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Abstract

The class activation mapping, or CAM, has been the cor-
nerstone of feature attribution methods for multiple vision
tasks. Its simplicity and effectiveness have led to wide appli-
cations in the explanation of visual predictions and weakly-
supervised localization tasks. However, CAM has its own
shortcomings. The computation of attribution maps relies
on ad-hoc calibration steps that are not part of the train-
ing computational graph, making it difficult for us to un-
derstand the real meaning of the attribution values. In this
paper, we improve CAM by explicitly incorporating a la-
tent variable encoding the location of the cue for recogni-
tion in the formulation, thereby subsuming the attribution
map into the training computational graph. The result-
ing model, class activation latent mapping, or CALM, is
trained with the expectation-maximization algorithm. Our
experiments show that CALM identifies discriminative at-
tributes for image classifiers more accurately than CAM
and other visual attribution baselines. CALM also shows
performance improvements over prior arts on the weakly-
supervised object localization benchmarks. Our code is
available at https://github.com/naver-ai/calm.

1. Introduction
Interpretable AI [25, 40, 24, 52] is becoming an abso-

lute necessity in safety-critical and high-stakes applications
of machine learning. Along with good recognition and pre-
diction accuracies, we require models to be able to trans-
parently communicate the inner mechanisms with human
users. In visual recognition tasks, researchers have devel-
oped various feature attribution methods to inspect contri-
butions of individual pixels or visual features towards the fi-
nal model prediction. Input gradients [55, 56, 58, 5, 63, 39,
28] and input perturbation methods [59, 70, 20, 43, 23, 47]
have been actively researched.

In this paper, we focus on the class activation mapping
(CAM) [68] method, which has been the cornerstone of
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Figure 1. CAM vs CALM. CALM is better at locating the actual
cues used for the recognition than CAM. Two bird classes A and B
only differ in their head and wing attributes. Attributions for class
A, B, and their difference are shown. While CAM fails to detect
the head and wing, CALM captures them accurately.

the feature attribution research. CAM starts from the ob-
servation that many CNN classifiers make predictions by
aggregating location-wise signals. For example, p(y|x) =
softmax

(
1

HW

∑
hw fyhw

)
where f = f(x) is the extracted

feature map in RC×H×W where C,H,W are the number
of classes, height, and width of the feature map, respec-
tively. CAM considers the pre-GAP feature map fyhw as
the attribution, after scaling it to the [0, 1] range by dropping
the negative values and dividing through by the maximum
value: s := (maxhw fhw)

−1f+ ∈ [0, 1]H×W . Thanks
to the algorithmic simplicity and reasonable effectiveness,
CAM has been a popular choice as an attribution method
with many follow-up variants [53, 9, 6, 69, 61, 45, 22].

Despite its popularity and contributions to the inter-
pretability community, CAM still has its own limitations.
What does the attribution map s really mean? We fail to find
a reasonable linguistic description because s hardly encodes
anything essential in the recognition process. s also violates
key minimal requirements, or “axioms” [40, 59, 22], for an
attribution method. For example, its dependence on the pre-
softmax values f make it ill-defined: translating f 7→ f + c
yields an identical model because of the translation invari-
ance of softmax, but it changes the attribution map s.

We thus introduce a novel attribution method, class ac-
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tivation latent mapping (CALM). It builds a probabilistic
graphical model on the last layers of CNNs, involving three
variables: input image X , class label Y ∈ {1, · · · , C}, and
the location of the cue for recognition Z ∈ {1, · · · , HW}.
Since there is no observation for Z, we consider latent-
variable training algorithms like marginal likelihood (ML)
and expectation-maximization (EM). After learning the de-
pendencies, we define the attribution map for image x̂ of
class ŷ as p(ŷ, z|x̂) ∈ [0, 1]H×W , the joint likelihood
of the recognition cue being at z and the class being ŷ.
CALM has many advantages over CAM. (1) It has a human-
understandable probabilistic definition; (2) it satisfies the
axiomatic requirements for attribution methods; (3) it is em-
pirically more accurate and useful than CAM.

