 vs. 37.3 for β=60). We fail to train
the network with β = 150, due to a gradient exploding prob-
lem. The last five rows show that the kernel soft argmax [28]
is more effective to handle the quantizer gap problem than
the soft argmax, even with a much smaller temperature pa-
rameter. For example, raising the temperature parameter
from 4 to 24 reduces the accuracy drop from 76.2% to 3.8%.
Exploiting a large temperature (β = 24), however, causes
a vanishing gradient problem as stated in Sec. 3.3, which
degrades the quantization performance. From the last row,
we can observe that the adaptive temperature addresses the
quantizer gap and vanishing gradient problems, providing
the best result without the performance drop.

Temperature controller. Table 7 compares our tempera-
ture controller with other methods [12, 36, 47] for avoiding

Method
Time/iters

(ms)
Top-1 accuracy

(%)

Annealing [47] 286.2 72.2
Combine STE [12, 36] 287.8 81.7
Temperature Controller 296.9 85.8

Table 7: Training time and accuracy comparisons of our temper-
ature controller with other methods avoiding the quantizer gap
problem. The time is measured with an RTX 2080Ti GPU.
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Figure 6: Visual comparison of top-1 accuracies for different meth-
ods alleviating the quantizer gap problem. (Best viewed in color.)

the quantizer gap problem. For fair comparison, we adopt
these methods within our DASR framework. Specifically,
for the temperature annealing [47], we raise the temperature
parameter from 2 to 48 gradually at training time, such that
DASR approaches to the rounding function. To combine the
STE with DASR [12, 36], we use the discrete rounding for a
forward pass, while using the derivative of DASR in a back-
ward pass. Exploiting the temperature controller takes more
time than other methods due to the additional computations
of adjusting the temperature β for individual inputs x. This,
however, alleviates the quantizer gap and gradient mismatch
problems jointly, outperforming other methods by a large
margin. We compare in Fig. 6 top-1 accuracy curves. We can
observe that our temperature controller gives better results
compared with others during training.

5. Conclusion
We have shown that network quantization can be for-

mulated as an assignment problem between full-precision
and quantized values, and introduced a novel quantizer,
dubbed DAQ, that addresses both the gradient mismatch
and quantizer gap problems in a unified framework. Specifi-
cally, DASR approximates a rounding function with a kernel
soft argmax operator, together with a temperature controller
adjusting the temperature parameter adaptively. We have
shown that DAQ achieves the state of the art for various net-
work architectures and bit-widths without bells and whistles.
We have also verified the effectiveness of each component
of DAQ with a detailed analysis.
Acknowledgments. This research was supported by the
Samsung Research Funding & Incubation Center for Future
Technology (SRFC-IT1802-06).
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