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Abstract

In prevalent knowledge distillation, logits in most image
recognition models are computed by global average pool-
ing, then used to learn to encode the high-level and task-
relevant knowledge. In this work, we solve the limitation
of this global logit transfer in this distillation context. We
point out that it prevents the transfer of informative spatial
information, which provides localized knowledge as well
as rich relational information across contexts of an input
scene. To exploit the rich spatial information, we propose
a simple yet effective logit distillation approach. We add a
local spatial pooling layer branch to the penultimate layer,
thereby our method extends the standard logit distillation
and enables learning of both finely-localized knowledge and
holistic representation. Our proposed method shows fa-
vorable accuracy improvement against the state-of-the-art
methods on several image classification datasets. We show
that our distilled students trained on the image classifica-
tion task can be successfully leveraged for object detection
and semantic segmentation tasks; this result demonstrates
our method’s high transferability.

1. Introduction

Knowledge distillation is a method of transferring
knowledge of a large network (i.e., teacher) to a smaller
neural network (i.e., student). Unlike human-designed prior
knowledge, the distillation is an optimization method that
uses the representation of the network as prior knowledge.
More specifically, the student is trained with respect to re-
ducing a task-specific objective function, and the difference
in knowledge from the teacher.

Due to the simplicity and effectiveness of targeting the
teacher that has higher accuracy than the student, many re-
searchers have used the distillation method to achieve the
state-of-the-art accuracy on ImageNet dataset [11] of the
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Figure 1. Overview of our method. The global and local
logits and their densely connected relationships are used for
the logit distillation. “Conv Layers” denote convolutional
layers of teacher and student networks.

network [53, 43]. For the same reason, the distillation has
been combined with model-compression methods such as
pruning [31, 37] and quantization [25, 4], or other optimiza-
tion methods such as data augmentation [51] and ensemble
[58]. In addition, the distillation is used not only for the
image classification tasks, but also other vision tasks such
as image super-resolution [17, 30], object detection [7, 49]
and semantic segmentation [52, 36].

Depending on the representation levels of features to be
transferred, knowledge distillation methods are divided into

6290



two types: i) feature distillation that exploits the output fea-
tures of intermediate convolutional layers [44, 55, 56, 23,
26, 19, 1, 39, 35, 18, 46, 45]; and ii) logit distillation that
exploits the output logit in the final classifier [2, 20].

The logit is high-level and task-relevant knowledge with
class information but loses spatial information due to the
global average pooling, which spatially averages on the
features of the last convolutional layer (i.e., penultimate
layer). Most existing deep neural networks use global av-
erage pooling [32] for the object classification task because
the pooling both significantly reduces the model parame-
ters and prevents overfitting of the network while retaining
the network’s invariance to bounded spatial variants (e.g.,
translation, rotation, flipping) of the input data. However,
in the logit distillation, the student only learns compressed
knowledge, which includes no spatial information of the in-
put data from the teacher.

Many studies have shown that spatial information [29,
15, 40, 5] and spatial relationships [21, 50, 22, 54] are
essential factors for performance improvements in various
computer vision tasks. To exploit both spatial information
and spatial relationships for logit distillation, we propose a
novel global and local logit distillation method (GLD) that
transfers not only the global and local logits but also the
relationships among the global and local logits of multiple
input samples from the teacher to the student.

Figure 1 conceptualizes the global and local logits with
their densely connected relationship from the teacher and
student. Through the spatial pooling strategy in [15], we
create the global logits from the features in the whole re-
gion (global features) and the local logits from local regions
(local features) in the penultimate layer. Furthermore, the
densely connected relationship consists of the global and lo-
cal logits from all the input samples in a mini-batch. Specif-
ically, our relationship is defined with global and local logits
not only within the one input sample (intra-relationship) but
also among all input samples (inter-relationship).