In our experimental analysis, we study how well CALM
localizes the “correct cues” for recognizing the given class
of interest. The “correct cues” for recognition are ill-defined
in general, making the evaluation of attribution methods dif-
ficult. We build a novel evaluation benchmark on pairs of
bird classes in CUB-200-2011 [62] where the true cue loca-
tions are given by the parts where the attributes for the class
pair differ (Figure 1). Under this benchmark and a widely-
used remove-and-classify type of benchmark, CALM shows
better attribution performances than CAM and other base-
lines. We also show that CALM advances the state of the art
in the weakly-supervised object localization (WSOL) task,
where CAM has previously been one of the best [13, 12].

In summary, our paper contributes (1) analysis on the
lack of interpretability for CAM, (2) a new attribution
method CALM that is more interpretable and communica-
ble than CAM, and (3) experimental results on real-world
datasets where CALM outperforms CAM in multiple tasks.
Our code is available at https://github.com/naver-ai/calm.

2. Related Work
Interpretable AI is a big field. The general aim is to en-

hance the transparency and trustworthiness of AI systems,
but different sub-fields are concerned with different parts
of the system and application domains. In this paper, we
develop a visual feature attribution method for image clas-
sifiers based on deep neural networks. It is the task of an-
swering the question: “how much does each pixel or visual
feature contribute towards the model prediction?”
Gradient-based attribution. Feature attribution with gra-
dients dates back to the pioneering works by Sung [60] and
Baehrend et al. [7]. The first explicit application to CNNs is
the work by Simonyan et al. [55]. Input gradients consider
local linearization of the model, but it is often not suitable
for CNNs because the local behavior hardly encodes the
complex mechanisms in CNNs for e.g. more global pertur-
bations on the input. Follow-up works have customized the
backpropagation algorithm to improve the attribution per-
formances: Guided Backprop [57], LRP [5], Deep Taylor

Decomposition [39], SmoothGrad [56], Full-Gradient [58],
and others [65, 30, 54, 63, 3, 28]. We make an empirical
comparison against key prior methods in this domain.
Perturbation-based attribution. Researchers have devel-
oped methods for measuring the model response to non-
local perturbations. Integrated Gradients [59] measure the
path integral of model responses to global input shifts. An-
other set of methods consider model responses to redacted
input parts: sliding windows of an occlusion mask [70]
and random-pixel occlusion masks [43]. Since the occlud-
ing patterns introduce artefacts that may mislead attribu-
tions, different options for redaction have been considered:
“meaningful perturbations” like image blurring [20, 19], in-
painting [70], and cutting-and-pasting a crop from another
image of a different class [23]. Some of the key methods
above are included as baselines for our experiments.
CAM-based attribution. Gradients and perturbations an-
alyze the model by establishing the input-output relation-
ships. Class activation mapping (CAM) [68] takes a differ-
ent approach. Many CNNs have a global average pooling
(GAP) layer towards the end. CAM argues that the pre-
GAP features represent the discriminativeness in the image.
Related works have considered variants of the last-layer
modifications like max pooling [41] and various thresh-
olding strategies [17, 16, 6]. GradCAM [53] and Grad-
CAM++ [9] have later expanded the usability of CAM
to networks of any last-layer modules by combining the
widely-applicable gradient method with CAM. In this work,
we identify issues with CAM and suggest an improvement.
Self-explainable models. Above attribution methods pro-
vide interpretations of a complex, black-box model in a
post-hoc manner. Another paradigm is to design models
that are interpretable by design in the first place [18]. There
is a trade-off between interpretability and performance [34];
researchers have sought ways to push the boundary on
both fronts. One line of work distills the complex, per-
formant model into an interpretable surrogate model such
as decision trees [21], sparse linear models [44, 46, 4].
Other works pursue a hybrid approach, where a small in-
terpretable module of a neural network is exposed to hu-
mans, while the complex, less interpretable modelling is
performed in the rest of the network. ProtoPNet [10] trains
an interpretable linear map over prototype neural activa-
tions. Concept or semantic bottleneck models [36, 31] en-
forces an intermediate layer to explicitly encode seman-
tic concepts. Our work is a hybrid self-explainable model
based on the interpretable probabilistic treatment of the last
layers of CNNs.
Evaluating attribution is challenging because of the lack
of ground truths. Early works have resorted to qualita-
tive [23] or human-in-the-loop evaluations [46, 53, 48, 33]
with limited reproducibility. Wojciech et al. [51] and sub-
sequent works [30, 43, 46, 26] have proposed a quantita-
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tive measure based on the remove-and-classify framework.
Along a different axis, researchers have focused on the nec-
essary conditions for attribution methods. They can be ei-
ther theoretical properties, referred to as “axioms” [59, 22]
or empirical properties, referred to as “sanity checks” [2]. In
our work, we analyze CALM in terms of the axioms (§4.2)
and evaluate it on a remove-and-classify benchmark (§5.3).
Additionally, we contribute a new type of evaluation; we
compare the attribution map against the known ground-truth
attributions on a real-world dataset [62] (§5.2).
Weakly-supervised object localization (WSOL) is simi-
lar yet different from the feature attribution task. While the
latter is focused on detecting the small, class-discriminative
cues in the input, the former necessitates the detection of the
full object extents. Despite the discrepancy in the objective,
CAM has been widely used for both tasks without modifica-
tion [13, 12]. We show that CALM, despite being proposed
for the attribution task, outperforms CAM on the WSOL
task after some additional aggregation operations (§5.4).

