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Abstract

We introduce a Large Scale Multi-Illuminant (LSMI)
Dataset that contains 7,486 images, captured with three dif-
ferent cameras on more than 2,700 scenes with two or three
illuminants. For each image in the dataset, the new dataset
provides not only the pixel-wise ground truth illumination
but also the chromaticity of each illuminant in the scene
and the mixture ratio of illuminants per pixel. Images in our
dataset are mostly captured with illuminants existing in the
scene, and the ground truth illumination is computed by tak-
ing the difference between the images with different illumi-
nation combination. Therefore, our dataset captures natu-
ral composition in the real-world setting with wide field-of-
view, providing more extensive dataset compared to existing
datasets for multi-illumination white balance. As conven-
tional single illuminant white balance algorithms cannot be
directly applied, we also apply per-pixel DNN-based white
balance algorithm and show its effectiveness against using
patch-wise white balancing. We validate the benefits of our
dataset through extensive analysis including a user-study,
and expect the dataset to make meaningful contribution for
future work in white balancing.

1. Introduction

White balance (WB) is a key feature in cameras that es-
timates the color of the illumination in the scene, in order
to remove the color cast by the illumination. WB imitates
the color constancy in human visual system, and it is one of
the core components of the in-camera imaging pipeline for
developing visually pleasing photographs.

White balancing, or computational color constancy, is a
long-standing problem in computer vision and most prior
works have focused on scenes with single illumination [28,
9, 34]. As with other areas in computer vision, recent
WB algorithms have been developed in a data-driven man-

Figure 1. Two and three-illuminant scene samples from LSMI
dataset (left) and illuminant coefficient maps that show the ratio
of how illuminants are mixed per pixel (right). Raw images are
converted to the sRGB space with an auto white balance for visu-
alization purposes.

ner [33, 5, 3] that requires large WB datasets. There are
many good datasets for developing learning based WB al-
gorithms for single illumination scenes [12, 31, 17, 11, 22].

However, many real-world scenes contain multiple illu-
minants. A typical example is taking a photograph of an in-
door scene with windows. There are lights originating from
indoor light sources as well as the sunlight coming in from
windows. Compared to the single illumination problem,
only a few studies [21, 4, 6, 32] have addressed the multi-
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illumination WB problem, mainly due to the difficulty of
collecting datasets. Unlike the single-illumination task, il-
lumination is spatially varying due to multiple light sources,
making the acquisition of the ground-truth very challeng-
ing. In existing multi-illumination datasets, a limited num-
ber of images were collected either by synthesis [29] or by
controlling the capturing environment [8, 4, 21]. Despite
the tremendous effort by these works, there is still a need
for larger and more realistic dataset for multi-illumination
WB to support future work in developing learning based
WB algorithms under multiple illumination.

In this paper, we introduce a new Large Scale Multi-
Illuminant dataset (LSMI) for multi-illumination white bal-
ancing. The dataset contains a total of 7,486 images, 2,762
multi-illumination scenes taken with three different cameras
(Samsung Galaxy Note 20 Ultra, Sony α9, Nikon D810).
As shown in Fig. 1, our dataset provides images of a variety
of realistic scenes with multiple illuminants with the pixel-
level ground truth illumination maps. In addition, we also
provide the chromaticity of all illuminants of the scene as
well as the ratio of how the illuminations are mixed per pixel
(mixture ratio). Using the mixture ratio, we can syntheti-
cally generate more data with arbitrary illumination, which
helps to easily augment our dataset for training deep con-
volutional neural networks (CNNs). All images and data,
including ground truth illumination maps and mixture ra-
tios will be made available to the public1.

Our new dataset can serve as a catalyst for encourag-
ing more research on multi-illumination white balancing.
In the single illumination case, the output of the WB algo-
rithm is simply the color of the illuminant. For the multi-
illumination case, more sophisticated algorithm is neces-
sary as it has to output the illumination color per pixel.
Instead of applying a patch-based algorithm as previously
done, we formulate the multi-illumination WB problem
as an image-to-image problem in which the input image
is transformed to an white balanced image after passing
through a deep CNN. We show the effectiveness of this
framework through extensive experiments including a user
study.