Therefore, the student can learn spatial class information
composed of the global and local logits from the teacher.
In addition, the student can learn not only the relationships
among the global and local representations for one sample
by the intra-relationship but also more detailed relationship
among the all input samples in a mini-batch by the inter-
relationship, densely connected through the global and local
logits of each sample. The contributions of this work are
summarized as follows:

• We propose a novel logit-distillation method that uses
the global and local logits and their relationships
within a single sample as well as among all samples
in a mini-batch as knowledge.

• When using Kullback-Leibler (KL) divergence as
knowledge distillation loss, we accommodate various

distributions of both global and local logits by using
the standard deviation of a logit as a softening factor.

• We validate the generalizability of our method on the
image classification with benchmark datasets and its
transferability to the object detection and semantic seg-
mentation with various datasets.

2. Related Work
Knowledge distillation requires a method to convert the

output feature or logit of the teacher to knowledge that the
student can learn easily, considering the difference in ca-
pacity between the teacher and student. Various methods
for this purpose have been studied; they can be categorized
into two types: feature distillation and logit distillation.

In feature distillation, Romero et al. [44] improve the
student network’s performance by element-wise minimiza-
tion of the difference between the respective output fea-
tures of the teacher and the student through the regressor.
Zagoruyko and Komodakis [56] use a spatial attention map
of features to help the student learn where the teacher fo-
cuses on the input data. Unlike this method that uses the
attention map to focus on the specific local regions in the
whole region of the features, our method considers both the
whole and local regions of the features regardless of the at-
tention. Yim et al. [55] use the gram matrix for the input
and output features of the intermediate layers in a whole
network to consider the flow of solution procedure. Huang
and Wang [23] use a kernel trick to reduce the difference
of the feature distributions between the teacher and student.
However, the gram matrix or the kernel trick is used to cre-
ate knowledge only for the whole region of the features,
whereas our method creates knowledge for the local regions
as well as the whole region of the features. Kim et al. [26]
encode the output features of the last convolutional layer
using an auto-encoder and distill the core (encoded) infor-
mation of the features. We use the logit encoded through
the classifier for the features as core information.

Heo et al. [19] consider the activation boundary, i.e., the
sign of the feature is used as knowledge rather than the value
itself. Ahn et al. [1] formulate the knowledge distillation
problem as mutual information maximization between the
teacher and student. Heo et al. [18] perform distillation by
filtering out redundant information, which can have adverse
effects on the student. For this, they use a margin ReLU
and a partial-L2 distance loss for the output of all the batch
normalization layers in the teacher. Park et al. [39] use eu-
clidean distance and angle matrix among the global average
pooled features for the inter-relationship. Liu et al. [35]
use L2 distance matrix between the relationship of the in-
put features and the relationship of the output features in
each layer of the network. Tung and Mori [46] use the
covariance-based matrix among the one-dimensional flatten
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feature for the inter-relationship. Peng et al. [42] use the
kernel-based correlation among the embedded features for
the inter-relationship. All of these methods [39, 35, 46, 42]
use the relationship among the samples in the feature space
regardless of the spatial information; our method differs
from those in that it uses the global and local logits in the
logit space to extract the spatial relationships for each sam-
ple, in addition to among the samples. Tian et al. [45]
use mutual information to encourage that the teacher and
student have the similar output features for the similar in-
put samples (positive pair), while increasing the distance
between the two features obtained from two different in-
put samples (negative pair). Instead, we do not distinguish
between positive and negative samples, and encourage the
student to mimic all the logit behaviors of the teacher, in-
cluding global and local logits and their relationships.

In logit distillation, Ba and Caruana [2] minimize the L2

loss between the logits from the teacher and student. Hinton
et al. [20] transfer the softened distribution of the softmax
output as the knowledge to the student by dividing the logit
values by a fixed temperature value; this approach allows
the student to learn the true label class as well as the other
classes. Our method uses both the global logits used in [20]
and the local logits, so we normalize the logit to accommo-
date various distributions of global and local logits.

