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Abstract

While learning-based multi-view stereo (MVS) methods
have recently shown successful performances in quality and
efficiency, limited MVS data hampers generalization to un-
seen environments. A simple solution is to generate vari-
ous large-scale MVS datasets, but generating dense ground
truth for 3D structure requires a huge amount of time and
resources. On the other hand, if the reliance on dense
ground truth is relaxed, MVS systems will generalize more
smoothly to new environments. To this end, we first intro-
duce a novel semi-supervised multi-view stereo framework
called a Sparse Ground truth-based MVS Network (SGT-
MVSNet) that can reliably reconstruct the 3D structures
even with a few ground truth 3D points. Our strategy is
to divide the accurate and erroneous regions and individu-
ally conquer them based on our observation that a proba-
bility map can separate these regions. We propose a self-
supervision loss called the 3D Point Consistency Loss to
enhance the 3D reconstruction performance, which forces
the 3D points back-projected from the corresponding pixels
by the predicted depth values to meet at the same 3D co-
ordinates. Finally, we propagate these improved depth pre-
dictions toward edges and occlusions by the Coarse-to-fine
Reliable Depth Propagation module. We generate the spare
ground truth of the DTU dataset for evaluation and exten-
sive experiments verify that our SGT-MVSNet outperforms
the state-of-the-art MVS methods on the sparse ground truth
setting. Moreover, our method shows comparable recon-
struction results to the supervised MVS methods though we
only used tens and hundreds of ground truth 3D points.

1. Introduction

Multi-view Stereo (MVS) has been an important prob-
lem in computer vision, which reconstructs dense 3D geom-
etry from multi-view images. The industrial applicability of

(a) Dense ground truth (b) Sparse ground truth (1×10−5)

(c) Point-MVSNet (Dense GT) (d) Ours (Sparse GT)

Figure 1: Visualization of a dense ground truth and our
sparse ground truth of scan14, and multi-view reconstruc-
tion results of scan13 of the DTU dataset [7] by Point-
MVSNet [1] trained with dense ground truths and our SGT-
MVSNet trained with sparse ground truths. This sparse
ground truth generated by random sampling with 1× 10−5

ratio contain around 30 to 40 3D points. Note that original
dense ground truth 3D structures consist of approximately
3× 106 points.

3D reconstruction such as autonomous driving and robotics
has attracted extensive research for decades. Recent MVS
studies [15, 16, 1, 17, 11] successfully incorporate tradi-
tional approaches to the learning-based methods and im-
prove 3D reconstruction quality under the blessing of the
MVS datasets [7, 10]. However, contrary to such increas-
ing dependence on datasets, there have been fundamental
difficulties in collecting dense ground truth 3D structures,
which eventually hamper the generalization to unseen do-
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mains. Specifically, collecting an accurate and completed
ground truth 3D structure generally takes several hours with
a fixed active sensor. And the collection process even re-
quires a subsequent labor-intensive post-process to remove
outliers like dynamic objects which move through the field
of view during the collection period [7, 10]. These harsh
conditions are not available on dynamic places like a road.
Thus, a semi-supervised multi-view stereo algorithm, which
can be trained even with incomplete ground truth 3D struc-
ture, is necessary to ease the generalization of the model on
the unseen environment.

In this paper, we first explore a novel semi-supervised
MVS problem called a Sparse Ground truth-based MVS
(SGT-MVS) problem, which assumes that only the sparse
ground truth 3D structure is available for training. We first
investigate its fundamental characteristics to discover key
aspects for solving the SGT-MVS problem. Specifically,
though the relatively scarce depth information inevitably
degrades the 3D reconstruction quality overall, the system-
atic depth reasoning principle of MVS enables the MVS
networks to reasonably estimate depth values on the non-
occluded region even with a few ground truth 3D points.
Nevertheless, the depth reasoning principle fundamentally
suffers from prediction difficulties in occluded pixels of the
given multi-view images and edge pixels. Learning-based
MVS methods are able to solve these difficulties using the
contextual information of the nearby non-occluded regions
for the occluded pixels and highly discriminative features
for the edge pixels since they can directly supervise the ex-
act depth values on the occluded regions or edges. Sparse
ground truth basically cannot guarantee the contextual and
highly discriminative features to such level.