3. Class Activation Mapping (CAM)
We cover the background for the class activation map-

ping (CAM) [68] and analyze its problems. CAM is a fea-
ture attribution method for CNN image classifiers. It is ap-
plicable to CNNs with the following last layers:

p(y|x) = softmax

(
1

HW

∑

hw

fyhw(x)

)
(1)

where f(x) is feature map from a fully-convolutional net-
work [35] with dimensionality C ×H ×W ; each channel
corresponds to a class-wise feature map. The network is
trained with the negative log-likelihood (NLL), also known
as cross-entropy, loss.

At test time, the attribution map is computed by first
fetching the pre-GAP feature map fy=ŷ(x) ∈ RH×W for
the ground-truth class ŷ. CAM then normalizes the feature
map f ŷ to the interval [0, 1] in either ways:

s =

{
(f ŷmax)

−1 max(0, f ŷ) max [68]
(f ŷmax − f ŷmin)

−1(f ŷ − f ŷmin) min-max [53]
(2)

where f{min,max} := {minhw,maxhw}fhw.
Note that the original CAM paper [68] considers CNNs

with an additional linear layerW ∈ RC×L after the pooling
(e.g. ResNet). It is known that such networks are equivalent
to Equation 1 when we swap the linear and the GAP lay-
ers (which are commutative) and treat the linear layer as a
convolutional layer with 1× 1 kernels [53].

3.1. Limitations of CAM

CAM lacks interpretability. How can we succinctly com-
municate the attribution value shw at pixel index (h,w) to
others? The best we can come up with is:

“The pixel-wise pre-GAP, pre-softmax feature
value at (h,w), measured in relative scale within
the range of values [0, A] where A is the maxi-
mum of the feature values in the entire image.”

This description is hardly communicable even to experts in
image recognition systems, not to mention general users.
The difficulty of communication stems from the fact that
the attribution scores shw are not the quantities used by
the recognition system; the computational graph for CAM
(Equation 2) is not part of the training graph (Equation 1).

We present the issues with CAM according to the set of
axiomatic criteria for attribution methods [40, 59, 22].
Implementation-invariance axiom [59] states that two
mathematically identical functions, φ1 ≡ φ2, shall pos-
sess the same attribution maps, regardless of their im-
plementations. CAM violates this axiom. Assume
φ1(f) := softmax( 1

HW

∑
hw fyhw) and φ2(f) :=

softmax( 1
HW

∑
hw fyhw + C) for some constant C. Since

the softmax function is translation invariant, φ1 ≡ φ2 for
any C. However, the CAM attribution map for φ2 varies
arbitrarily with C: s = (maxhw fhw + C)−1(f + C)+.
Min-max normalization is a solution to the problem, but it
alone does not let CAM meet other axioms. This observa-
tion reveals the inherent limitation of utilizing feature val-
ues before softmax (often called “logits”) as attribution.
Sensitivity axiom [59, 22] states that if the function re-
sponse φ(x) changes as the result of altering an input value
xhw at (h,w), then the corresponding attribution value shw
shall be non-zero. Conversely, if the response is not af-
fected, then shw shall be zero. CAM fails to satisfy the sen-
sitivity axiom. Depending on the normalization type, CAM
assigns zero attributions to (h,w) where fhw is either neg-
ative (for max normalization) or smallest (for min-max nor-
malization). However, being assigned a negative or smallest
feature value fhw has little connection to the insensitivity of
the model to the input value xhw.
Completeness (or conservation) axiom [59, 22, 54, 5]
states that the sum of attributions