3. Method

Notation. We denote a convolutional layer of a network
as f = F ( · ; WF ), and a classifier of a network as
z = C( · ; WC), where f is the output feature of the
last convolutional layer and z is a logit, and W is a set
of trainable weights in a layer. The global average pool-
ing [32] is denoted as GAP( · ) and its receptive field size
is the whole spatial region of the arbitrarily-sized input
[15]. The input samples in a mini-batch is defined as X =
{x1, x2, x3, ..., xn} where the corresponding true label data
is Y = {y1, y2, y3, ..., yn} for a total of n samples in a mini-
batch. Therefore, the last feature can be expressed as f =
F (x ; WF ) and logit as z = C(GAP(f) ; WC). Specifically,
in the context of distillation, the teacher’s last feature is ft
= Ft(x ; W

F
t ) and logit is zt = Ct(GAP(ft) ; W

C
t ), and the

student’s last feature is fs = Fs(x ; W
F
s ) and logit is zs =

Cs(GAP(fs) ; W
C
s ).

3.1. Global and Local Logits

We explain the global and local logits used in our method
(Figure 1). The global logit is the final output of a classifier
that takes the input as the global feature of the network. The
global logit has been used in conventional neural networks
[20]. During traditional logit distillation, only the global
logit is transferred to the student; the spatial information is
ignored due to the global average pooling [32].

To compensate for the loss of spatial information, we in-
troduce “local” logits, which are the output of the classifier
that takes the input of local features divided from the global
feature. We share the same classifier to generate both local
and global logits in a network.

The global and local logits are created by the classifier
which takes 1 × 1 × c vectors spatially averaged from the
global and local features where c is the number of input
channels (Figure 1). The global and local features are de-
noted as f0 and f l (l = 1, 2, ..., L) where L is the number
of local features, respectively. The local features are de-
rived by dividing the width and height of f0 by d where no
overlapping among local features is applied, so L = d2. The
receptive field size of GAP() for the global feature is w × h,
so the GAP() for the local features takes the receptive field
size of ⌊w

d ⌋ × ⌊h
d ⌋. Finally, the global logit z0 and the l-th

local logit zl can be obtained as follows:

z0 = C(GAP(f0) ; WC), zl = C(GAP(f l) ; WC). (1)

Hinton et al. [20] transfer the sufficient information for the
true label class as well as the other classes from the teacher
to the student via logits. The softmax function creates a
peaky probability distribution, so a temperature parameter
in [20] is used as a softening factor to produce a smooth
probability distribution. After the softening process, distil-
lation is performed by reducing the KL divergence between
the two distributions of the teacher and student during the
training phase. The distillation loss Lhinton [20] between
all logits in a mini-batch from the teacher (Zt) and student
(Zs) is defined as:

Lhinton(Zt, Zs) =
1

n

n∑
i=1

τ2KL(ψ(
zt,i
τ

), ψ(
zs,i
τ

)), (2)

ψ(z)j =
ezj∑K
k=1 e

zk
, for j = 1, 2, ...,K.

where K is the number of classes and ψ( · )j is a softmax
function for j-th class, zt,i and zs,i are the output logits of
the i-th input from the teacher and student, respectively.

The proposed logit distillation method exploits both
global and local logits, which have different statistical char-
acteristics, so we propose an adaptive distillation loss LND,
which is derived from the KL divergence with normalized
logits. LND is derived by replacing z/τ in Eq. 2 with nor-
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Figure 2. The examples of the proposed densely con-
nected relationships. The bold-line in (a) denotes the intra-
relationship within one sample and the bold-line in (b) de-
notes the inter-relationship between two samples.

malized logits as:

LND(Zt, Zs) (3)

=
1

n

n∑
i=1

KL(ψ(
zt,i − µ(zt,i)

σ(zt,i)
), ψ(

zs,i − µ(zs,i)

σ(zs,i)
))

=
1

n

n∑
i=1

KL(ψ(
zt,i

σ(zt,i)
− µ(zt,i)

σ(zt,i)
), ψ(

zs,i
σ(zs,i)

− µ(zs,i)

σ(zs,i)
))

=
1

n

n∑
i=1

KL(ψ(
zt,i

σ(zt,i)
), ψ(

zs,i
σ(zs,i)

)),

where µ( · ) is the mean of the input logit and and σ( · ) is
its standard deviation. As a result, our LND improves the
distillation performance by accommodating different statis-
tical characteristics of the both global and local logits in the
KL divergence. The effectiveness of LND in the proposed
GLD is verified in Section 4.3.1.