Based on our observations, we focus on improving the
discriminability on the accurately predicted non-occluded
regions while propagating the accurate depth values to
edges, occlusions, and erroneous non-occluded regions. We
use a probability map to detect theses erroneous regions
since the MVS network cannot determine a certain depth
value due to the fundamental prediction difficulty. Thus,
by treating the probability like a confidence map, we first
separate the accurately predicted regions and erroneous re-
gions according to the probability value. Then, we apply
loss function named 3D Point Consistency Loss to enhance
the 3D reconstruction performance on the accurately pre-
dicted region by regressing the 3D points back-projected
from the corresponding pixels to actually meet in the 3D
world, where the back-projection means a transformation
from a pixel in an image plane to a 3D point in a world
frame. Since the corresponding pixels are likely to be back-
projected into the distinctive 3D points due to the inaccu-
rate depth values, it is reasonable to match them in the 3D
world for better reconstruction quality. Finally, we propa-
gate these improved predictions toward the low confidence

regions through our Coarse-to-fine Reliable Depth Propaga-
tion module. To verify our method on the semi-supervised
SGT-MVS problem, we generate sparse ground truth from
the original dense 3D structures by randomly sampling at
ratios of 1× 10−5 and 1× 10−4. As shown in Fig. 1, while
original dense ground truth 3D structures consist of approx-
imately 3×106 points, our sparse ground truth 3D structures
only consist of tens and hundreds of 3D points, respectively,
for each 3D structure. We compared our SGT-MVSNet
with the state-of-the-art MVS networks on the same sparse
ground truth and confirm that our method can succesfully
solve the SGT-MVS problem. Moreover, SGT-MVSNet
matches the capacity of other state-of-the-art MVS net-
works, though we only used tens and hundreds of ground
truth 3D points.

To summarize, our contributions are threefold:

• We first introduce a novel semi-supervised multi-view
stereo problem called Sparse Ground truth-based MVS
(SGT-MVS) problem.

• We introduce SGT-MVSNet, a semi-supervised MVS
framework suitable for the sparse ground truth that
consists of the 3D Point Consistency Loss and the
Coarse-to-fine Reliable Depth Propagaion module.

• Extensive experiments verify that our method success-
fully solve the semi-supervised MVS problem with the
sparse ground truth. The reconstruction performance
of SGT-MVSNet is comparable to the supervised MVS
methods even though we only used a few points.

2. Related Work
2.1. Learning-based Multi-view Stereo (MVS)

Recently, learning-based methods have been success-
fully applied to MVS reconstruction. SurfaceNet [8] and
DeepMVS [5] prewarped the image features to the 3D vox-
elized space and used 3D CNNs to estimate the object
surface. Due to the limitations of these voxel-based ap-
proaches, depth map-based approaches have been proposed
to tackle large-scale reconstruction. Yao et al. [15] first pro-
posed an end-to-end framework that constructs the cost vol-
ume by warping 2D image features from neighboring im-
ages. In addition, they applied the 3D CNN to regularize
this cost volume and regressed a depth map. Most recent
learning-based MVS algorithms [6, 16, 1, 17, 11] built upon
depth map-based approaches which use a plane-sweeping
algorithm [2] to compute a cost volume from the multi-
view images and then estimate depth maps by via regression
or classification. R-MVSNet [16] used the convolutional
GRU to sequentially build a cost volume and reduced GPU
memory consumption. To save memory consumption, Fast-
MVSNet [17] used a sparse-to-dense strategy that refines
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Figure 2: An overall framework of SGT-MVSNet. Our framework mainly consists of a feature extractor, a pyramidal cost
volume regularization module, double prediction layers, the proposed Coarse-to-fine Reliable Depth Propagation module
with a depth regression loss and the proposed 3D Point Consistency Loss.

a sparse depth map by introducing a differentiable Gauss-
Newton layer. Chen et al. [1] proposed a new approach
that improves depth prediction by refining the point cloud in
the 3D space in a coarse-to-fine manner. Att-MVSNet [11]
leveraged the attention modules [4] to improve the MVS
performance. However, these methods highly rely on dense
ground truth 3D structures despite their difficulty in the col-
lection. Therefore, we focus on alleviating the dependence
of the MVS networks on the dense ground truth.