∑
hw shw shall add up to

the function output φ(x) = p(y|x). The completeness crite-
rion is violated by CAM in general because the summation∑
hw shw for s in Equation 2 do not match φ(x) = p(y|x)

in Equation 1. In conclusion, CAM fails to satisfy key min-
imal requirements for an attribution method.

4. Class Activation Latent Mapping (CALM)
We fix the above issues by introducing a probabilistic

learning framework involving input image X , class label
Y , and the cue location Z. We set up a probabilistic graphi-
cal model and discuss how each component is parametrized
with a CNN. We then introduce learning algorithms to ac-
count for the unobserved latent variable Z. An overview of
our method is provided in Figure 2.
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Figure 2. Main components of CALM. We show the computational pipeline for CALM during testing, interpretation, and training phases.
We zoom into different components. See the relevant sections for more details.

4.1. Probabilistic inference with latent Z

We define Z as the location index (h,w) of the cue for
recognizing the imageX as the class Y . Our aim is to let the
model explicitly depend its prediction on the features corre-
sponding to the location Z and later on use the distribution
of possible cue locations Z as the attribution provided by
the model. Z is a random variable over indices (h,w); for
simplicity, we use the integer indices Z ∈ {1, · · · , HW}.

Z

X Y

Without loss of generality, we fac-
torize p(x, y, z) as p(y, z|x)p(x) =
p(y|x, z)p(z|x)p(x) (graph on the
left). The recognition task is then per-
formed via p(y|x) =∑z p(y, z|x).

4.1.1 Representing joint distribution with CNNs.

We factorize the joint distribution p(y, z|x) into p(y, z|x) =
p(y|x, z)p(z|x) and parametrize p(y|x, z) and p(z|x) as
two convolutional branches of a CNN trunk (Figure 2a).
Since Y ∈ {1, · · · , C} and Z ∈ {1, · · · , HW}, we rep-
resent p(y|x, z) as a CNN branch g(x) with output dimen-
sionality C × HW . Likewise, we represent p(z|x) with
a CNN branch h(x) with output dimensionality HW . To
make sure that the outputs of the two branches are proper
distributions, we normalize the outputs with softmax for g
and `1 normalization followed by the softplus for h. We
broadcast h to all class indices Y and multiply it element-
wise with g to get p(y, z|x) (Figure 2a).

4.1.2 Training algorithms

Training a latent variable model is challenging because of
the unobserved variable Z. We consider two methods for
training such a model: (1) marginal likelihood (ML) [37]
and (2) expectation-maximization (EM) [15].

CALMML directly minimizes the marginal likelihood

− log pθ(y|x) = − log
∑

z

pθ(y|x, z)pθ(z|x) (3)

= − log
∑

z

gyz · hz. (4)

which is tractable for the discrete Z. See Figure 2d.

CALMEM is based on the EM algorithm that gener-
ates pseudo-targets for Z to supervise the joint likelihood
p(y, z|x). The EM algorithm introduces two running copies
of the parameter set: θ and θ′. The first signifies the model
of interest, while the latter often refers to a slowly updated
parameter used for generating the pseudo-targets for Z. The
learning objective is

− log pθ(y|x) ≤ −
∑

z

pθ′(z|x, y) log pθ(y, z|x) (5)

= −
∑

z

g′yz · h′z∑
l g
′
yl · h′l

log (gyz · hz) (6)
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where g′ and h′ denote the parametrization with θ′. Note
that Equation 6 is the pixel-wise negative log likelihood, the
loss function for semantic segmentation networks [11]. One
may interpret the objective as self-supervising the pixel(z)-
wise predictions p(y, z|x) with its own estimation of the
cue location z for the true class y: pθ′(z|x, y). In prac-
tice, we use the current-iteration model parameter θ = θ′

to generate the pseudo-target for Z. See Figure 2d for an
overview of the process. Even with θ = θ′, we need to ap-
ply T.detach() to block the gradient flow through the
pseudo-target pθ′(z|x, y), as required by Equation 6.