Combining Eqs. 1 and 3 yields the global logit distilla-
tion loss Lglobal and local logit distillation loss Llocal as:

Lglobal = LND(Z0
t , Z

0
s ), Llocal =

L∑
l=1

LND(Zl
t, Z

l
s),

(4)

where Z0 and Zl are a set of the global logits and l-th local
logits from all the samples in a mini-batch, respectively. By
using Lglobal and Llocal, the student can learn more spatial
class information from the teacher than by using the pre-
vious logit distillation methods. Observations through toy

Input 
images

Teacher

Student

𝑥3

𝑥2

𝑥1

: local logit of teacher network: global logit of teacher network
: local logit of student network: global logit of student network
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Figure 3. Loss components Llocal, Lglobal and Lrelation for
the proposed logit distillation method between teacher and
student networks.

experiments about the global and local logits and their re-
lationships in the proposed method are given in the supple-
mentary material.

3.2. Densely Connected Relationship

Our method focuses on identifying what information
should be contained in the relational knowledge to be trans-
ferred, unlike other methods [39, 46, 42], where they focus
on how to form it. Specifically, our method transfers the
spatial relationships through the simple L2 distance matrix
among the global and local logits for each sample (see Intra-
relationship of Figure 2a) and across mini-batch samples
(see Inter-relationship of Figure 2b). In practice, the intra-
and inter-relationships are unified in the form of an m×m
matrix wherem = n(L+1). By using these two types of re-
lationship, our method can transfer more densely connected
relational knowledge than other methods [39, 46, 42]; thus,
our method can be regarded as a more general method than
these methods, where they use only the inter-relationship
among the features without the spatial information, i.e., spe-
cial cases of ours.

The proposed intra-relationship between the global and
local logits can be interpreted as capturing the co-activating
behaviors, i.e., a local logit dominates the global statistic
if the global and local logits are strongly related. This rela-
tionship also coincides with the local bias property of a con-
volutional neural network (CNN), i.e., a CNN is biased to
specific local features that contribute to its final prediction
[6, 3, 13, 48]. Similarly, the co-activating behaviors among
the local logits can be captured as knowledge for distillation
in the proposed method.

To measure the relationship, we use the L2-based dis-
tance metric as:

D̃(Z)i1,i2 = ∥zi1 − zi2∥2, (zi1, zi2) ∈ Z, (5)

Z = Z0 ∪ Z1 · · · ∪ Zl · · · ∪ ZL,
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Setup Compression type Teacher network Student network
# of params

teacher
# of params

student
Compress

ratio

(a) Depth ResNet 110 ResNet 20 1.7M 0.27M 15.9%
(b) Channel WideResNet 16-2 WideResNet 16-1 0.7M 0.18M 25.7%
(c) Depth & channel WideResNet 22-4 WideResNet 16-2 4.32M 0.7M 16.2%
(d) Different architecture WideResNet 16-4 ResNet 32 2.73M 0.46M 16.8%

Table 1. Information for settings on the teacher and student network architectures on CIFAR-100 dataset. The architecture is
denoted as ResNet (depth) for ResNet [16] and WideResNet (depth)-(channel multiplication) for WideResNet [57].

where Z collects the global and local logits obtained from
all the samples in a mini-batch, a union set of Z0 and Zl

(l = 1, 2, ..., L). Collecting all the distance values mea-
sured with Eq. 5 for Z, we construct the distance matrix
where L2 normalization is performed for each row as:

D(Z)[r,c] =
D̃(Z)[r,c]

∥D̃(Z)[r,:]∥2
, (6)

where D(Z)[r,c] indicates the (r, c)th element of the nor-
malized distance matrix D(Z). To transfer the relational
knowledge from the teacher to student, we define a relation
distillation loss Lrelation as:

Lrelation =
1

m2

m∑
r=1

m∑
c=1

∥Dt(Zt)r,c −Ds(Zs)r,c∥2. (7)

Loss components Lglobal, Llocal and Lrelation for the
proposed distillation method are calculated by comparing
the logits of the teacher to the logits of the student (Figure
3). The final loss (LGLD) of our method combines all the
distillation losses with a task loss (Ltask), which is the cross
entropy between the network output and the true label if
exists. Extending the conventional loss form of Ldistill =
(1 − α)Ltask + αLglobal in [20], we propose a new loss
LGLD by considering the local and relation losses as:

LGLD = Ldistill + Llocal + βLrelation, (8)

where α, β are balancing hyperparameters.

4. Experiments
Setup. We verify the effectiveness of our method through
extensive experiments comparing with nine state-of-the-art
knowledge distillation methods (i.e., KD [20], NST [23],
AT [56], OD [18], RKD [39], IRG [35], CC [42], SP [46],
CRD [45]) in the image classification task. The datasets
used for the experiments are CIFAR-100 [28] and Ima-
geNet [11]. We also show the transferability of the rep-
resentation from the distilled student network. For veri-
fying the transferability, CINIC-10 [10] and STL-10 [9]

datasets are used as target datasets for the image classifi-
cation task. For object detection and semantic segmenta-
tion, Pascal VOC2007 and VOC2012 [12], COCO dataset
[33], and Semantic Boundaries dataset (SBD) [14] are used
as target datasets. We also perform ablation studies to see
the effectiveness of the proposed components. We use Py-
torch library [41] for implementation. L is set to 4 for all
experiments by default except for the setting of Table 8.

4.1. Image Classification

First, we compare our method with other knowledge dis-
tillation methods in the image classification task. The net-
work trained for the image classification task is used as a
backbone for other computer vision tasks such as object de-
tection [34] and semantic segmentation [8], so image clas-
sification is considered a representative task. As in [20], the
teacher is pre-trained and the student is randomly initialized
before being used for the knowledge distillation.

4.1.1 CIFAR-100

We set four teacher-student cases using variants of ResNet
[16] and WideResNet [57] to show the superiority of our
method for various architectures of the teacher and student.
Table 1 shows the experimental setups for four compression
types with different combination of teacher/student network
architectures. We set the α and β in Eq. 8 as 0.7 and 500, re-
spectively. The hyperparameter values for other distillation
methods are obtained from their respective papers. More
detailed experimental settings are described in the supple-
mentary material.

Table 2 shows the experimental results for all the cases
in Table 1. Our method outperforms the state-of-the-art dis-
tillation methods for all the cases. This result indicates that
the global and local logits with their densely connected re-
lations play a crucial role in distilling the knowledge with
high generalizability from the teacher to the student, even
for classifying small image objects.
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Setup Teacher Baseline KD
[20]

NST
[23]

AT
[56]

OD
[18]

RKD
[39]

IRG
[35]

CC
[42]

SP
[46]

CRD
[45]

GLD
(ours)

(a) 72.53 68.75 70.27 69.13 69.73 69.16 69.36 69.87 68.85 70.29 71.10 71.37
(b) 73.04 66.76 68.06 66.70 67.49 67.40 67.41 68.03 66.82 67.61 67.90 68.95
(c) 77.67 73.04 74.75 73.40 74.36 76.07 73.34 75.17 72.96 74.23 75.55 76.28
(d) 76.67 71.01 73.03 70.51 72.23 73.68 71.11 73.26 70.99 72.13 73.65 74.27

Table 2. Top-1 accuracy (%) on CIFAR-100 validation dataset compared with various knowledge distillation methods.
“Baseline” represents a result without distillation. The accuracy is averaged over three runs.