2.2. Unsupervised Multi-view Stereo

Most learning-based MVS methods are heavily reliant
on dense ground truth depth maps. However, generating
dense depth maps for large-scale datasets is expensive and
time-consuming. To overcome this limitation, Tejas et al.
[9] used the combination of both the photometric loss and
the regression loss to train an MVS network without ground
truth depth maps. Some methods [3, 18] adopt a depth con-
sistency loss across views. However, despite the promising
approaches for easy generalization on new environments,
these methods are not quite competitive compared to the
supervised MVS method. Besides, our method is compa-
rable to the supervised MVS methods even with tens and
hundreds of ground truth 3D points.

2.3. Multi-view Stereo Datasets

There are a number of datasets for evaluating MVS al-
gorithms. The Middlebury dataset [14] is the first public
benchmark for MVS evaluation. It consists of hundreds
of low-resolution images with calibrated cameras in a con-
trolled laboratory environment. The ETH3D dataset [13]
includes high-resolution images of building facades models
and 3D ground truth point clouds captured by a laser scan-
ner. The DTU dataset [7] contains large amounts of images
of real-world objects with surface point clouds, which are
collected using a robotic arm. The DTU dataset provides di-

verse and well-textured scenes under different lighting con-
ditions. The Tanks and Temples dataset [10] includes high-
resolution video data and ground truth point clouds col-
lected by a laser scanner. However, most of these datasets
are collected through time-consuming and labor-intensive
processes, which inspired the pursuit of our method.

3. Method
3.1. Problem Formulation

For a given reference frame I0 and source frames
{Ii}Ni=1, our main objective is to estimate dense depth map
D of a 3D structure from the reference view. The only dif-
ference with the supervised MVS problem is that we can
only use sparsely collected 3D points {Pj}Mj=1 of the orig-
inal 3D structure. To practically use the ground truth 3D
points for training, we compute depth values of each 3D
point in the perspective of the reference view. In additional,
K, R, and t denote for the intrinsic, rotation and translation
parameters of a reference view, respectively.

3.2. Observations on the SGT-MVS problem

Some dense estimation tasks like semantic segmentation
require a deep contextual understanding of each class to ro-
bustly estimate on the unseen environment, which require
abundant pixel-level annotations. On the other hand, the
fundamental depth reasoning mechanism of stereo match-
ing and MVS is to search for an optimal consistency cost
for each pixel. Even without the help of numerous ground
truth, if the encoder is able to extract discriminative features
from given multiple views, the estimation network can rea-
sonably predict the depth values on non-occluded pixels of
the reference frame. However, since occluded pixels have
only a few or no corresponding pixels in the source frames,
these pixels might not be photometrically consistent with
other views and the multi-view consistency cost might not
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be optimal for the exact depth value. Thus, the erroneous
estimation on occluded regions cannot be easily solved only
with discriminability of the feature.

Besides the occluded pixel issue, the erroneous depth
estimation on edge pixels is also an important issue in
the SGT-MVS problem. Since the depth value tends to
vary greatly at the boundary of the objects, the cost vol-
ume should change drastically at the edge pixels. Hence,
these regions fundamentally require highly discriminative
features that can differentiate the cost volume value across
the edge.

Conventional MVS methods are able to address these is-
sues since directly supervising the ground truth depth values
enables the network to refer cost volume values of nearby
non-occluded pixels on the occluded pixels and edge pixels.
This approach can rarely hold in the SGT-MVS problem
since sparse ground truth 3D structures can barely provide
the exact depth values for such pixels.

3.3. Overall Pipeline

Based on the aforementioned observations, we aim at
solving the semi-supervised multi-view stereo (SGT-MVS)
problem by maximizing the discriminability of the feature
in a self-supervised approach and propagating the accurate
depth predictions to the fundamentally erroneous regions.
To achieve this goal, we first employ a suitable prediction
layer to maximize the sparse ground truth exploitation. Sec-
ond, to address the degenerative 3D reconstruction quality,
we design the 3D Point Consistency Loss to regress the
3D points back-projected from the corresponding pixels to
actually meet in the 3D world. Since this training method
is vulnerable to wrong pixel correspondences, we set a firm
criterion to filter them out. Third, to tackle the fundamental
difficulties on edges and occlusions, we build the Coarse-
to-fine Reliable Depth Propagation module that leverages
nearby accurate predictions to revise the wrongly predicted
depth values. The overall framework of our SGT-MVSNet
is described in Fig. 2.