A similar framework appears in the weakly-supervised
semantic segmentation task. Papandreou et al. [42] have
generated pseudo-target label maps to train a segmenta-
tion network. CALMEM is different because our location-
encoding latent Z takes integer values, while their Z takes
values in the space of all binary masks; our formulation ad-
mits an exact computation of Equation 6, while theirs re-
quire an additional approximation step.

4.1.3 Inferring feature attributions

Unlike CAM, our probabilistic formulation enables princi-
pled computation of the attribution map as part of the prob-
abilistic inference on p(y, z|x). Z is explicitly defined as
the location of the cue for recognition. For CALM, the at-
tribution score sz for location z is naturally defined as the
joint likelihood given the ground-truth class ŷ

sz := p(ŷ, z|x), (7)

or in human language,

“The probability that the cue for recognition was
at z and the ground truth class ŷ was corrected
predicted for the image x.”

Note that the definition is far more communicable than the
one for CAM in §3.1. See Figure 2c for visualization.

Apart from the attribution map, one may compute ad-
ditional interesting quantities. We show examples in Fig-
ure 3. Treating z as a free variable, the conditional at-
tribution p(y|x, z) is explained as the likelihood of the
cue being at position z, given the prediction for image x
as y. The saliency p(z|x) encodes the likely location of
any cue for recognizing classes y ∈ {1, · · · , C} in image
x. It is the sum over all attribution maps for classes y:
p(z|x) =

∑
y p(y, z|x). One may also compute the par-

tial sum for classes y ∈ Y to obtain the subset attribution
to highlight specific image regions of interest p(z,Y|x) :=∑
y∈Y p(z, y|x). Above quantities are later utilized for the

weakly-supervised object localization (WSOL) task in §5.4.
It is also possible to reason why the class label for input x
is ŷ instead of y′ by computing the counterfactual attribu-
tion p(ŷ, z|x) − p(y′, z|x). Such counterfactual reasoning
will be used in our analysis in §5.2.

Image p(z, y|x) p(y|x, z)

p(z|x) y p(z, y|x) p(z, y|x) p(z, y ′|x)

Figure 3. Various attribution maps by CALM on ImageNet. GT
class is “Afghan hound”. For the subset attribution, the classes Y
correspond to all species of dogs in ImageNet. For the counterfac-
tual attribution, the alternative class y′ is “Gazelle hound”.

4.2. Theoretical properties of CALM

Now we revisit the axioms for attribution methods that
CAM fails to fulfill (§3.1). Implementation-invariance
axiom is satisfied by CALM because the attribution map
s := p(ŷ, z|x) is a mathematical object in the probabilis-
tic graphical model. CALM attribution also does not de-
pend on the fragile logit values. The completeness axiom
trivially follows from CALM because the final prediction
p(y|x) is the sum of attribution values p(y, z|x) over z.
Likewise, the sensitivity axiom follows trivially from the
fact that p(y, z|x) > 0 if and only if it contributes towards
the sum p(y|x) =∑z p(y, z|x).

The superior interpretability of CALM comes with a cost
to pay. It alters the formulation of the usual structure for
CNN classifiers where the loss function has the structure
“NLL ◦ SoftMax ◦ Pool” on the feature map f into the one
with the structure “Pool ◦ NLL ◦ SoftMax” on f . Com-
pared to the former, CALM gain additional interpretability
by making the last layer of the network as simple as a sum
over the pixel-wise experts p(y, z|x). The reduced com-
plexity in turn increases the representational burden for the
earlier layers f(x) and induces a drop in the classification
accuracies (§5.3).

The interpretability-performance trade-off is unavoid-
able [34]. Therefore, it benefits users to provide a diverse ar-
ray of models with different degrees of interpretability and
performance [49]. Our work contributes to this diversity of
the ecosystem of models.