Teacher Baseline AT
[56]

KD
[20]

OD*

[18]
RKD*

[39]
IRG*

[35]
SP*

[46]
CC
[42]

Online KD
[58]

CRD
[45]

CRD+KD
[45, 20]

GLD
(ours)

Top-1 73.31 69.75 70.70 70.66 70.59 70.59 70.32 70.79 69.96 70.55 71.17 71.38 71.63
Top-5 91.42 89.07 90.00 89.88 89.81 89.68 89.99 89.80 89.17 89.59 90.13 90.49 90.53

Table 3. Top-1 and Top-5 accuracy (%) on ImageNet validation dataset compared with various knowledge distillation meth-
ods. The results of the other methods except “*” are quoted from [45]. Our method and “*” are performed with our
implementation with the same training settings in [45]. “Baseline” denotes a result without distillation.

4.1.2 ImageNet

ImageNet classification is considered a difficult task be-
cause the network needs to classify each input image
into one of 1000 classes. In this experiment, we choose
ResNet34 and ResNet18 [16] as the teacher network and
student network, respectively. For comparison with other
state-of-the-art distillation methods, the training settings are
same as [45]. We set α = 0.1 and β = 100. The hyperpa-
rameters of other methods follow their respective papers.

Table 3 shows the experimental results of the proposed
method on ImageNet. Our method outperforms all other
distillation methods, increasing the top-1 and top-5 accu-
racy for validation images by 1.88% and 1.46% over the
baseline, respectively. This result supports that our method
works well for the difficult image classification task with
large image objects.

4.2. Transferability

To further verify the effectiveness of the proposed
method, we show the transferability of our method in this
section. Distilled networks tend to have higher generaliza-
tion performance as compared to baseline in new datasets
or tasks by learning more general knowledge through dis-
tillation methods [45]. To verify the transferability of our
method for image classification tasks, we experiment with
linear classification tasks in new datasets [10, 9] by using
the distilled student on the original dataset used in the distil-
lation process. Furthermore, for the object detection and se-
mantic segmentation tasks, we replace backbone networks
with the distilled network.

4.2.1 Other Datasets

In this section, we show the transferability of our method in
experiments with CINIC-10 [10] and STL-10 [9] datasets,
on which it had not been trained. CINIC-10 is 32 × 32
size RGB image dataset obtained from CIFAR-10 [28] and
ImageNet [11]; it consists of 10 classes, and each class has
9,000 images for each training, validation, and test. CINIC-
10 is a mixture of two heterogeneous datasets, so its data
distribution is different from the source dataset (CIFAR-100
[28]). STL-10 consists of a labeled and an unlabeled image
dataset constructed from the ImageNet dataset. We use the
labeled dataset for transferability experiments; it is divided
into ten classes with an image resolution of 96 × 96. Each
class has 500 training images and 800 test images.

We evaluate the transferability of the distilled students
for the case in which the teacher network is WideResNet16-
2 and the student network is WideResNet16-1 (Table 1), re-
spectively. We freeze the weights in the convolutional lay-
ers of the distilled student on CIFAR-100 and only train the
classifier to adjust CINIC-10 and STL-10 image classifica-
tion tasks as in [45]. The training settings are the same as
in Section 4.1.1. Table 4 shows the experimental results on
CINIC-10 and STL-10, the two target datasets. Our method
shows higher transferability than other state-of-the-art dis-
tillation methods.