3.4. Network Architecture

Our feature extractor and cost volume regularizer share
similar structures with the recent learning-based MVS net-
works [15, 16, 1, 17]. We use 8-layer 2D CNNs for feature
extraction and a 3-level pyramidal module with 10-layer
3D CNNs for cost volume regularization. Inspired from
the efficient cost volume regularization process of the Fast-
MVSNet [17], we downsample the base cost volume by half
before regularization. However, unlike the conventional
dense ground truth-based MVS networks [15, 16, 1, 17],
we construct double prediction layers including a main pre-
diction layer and a half resolution auxiliary prediction layer.
We design this structure based on our empirical observation
that it is desirable to use contextual information for texture-

Figure 3: Description of the 3D Point Consistency Loss.
Though the estimated corresponding pixel p′ of p has in-
accurate depth values, our 3D Point Consistency Loss can
bring the 3D points P of p and P ′ of p′ together so that the
network can correctly estimate depth values on the pixel p′.

less 3D structures. This also performs slightly better than
a single prediction layer in the scarce ground truth setting.
We use the regularized cost volume of size 1

8H ×
1
8W × 8

for the auxiliary prediction, and upsample to the base cost
volume size of 1

4H×
1
4W×8 for main prediction. Note that

our double prediction layers do not correspond to a complex
auxiliary inference structure discussed in Section 3.2, so the
risk of discriminability contamination is low.

3.5. 3D Point Consistency Loss

Though MVS networks can reasonably predict depth val-
ues on the non-occluded regions of the given multi-view
images, the 3D reconstruction results inevitably suffer from
degraded performance compared to the dense ground truth-
based MVS networks. Therefore, even though correspond-
ing pixels of each view theoretically originate from an iden-
tical 3D point, it is likely that the back-projected 3D points
of these pixels will not meet at the same position in the 3D
world frame due to the inaccurate depth predictions. Here,
the back-projection means a transformation from a pixel in
an image plane to a 3D point in a world frame. To solve
this degenerative 3D points reconstruction quality issue, we
define a 3D Point Consistency Loss to regress the back-
projected 3D points of the corresponding pixels to actually
meet at the same 3D coordinate and eventually form a cor-
rect correspondence in the 3D world, as shown in Fig. 3.

However, pixels on edges and occlusions are determin-
istically projected onto nearby wrong pixels in other views.
Moreover, even non-occluded pixels can be matched with
wrong pixels in other view if the predicted depth values are
inaccurate. Regressing 3D world distances between these
inaccurate 3D points can rather form false correspondences.
To tackle these challenges, we need a solid criterion to filter
out these potential false correspondences and search for the
reliable pixels that are likely to match in the 3D world.

In this state, we observed that a probability map of the
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(a) Reference view (b) Depth prediction (c) Probability map

Figure 4: Visualization of the erroneous prediction and the
corresponding probability map. The edges and occlusions
tend to have a low probability value. We treat the probabil-
ity map like a confidence map for the reliable depth predic-
tion.

depth prediction can approximately detect edges, occlusion,
and erroneous non-occluded regions that could potentially
form wrong correspondences, as shown in Fig. 4. Thus, we
design a criterion with two conditions based on the prob-
ability map: i) the probability value of the pixels should
exceed a certain confidence threshold εh; ii) The distance
between the 3D points should not exceed a certain distance
threshold εw. Then, we formulate the 3D Point Consistency
Loss for a pixel p as follows:

p′ = K ′(R′R−1(D(p)K−1p− t) + t′)

P = D(p)K−1p− t
P ′ = D(p′)K ′−1p′ − t′

Lcon(p) =


‖P − P ′‖2,

if min
q∈{p,p′}

C(q) > εh

and ‖P − P ′‖2 < εw

0, otherwise

,

(1)

where p′ denotes the estimated corresponding pixels of p,
P and P ′ denote the 3D points back-projected from p and
p′, D(p) and C(p) denote a predicted depth and probability
values of the pixel p, εh represents a threshold for highly
reliable depth prediction, and εw represents a threshold for
filtering wrongly matched pixels.