5. Experiments
We present experimental results for CALM. We present

two experimental analyses on attribution qualities: evalua-
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Figure 4. Qualitative results on CUB. We compare the counterfactual attributions from CALM and baseline methods against the GT
attribution mask. The GT mask indicates the bird parts where the attributes for the class pair (A,B) differ. The counterfactual attributions
denote the difference between the maps for classes A and B: sA − sB. Red: positive values. Blue: negative values.

tion with respect to estimated ground truth attributions on
CUB (§5.2) and the remove-and-classify results on three
image classification datasets (§5.3). We then show results
on the weakly-supervised object localization task in §5.4.
Naver Smart Machine Learning (NSML) platform [29] has
been used in the experiments.

5.1. Implementation details and baselines

Backbone. CALM is backbone-agnostic, as long as it is
fully convolutional. We use the ResNet50 as the feature
extractor f unless stated otherwise. As discussed in §3, we
move the final linear layer before the global average pooling
layer as a convolutional layer with 1× 1 kernels.
Datasets. Our experiments are built on three real-world im-
age classification datasets: CUB-200-2011 [62], a subset
of OpenImages [8], and ImageNet1K [50]. CUB is a fine-
grained bird classification dataset with 200 bird classes. We
use a subset of OpenImages curated by [12] that consists
of 100 coarse-grained everyday objects. ImageNet1K has
1000 classes with mixed granularity, ranging from 116 fine-
grained dog species to coarse-grained objects and concepts.
Pretraining. We use the ImageNet pre-trained weights for
f . The two convolutional layers for computing p(y, z|x) in
Figure 2a are trained from scratch.
Attribution maps. The attribution maps for CAM and
CALM are scaled up to the original image size via bilinear
interpolation. For gradient-based baseline attribution meth-
ods, we apply Gaussian blurring and min-max normaliza-
tion, following [12].
Other training details are in the Supplementary Materials.

5.2. Cue localization results

The difficulty of attribution evaluation comes from the
fact that it is difficult to obtain the ground truth cue locations
ẑ. We propose a way to estimate the true cue location using
the rich attribute and part annotations on the bird images in
CUB-200-2011 [62].

#part differences 1 2 3
#class pairs 31 64 96 mean

Vanilla Gradient [55] 10.0 13.7 15.3 13.9
Integrated Gradient [59] 12.0 15.1 17.3 15.7
Smooth Gradient [56] 11.8 15.5 18.6 16.5
Variance Gradient [3] 16.7 21.1 23.1 21.4

CAM [68] 24.1 28.3 32.2 29.6
CALMML (Ours) 23.6 26.7 28.8 27.3
CALMEM (Ours) 30.4 33.3 36.3 34.3

Table 1. Attribution evaluation on CUB. We use the estimated
GT attribution masks (§5.2) to measure the performances of at-
tribution methods. Mean pixel-wise average precision (mPxAP)
values are reported. See Figure 4 for the setup and examples.

Estimating GT cue locations. We generate the ground-
truth cue locations using following intuition: for two classes
A and B differing only in one attribute a, the location z
for the cue for predicting A instead of B will correspond
to the object part containing the attribute a. We explain
algorithmically how we build the ground-truth attribution
mask for an image x with respect to two bird classes A
and B in CUB. We first use the attribute annotations for
312 attributes in CUB to compute the set of attributes
for each class: SA and SB. For example, SFish crow =
{black crown, black wing, all-purpose bill-shape, · · · }. We
then compute the symmetric difference of the attributes
for the two classes SA4SB = (SA ∪ SB) \ (SA ∩ SB).
Now, we map each attribute in a ∈ SA4SB to the cor-
responding bird part p ∈ P among 7 bird parts anno-
tated in CUB. For example, the attribute-mismatching bird
parts for classes “Fish crow” and “Brandt cormorant” are
PA,B = {head,wing}. We locate the parts PA,B in samples
x of classes A and B using the keypoint annotations in CUB:
KA,B(x). We expand the keypoint annotations to a binary
mask MA,B(x) ∈ {0, 1}H×W using the nearest-neighbor
assignment of pixels to bird parts. The final maskMA,B(x)
for the input x is used as the ground-truth attribution map.
See the “GT mask” column in Figure 4 for example binary
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masks. For evaluation we use all class pairs in CUB with
the number of attribute-differing parts |PA,B| ≤ 3, resulting
in 31 + 64 + 96 = 191 class pairs.