4.2.2 Object Detection and Semantic Segmentation

In this section, we show the transferability of the dis-
tilled student on object detection and semantic segmentation
tasks. We use the distilled student (ResNet18) on ImageNet.
For object detection and semantic segmentation, the student
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CIFAR-100 [28]
→ CINIC-10 [10]

CIFAR-100 [28]
→ STL-10 [9]

Teacher 62.15 70.65
Baseline 58.36 67.61

KD [20] 60.17 67.23
NST [23] 58.52 66.65
AT [56] 59.93 67.06
OD [18] 59.93 68.61

RKD [39] 60.09 67.58
IRG [35] 60.44 67.75
CC [42] 58.52 66.25
SP [46] 60.18 67.47

CRD [45] 60.90 68.28
GLD (ours) 61.09 68.96

Table 4. Top-1 accuracy (%) on CINIC-10 and STL-10
test datasets compared with various knowledge distillation
methods. “Baseline” represents a result without distillation.

is used as the backbone network. More detailed experimen-
tal settings are described in the supplementary material.

In the object detection task, Single Shot Detector (SSD)
[34] is used as the baseline detector. First, we measure the
performance on the test dataset of Pascal VOC2007 [12]
for the student trained with Pascal VOC2012 as the train-
ing dataset and VOC2007 as the validation dataset. Second,
we measure the performance on the validation dataset of
COCO2017 dataset detection [33] after training the detec-
tor with the training dataset of COCO2017.

In the semantic segmentation task, DeepLabV3+
(DLV3+) [8] is used as a segmentation network for two
datasets. We measure the performance on the test dataset
of Pascal VOC2007 segmentation dataset, with Pascal
VOC2012 and Semantic Boundaries Dataset (SBD) [14] as
training datasets. We also measure the performance on the
validation dataset of the COCO2017 segmentation dataset
by training the network with the training dataset in the
same dataset. Table 5 and 6 show the experimental re-
sults for object detection and semantic segmentation, re-
spectively. These results indicate that the proposed distil-
lation can transfer knowledge with high generalizability in
feature representation.

4.3. Ablation Study

In this section, we conduct experiments on each com-
ponent of our proposed method and the number of the lo-
cal logits with various hyperparameter settings. The train-
ing settings for CIFAR-100 [28] and ImageNet [11] are the
same as in Section 4.1.1 and 4.1.2, respectively. Top-1 ac-
curacy on CIFAR-100 is averaged over three runs.

Network
(# of params) Method

VOC2007
test set [12]

COCO2017
val set [33]

SSD-ResNet34
(31.68M) Teacher 75.23 24.28

SSD-ResNet18
(21.57M)

Baseline 70.97 19.41
OD [18] 71.55 19.72
SP [46] 71.12 19.51

GLD (Ours) 71.83 19.83

Table 5. Object detection results with mean Average Pre-
cision (mAP) on the test data of Pascal VOC2007 and
COCO2017 detection dataset. “Baseline” represents a re-
sult without distillation.

Network
(# of params) Method

VOC2007
test set [12]

COCO2017
val set [33]

DLV3+-ResNet34
(26.72M) Teacher 72.72 56.24

DLV3+-ResNet18
(16.61M)

Baseline 69.72 51.22
OD [18] 70.14 53.68
SP [46] 70.57 51.33

GLD (Ours) 70.77 53.75

Table 6. Semantic segmentation results with mean Intersec-
tion of over Union (mIoU) on test data of Pascal VOC2007
and COCO2017 segmentation dataset. “Baseline” repre-
sents a result without distillation.

4.3.1 Components of GLD

To verify the performance of each component of our
method, we experiment with each component of our method
separately. The settings for teacher and student are identi-
cal to case (c) in Table 1: results of the case (a), (b) and (d)
in Table 1 are described in the supplementary material. As
shown in Figure 4, among all the components, the local log-
its have the strongest influence on the increase in the perfor-
mance, and the combination of all the components (GLD)
yields the highest performance.