3.6. Coarse-to-fine Reliable Depth Propagation

The fundamental errors on the occlusions and edges still
remain unresolved since the 3D Point Consistency Loss
mainly focuses on enhancing the performance on the non-
occluded regions. Thus, we aim to explicitly propagate
accurate predictions to erroneous regions. Inspired by the
observations on the probability map, we build a propaga-
tion module called a Coarse-to-fine Reliable Depth Prop-
agation module that modifies uncertain depths by referring
to nearby reliable predictions with a high probability value
while preserving reliable predictions.

In addition, our module works in a coarse-to-fine man-
ner, considering that these erroneous values usually appear
at the patch-level region rather than a single pixel, as shown

Figure 5: Description of the Coarse-to-fine Reliable Depth
Propagation process in each coarse-to-fine level for the
depth map. We update the uncertain depth prediction based
on the feature similarity between the nearby pixels. We en-
large the scope through dilated convolution to reflect the
contextual tendency of the depth values. The confidence
map is also updated in the same procedure.

in Fig 4. (b). Moreover, we refer to not only the surround-
ing pixels but also farther pixels to reflect the contextual
tendency of the nearby depth values. For a given pixel posi-
tion p, our propagation strategy is to utilize the surrounding
neighbor Ndk(p) with d1 = 1 and the neighbors Ndk(p),
(k = 2, ...,K) with certain dilation values dk to modify the
depth values D(p) on each coarse-to fine level as follows:

D′(p) =


∑

q∈
⋃K

k=1Ndk
(p)
D(q) · wp,q, if C(p) > εc

D(p), otherwise
,

(2)
where C(p) is a probability value for the pixel position p,
and εc is a threshold for the probability value. The compu-
tation process is described in Fig. 5. In the test phase, we
also update the probability value on p to determine whether
to proceed the propagation on p at the next level or not.

C ′(p) =


∑

q∈
⋃K

k=1Ndk
(p)
C(q) · wp,q, if C(p) > εc

C(p), otherwise
,

(3)
Empirically, we employ two additional dilated neighbors
(K=3) with d2 = 3 and d3 = 6.

4. Training Loss

Our training loss mainly consists of the 3D Point Consis-
tency Loss and depth regression losses for double prediction
layers and the Coarse-to-fine Reliable Depth Propagation
module. We employ the mean absolute difference for depth
regression losses. Suppose we have a ground truth depth
map D̂ and a half-sized map D̂aux for the reference view
and the source views v1 and v2 are the randomly sampled
source views. Then, the training loss can be formulated as
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follows:

Loss =
∑

p∈psparse

‖D(p)− D̂(p)‖+ ‖Daux(p)− D̂aux(p)‖

+ λpcl ·
∑

v∈{v1,v2}

∑
Cref (p)>εh
Cv(p

′
v)>εh

‖P−Pv‖2<εw

‖P − Pv‖2

+ λcrdp ·
∑

p∈psparse

‖D′(p)− D̂(p)‖,

(4)
where λpcl and λcrdp are weights for the 3D Point Consis-
tency Loss and the Coarse-to-fine Reliable Depth Propaga-
tion module. Note that all the previously defined notations
with a subscript v represent that of the v-th view.

5. Experiments
5.1. Experimental Setup

Datasets We used the DTU and Tanks and Temples
datasets [7, 10] for evaluation. The DTU dataset [7] is
a large-scale MVS dataset which consists of 128 different
3D structures with each scene captured from 49 or 64 fixed
viewpoints on seven light conditions. The dataset originally
provides ground truth point cloud and normal surfaces, and
Yao et al. [15] generated the depth maps by rendering the
mesh surface to each viewpoint. We followed the same con-
figuration of training, validation, and evaluation splits by
the previous learning-based MVS methods for a fair com-
parison. The Tanks and Temples dataset is a large-scale
MVS dataset for the outdoor scenes that consists of inter-
mediate and advanced sequences. Following the previous
MVS methods [15, 16, 1, 17], we only use the intermediate
sequence for evaluation.