Counterfactual attributions. To predict the difference in
needed cues for recognizing classes A and B, we obtain
the absolute values of counterfactual attributions from each
method by computing the difference |sA−sB| ∈ [0, 1]H×W .
The underlying assumption is that sA and sB point to cues
corresponding to the attributes for A and B, respectively.
Hence, by taking the difference, one removes the attribu-
tions on regions that are important for both A and B.

Evaluation metric: mean pixel-wise AP. To measure
how well attribution maps retrieve the ground-truth part
pixelsMA,B(x), we measure the average precision for the
pixel retrieval task [1, 12]. Given a threshold τ ∈ [0, 1], we
define the positive predictions as the set of pixels in over
multiple images: {(n, h,w) | |sA

hw(xn) − sB
hw(xn)| ≥ τ}

for images xn from classes A and B. With the pixel-wise
binary labels MA,B

hw (xn), we compute the pixel-wise aver-
age precision (PxAP) for the class pair (A,B) by computing
the area under the precision-recall curve. We then take the
mean of PxAP over all the class pairs of interest (e.g. those
with |PA,B| = 1) to compute the mPxAP.

Qualitative results. See Figure 4 for the qualitative ex-
amples of CALM and baselines including CAM. We ob-
serve that the counterfactual attribution maps sA − sB gen-
erated by CALMEM and CALMML are more accurate than
CAM and gradient-based attribution methods; CALMEM
attributions are qualitatively more precise than CALMML.
CALM tends to assign close-to-zero attributions on irrele-
vant regions, while the baseline methods tend to produce
noisy attributions. The sparsity of CALM makes it qualita-
tively more interpretable than the baselines.

Quantitative results. Table 1 shows the mPxAP scores
for CALM and baseline methods for retrieving relevant pix-
els as attribution regions. We examine CUB class pairs
with the number of parts with attribute differences |PA,B| ∈
{1, 2, 3}. We observe that CALMEM outperforms the base-
lines in all three sets of class pairs, confirming the quali-
tative superiority of CALMEM in Figure 4. CALMEM at-
tains 4.7%p better mPxAP than CAM on average over the
three sets. CALMML tends to be sub-optimal, compared to
CALMEM (27.3% vs 34.3% mPxAP). The variants of gra-
dients perform below a mere 20% mPxAP on average. In
conclusion, the counterfactual attribution by CALM gen-
erates precise localization of the important bird parts that
matter for the recognition task.
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Figure 5. Remove-and-classify results. Classification accuracies
of CNNs when k% of pixels are erased according to the attribu-
tion values shw. We show the relative accuracies Rk against the
random-erasing baseline. Lower is better.

5.3. Remove-and-classify results

One of the most widely used frameworks for evaluat-
ing the attribution task is the remove-and-classify evalua-
tion [51, 30, 43, 46, 26]. Image pixels xhw are erased in
descending order of importance dictated by the attribution
values shw. We write x−k for the image where the top-k%
important pixels are removed. We use the meaningful per-
turbation of the “blur” type [20] for erasing the pixels. A
good attribution method shall assign high attribution values
on important pixels; erasing them will quickly drop the clas-
sification accuracy Ak with increasing k. We set the base
reference accuracy Ark as the classifier’s accuracy with k%
of the pixels erased at random. For each method, we report
the relative accuracyRk = Ak/Ark for different k.

Results. We show the remove-and-classify results in Fig-
ure 5 for three image classification datasets. We observe
that CALM variants show the lowest relative accuracies
(lower is better) Rk on cue-removed images in CUB and
OpenImages, compared to CAM and other baselines. For
the two datasets, CALMEM attains values even close to zero
at k ∈ [10, 50]. On ImageNet, CALMEM outperforms the
baselines with a smaller margin. Overall, CALMEM selects
the important pixels for recognition best.

Methods CUB Open ImNet

Baseline 70.6 72.1 74.5
CALMEM 71.8 70.1 70.4
CALMML 59.6 70.9 70.6

Table 2. Classification accuracy.

Classification performances.
We study the trade-off be-
tween interpretability and per-
formance. The improved attri-
bution performances come at
the cost of decreased classification accuracies. Our models
will be useful in applications that require great attribution
performances at a small cost in model accuracies.