To verify the effectiveness of using the standard devia-
tion as a softening factor for the global and local logits in
LND (Eq. 3), we perform experiments for all cases in Table
1, but with the softening factor either a fixed value (temper-
ature) or the standard deviation for the conventional (global
logit only) and our (global and local logits together) cases.
In this experiment, Lrelation in our method is removed for
the distillation. Table 7 shows the experimental results. For
the conventional case, use of temperature achieve higher ac-
curacy than use of standard deviation, whereas for our case,
use of the standard deviation achieve higher accuracy than
use of the temperature. These results indicate that standard
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Figure 4. Top-1 accuracy (%) on CIFAR-100 [28] for each
individual component. The local logits are the most effec-
tive for our method among the other separated components.

Setup (a) (b) (c) (d)

τ = 4
σ

global 70.26 68.05 74.75 73.03
global 70.00 67.56 74.30 72.23

τ = 4
σ

global+local 69.77 67.44 75.06 72.50
global+local 71.02 68.85 74.89 74.25

Table 7. Top-1 accuracy (%) on CIFAR-100 [28] of our
method. The standard deviation (σ, ours) is more effective
for the softening factor than the temperature (τ , [20]).

deviation can effectively accommodate different distribu-
tions from global and local logits.

4.3.2 Number of Local Logits and Hyperparameters

To determine the optimal number of local logits, we per-
form experiments according to the number of the local log-
its in our method, where we set to 4 (2 × 2), 9 (3 × 3) and
49 (7×7) for the fine-grained datasets (Oxford 102 Flowers
[38], Cars 196 [27], Stanford Dogs [24] and CUB-200-2011
[47]) and ImageNet [11] and to 4 (2 × 2), 16 (4 × 4) and
64 (8 × 8) for CIFAR-100 [28], respectively. The detail
settings are described in the supplementary material. Table
8 shows the tendency that increases in the importance of
the locality of an object for classification (e.g., fine-grained
classification) requires to increase in the number of the lo-
cal logits/relations. These results suggest that classifying
sub-categories of objects usually requires focusing more on
local textures than global shapes of objects, where a large
number of local logits of our method can extract more de-
tailed local information.

We perform experiments to see the sensitivity of our
method to hyperparameters α and β which control the con-
ventional loss Ldistill and the relation loss Lrelation, re-
spectively. The settings for teacher and student are those of
case (c) in Table 1. Table 9 shows the experimental results
that our method is somewhat insensitive to the hyperparam-
eters α and β.

Teacher Baseline
Local logits

2×2 3×3 7×7
(2×2) (4×4) (8×8)

102 Flowers 98.53 91.20 95.48 95.48 96.82
Cars 196 86.86 80.61 87.71 88.32 88.77
120 Dogs 86.86 65.69 79.07 79.28 79.60

CUB-200-2011 63.23 55.91 68.89 70.24 70.81

ImageNet 73.31 69.75 71.63 71.33 69.95
CIFAR-100 (a) 72.53 68.75 71.37 69.85 68.80
CIFAR-100 (b) 73.04 66.76 68.95 67.52 65.66
CIFAR-100 (c) 77.67 73.04 76.28 76.05 74.94
CIFAR-100 (d) 76.67 71.01 74.27 73.85 73.21

Table 8. Top-1 accuracy (%) on the fine-grained and bench-
mark datasets for the various number of the local logits.
“Baseline” represents a result without distillation.

β
α

0.1 0.3 0.5 0.7

100 76.00 76.05 76.02 76.27
500 76.02 76.03 76.19 76.28

1000 76.06 76.07 76.25 76.07

Table 9. Top-1 accuracy (%) on CIFAR-100 [28] for the α
and β in our method. The results are stable in any case.

5. Conclusion

In this paper, we propose a novel logit distillation
method, GLD, which uses both global and local logits and
their densely connected relationship for distillation by ex-
ploiting the spatial information for the logits. We validated
the effectiveness of our method in various experiments and
achieved high performance in image classification, object
detection and semantic segmentation. Since GLD can gen-
erate a variety of local class information depending on the
spatial pooling strategy and provide how it is applied to
the features of the penultimate layer, we plan to elaborate
GLD by utilizing various spatial pooling strategies as future
work.
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