Sparse ground truth depth map generation The semi-
supervised MVS problem aims to learn dense 3D recon-
struction capacity only with the sparse ground truths so that
the network can reconstruct the original 3D structure from
multi-view images. Thus, to verify the effectiveness of our
method on the semi-supervised MVS problem, we need a
data split with sparse ground truth 3D structures for train-
ing and another data split with dense ground truth 3D struc-
tures for evaluation. Since the MVS datasets basically do
not provide sparse ground truth depth maps, we newly gen-
erate them for the experiments. We randomly sampled 3D
points from each ground truth 3D structure with a certain ra-
tio. We used the sampling ratios of 1× 10−5 and 1× 10−4,
and these quantities imply tens and hundreds of points for
each 3D structure in the DTU dataset, respectively.

Implementation details We trained our MVS network
with the training data of the DTU dataset. Following the

Ground-
truth Method

Acc.
(mm)

Comp.
(mm)

Overall
(mm)

Sparse
(1× 10−4)

MVSNet [15] 0.481 0.492 0.486
PointMVSNet [1] 0.490 0.502 0.496
Fast-MVSNet [17] 0.355 0.425 0.390

Ours 0.421 0.349 0.385

Sparse
(1× 10−5)

MVSNet [15] 0.537 0.494 0.516
PointMVSNet [1] 0.603 0.621 0.612
Fast-MVSNet [17] 0.381 0.481 0.431

Ours 0.441 0.381 0.411

Table 1: Quantitative 3D reconstruction quality results of
our method and the state-of-the-art supervised MVS meth-
ods in the sparse ground truth setting on the DTU evaluation
dataset [7].

learning curriculum of the previous works [15, 16, 17, 1],
we used the input size of 640 × 412 and 960 × 1280, and
three and five views respectively for training and tests. We
used 96 depth planes for training and 144 depth planes for
testing. Following the consensus of the previous works [15,
16, 17, 1], We employed the RMSProp optimizer. We set
the initial learning rate by 0.0005 and decayed it by 0.9 for
each two epoch. We used 0.9, 10, and 0.5 for εh, εw, and εc.
We set the batch size to 4. All experiments were conducted
on four NVIDIA GTX Titan Xp GPUs using PyTorch [12].

Moreover, since 3D reconstruction process fundamen-
tally have a trade-off between accuracy and completeness
Moreover, since the 3D reconstruction process fundamen-
tally have a trade-off between accuracy and completeness
that can be controlled by reconstruction parameters. occurs
the sub-optimality on the accuracy metric is also

5.2. Comparisons on the DTU dataset

We trained the state-of-the-art MVS methods with the
sparse ground truth 3D structures to verify the effectiveness
of our method in the SGT-MVS problem. The 3D recon-
struction process fundamentally has a trade-off between ac-
curacy and completeness controlled by reconstruction pa-
rameters, and we determined the current trade-off for the
overall performance. As shown in Table 1, though Fast-
MVSNet [17] achieved the best performance in the accu-
racy metric, our method outperformed the state-of-the-art
methods in the completeness and overall metrics in the
sparse ground truth setting with both sampling ratios of
1 × 10−5 and 1 × 10−4. Although the our performance
is sub-optimal in the accuracy metric, the optimal accuracy
performance can also be obtained with the loss of the com-
pleteness performance. Figure 6 (a) and (b) show qualitative
results of Point-MVSNet [1] and our SGT-MVSNet at the
1× 10−5 sampling ratio setting, and our results show better
visibility on the letters. Moreover, our method shows vi-
sually fine reconstruction results even compared with the
dense ground truth-based MVS methods and the ground
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(a) Point-MVSNet (Sparse GT) (b) Ours (Sparse GT) (c) Point-MVSNet (Dense GT) (d) Ground truth

Figure 6: 3D reconstruction results of the Point-MVSNet trained with sparse and dense ground truth, and our SGT-MVSNet
trained with sparse ground truth. We use the sparse ground truth with a sampling ratio of 1× 10−5 for the visualization.

Figure 7: Qualitative results on scan1, scan33, scan75, and scan114 of the DTU dataset [10]. The tested SGT-MVSNet is
trained with the sparse ground truth of the DTU dataset [7] sampled with 1× 10−5 ratio.

truth itself, as shown in Fig. 6. In addition, we visualized
3D reconstruction results for other 3D structures in Fig. 7 to
verify the 3D reconstruction capability of our method.