5.4. Weakly-supervised object localization (WSOL)

WSOL is related to but different from the attribution
task. For WSOL, one learns to detect object foreground re-
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Figure 6. Aggregating with class hierarchy. “Afghan hound” is
a descendant of “Dog”, which is a descendant of “Entity” in the
WordNet hierarchy. Selecting a sensible superset Y for aggrega-
tion lets CALM produce a high-quality foreground mask.

Methods ImageNet CUB OpenImages

HaS [32] 62.6 60.6 57.4
ACoL [66] 61.1 60.0 56.3
SPG [67] 62.2 57.5 59.1
ADL [14] 61.6 61.1 56.9
CutMix [64] 62.2 60.8 59.5
InCA [27] 63.1 63.4 -
CAM [68] 62.4 61.1 60.0
CAM [68] + Y 60.6 63.4 60.0
CALMEM 62.5 52.5 62.7
CALMEM + Y 62.8 65.4 62.7
CALMML 62.6 61.3 62.3
CALMML + Y 62.7 68.0 62.3

Table 3. WSOL results on CUB, OpenImages, and ImageNet.
Average for ResNet, Inception, and VGG are reported for each
dataset. CALMEM and CALMEM +Y are compared against the
baseline methods. “+Y” denotes the aggregation.

gions with only image-label pairs. While the ingredients are
identical ((X,Y ) observed), the desired latent Z is differ-
ent: the important cues for recognition may not necessarily
agree with the object foreground regions. Nonetheless, the
WSOL field benefits from the developments in attribution
methods like CAM, which has remained the state of the art
method for WSOL for the past few years [12].

We apply CALM to WSOL. Since attribution maps
p(ŷ, z|x) only point to sub-parts relevant for recognition,
we aggregate the attributions them over multiple classes
p(Y, z|x) =

∑
y∈Y p(y, z|x) (subset attribution in §4.1.3)

to fully cover the foreground regions.

Setting the superset Y . For the ground-truth class ŷ, we
set the superset Y as the set of classes sharing the same
part composition as ŷ. The intuition is that the attributions
are mostly on object parts and that classes of such Y have
attributions spread across different object parts. For exam-
ple, all bird classes in CUB [62] shall share the same super-
set Y = {all 200 birds}, as they share the same body part
composition. On the other extreme, 100 classes in Open-
Images [8, 12] do not share part structures across classes.
Thus, we always set Y = {ŷ}. ImageNet1K [50] is mixed.
Its 1000 classes include 116 dog species, but also many
other objects and concepts that do not share the same part
structure. For ImageNet, we have manually annotated the
supersets Y for every class ŷ, using the WordNet hierar-
chy [38]. Details in the Supplementary Materials.

Results. We evaluate WSOL performances based on the
benchmarks and evaluation metrics in [12]. The benchmark
considers 3 architectures (VGG, Inception, ResNet) and 3
datasets (CUB, OpenImages, ImageNet). Implementation
details are in Supplementary Materials. We show results
in Table 3. We observe that the aggregation significantly
enhances the WSOL performances for CALMEM: 52.5% to
65.4% on CUB. CALMEM +Y attains the best performances
on CUB and OpenImages and second-best on ImageNet.

Analysis. We study the 116 fine-grained dog species in
ImageNet more closely. We show the aggregation of attri-
bution maps in Figure 6. CALM for ŷ fails to cover the full
extent of the object. As the maps are aggregated over all dog
species Y , the map precisely covers the full extents of the
dogs. However, if Y covers all 1000 classes, the resulting
saliency map p(z|x) starts to include non-dog pixels.

6. Conclusion
Despite its great contributions to the field, the class ac-

tivation mapping (CAM) is not as interpretable as it could
be. It lacks communicability in practice and fails to meet
key theoretical requirements for feature attribution meth-
ods. This paper has introduced a novel visual feature at-
tribution method, class activation latent mapping (CALM).
Based on the probabilistic treatment of the last layers of
CNNs, CALM is interpretable by design. CALM satisfies
the theoretical requirements as an attribution method and
outperforms CAM and other baselines on attribution tasks.
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[39] Grégoire Montavon, Sebastian Lapuschkin, Alexander
Binder, Wojciech Samek, and Klaus-Robert Müller. Ex-
plaining nonlinear classification decisions with deep taylor
decomposition. Pattern Recognition, 2017. 1, 2
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