5.3. Ablation study

To verify the effectiveness of the proposed method,
we conducted quantitative and qualitative ablation study.
Table 2 shows the improved reconstruction performances
through the double prediction (DP) layers, the 3D Point
Consistency Loss (PCL), and the Coarse-to-fine Reliable
Depth Propagation module (CRDP). As we explained in
Section 3.5, our method with the 3D Point Consistency
Loss achieved the best performance in the accuracy metric,
which verifies that our loss improved the depth prediction
accuracy on the reliable non-occluded regions. Moreover,
though our Coarse-to-fine Reliable Depth Propagation mod-
ule slightly degrades the reconstruction accuracy, it signif-
icantly enhanced the quality in terms of completeness and
eventually improved the performance in the overall metric.
We visualized the 3D reconstruction results of each method
with the error map in Fig. 8 to compare the reconstruction
quality in detail. Interestingly, we observed that double pre-
diction layers significantly alleviate the errors on the tex-

method Acc. Comp. Overall

Baseline 0.460 0.422 0.441
Baseline + DP 0.448 0.419 0.434
Baseline + DP + PCL 0.438 0.396 0.417
Baseline + DP + PCL + CRDP 0.441 0.381 0.411

Table 2: Quantitative ablation study on the DTU evaluation
dataset. Each of our methods contributes to the 3D recon-
struction quality enhancement. Though the Coarse-to-fine
Reliable Depth Propagation module slightly degrades the
accuracy due to the blurring effect of propagation, it is com-
plemented by significantly improved completeness quality,
which refers to effective propagation toward erroneous re-
gions.

tureless region, which seems that the layers help to encode
contextual information through the auxiliary loss. The 3D
Point Consistency Loss further addressed the reconstruction
errors, especially decreasing the overall error scale, as the
color of the red regions becomes faded. Then, the Coarse-
to-fine Reliable Depth further alleviated the erroneous red
regions. From these results, we confirmed the effectiveness
of our method in the SGT-MVS problem.
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(a) Baseline (b) Baseline + DP (c) Baseline + DP + PCL (d) Ours (e) Ground truth

Figure 8: Qualitative ablation study on scan48 of the DTU dataset. The 1st row shows the 3D reconstruction results of (a)
baseline, (b) baseline with double prediction (DP) layers, (c) the aforementioned model with the 3D Point Consistency Loss
(PCL), and (d) our integrated method with Coarse-to-fine Reliable Depth Propagation. The 2nd row shows the error maps of
the reconstruction results and red color represents the severity of the errors.

Figure 9: Qualitative results of the intermediate set in the Tanks and Temples dataset [10]. The tested SGT-MVSNet is trained
with the sparse ground truth of the DTU dataset [7] sampled with a ratio of 1× 10−5.

5.4. Generalization on Tanks and Temples dataset

Following the previous methods [15, 16, 1, 17], we di-
rectly tested the model trained on the DTU dataset without
any additional fine-tuning. We used five scenes with an in-
put size of 1920×1056 and 144 depth planes for testing. As
shown in Fig. 9, despite the sparce ground truth, our meth-
ods quite reasonably reconstruct 3D structures for a new
domain, which shows the feasibility in generalization.

6. Conclusion

In this paper, we explored a novel semi-supervised multi-
view stereo problem called a SGT-MVS problem. We ob-
served the fundamentally imbalanced depth prediction per-
formance between the accurate regions and the erroneous
regions in the SGT-MVS problem. Based on the insights

on the probability map, we divided the reliably predicted
regions and erroneous regions. Then, we individually con-
quered these regions through the 3D Point Consistency Loss
and the Coarse-to-fine Reliable Depth Propagation mod-
ule. To verify the effectiveness, we generated sparse ground
truth with 1×10−5 and 1×10−4 sampling ratios, and trained
the state-of-the-art MVS networks with them. Experimen-
tal results showed that our SGT-MVSNet can be proper to
the sparse ground truth setting, and the reconstructed results
are also visually reliable. These results demonstrate that
our method can be simply generalized to new environments
only with easily collected sparse ground truth 3D structures.
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Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019.
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