2. Related Work
2.1. White Balance Algorithms

Most computational color constancy or white balance al-
gorithms assume a uniform illumination, and can be divided
into two major categories: statistic-based and learning-
based. Statistic-based methods make their own assumptions
about the characteristics of the light [9, 14, 15, 19, 20, 28,
34]. Learning-based methods are trained on a given dataset.
[2, 25] regard the color constancy as a discriminative task,
and train a model to classify white-balanced images and

1https://github.com/DY112/LSMI-dataset

Scenes
Illuminants
per image

Number
of cameras Light sources

[21] 4 1-2 1 Reuter lamp

[8] 68 2 1
Natural light,
Indoor light

[4] 30 2 1
Natural light,
Indoor light

[29] 1,015 1 1 Flash light

Ours 2,762 1 - 3 3 Natural light,
Indoor light

Table 1. Comparison of multi-illuminant datasets.

non-white-balanced images. [16, 33, 5] use various neural
networks, especially CNNs to directly predict the illumina-
tions of the scenes in images.

Recently, studies on more complex multi-illumination
have been conducted. [23, 21, 7] proposed white balance
algorithms under mixed illumination, but their methods re-
quire some prior knowledge such as the chromaticity and
the number of illuminants, or faces in the image. The work
of [26] used flash photography to perform white balancing
under mixed illumination, but the performance is limited
for the objects in distance that the flash cannot reach. [4]
formulated the white balance problem as an energy mini-
mization task within a conditional random field over a set
of local illuminant estimates. [6] proposed patch-based il-
lumination inference CNN model. In [32], generative ad-
versarial networks (GANs) based approach was proposed
to correct images using a model trained on synthetic data
without illumination estimation.

2.2. White Balance Datasets

Single illumination datasets. In the single light source set-
ting, the chromaticity of the light is easily acquired by com-
puting the color cast of a gray patch in a scene. With this ap-
proach, many single image illumination datasets have been
introduced. In [12], a collection of 11,000 images of scenes
with a gray ball captured with a video camera was intro-
duced. 568 images with Macbeth color chart was released
in [17], which was later reprocessed and released as Gehler-
Shi [31] and ColorChecker RECommended [22] datasets.
In [11], NUS-8 dataset was introduced by capturing a total
of 1,736 images using 8 cameras, and the authors also pro-
vided a benchmark for existing color constancy algorithms.
The cube, cube+ [1], and cube++ [13] datasets were also re-
leased recently, which include various types of scenes with
spydercube and ground truth illumination in various direc-
tions.

Multiple illumination datasets. Few works have ad-
dressed the problem of collecting datasets for multiple illu-
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Figure 2. Image samples from various multi-illuminant datasets. Compared to other datasets, our dataset includes more diverse and realistic
set of images.

mination. A dataset composed of 4 laboratory scenes with
17 illumination conditions using Reuter lamps and LEE fil-
ters were introduced in [21]. Multiple Light Source dataset,
consisting of 59 laboratory and 9 outdoor images under the
multi-illuminant setting was proposed in [8]. MIMO dataset
[4] released 80 images captured under 10 laboratory settings
and 6 illuminations, as well as 20 real world images. Most
of the images in the above datasets were taken in a labo-
ratory where all light sources were completely controlled.
While such environment enables accurate recovery of the
ground truth illumination, it is limited in capturing realis-
tic and natural scenes. Moreover, the number of scenes in
these datasets is insufficient for training a learning-based
white balancing algorithm as shown in Table 1.

Millan Portrait Dataset composed of 1,145 images with
human faces in natural scenes was introduced in [7], how-
ever, the dataset is not publicly available to the best of our
knowledge. A dataset of multi-illumination images in the
wild has been introduced recently in [29], which includes
images of 1,015 scenes captured by moving the direction
of a flash unit. Since they captured 25 single flash illumi-
nated images, multi-illuminant images are synthesized by
combining multiple images with different light directions
after the images are relighted using different chromaticity.
Three applications including single-image illumination esti-
mation, image relighting, and mixed illumination white bal-
ance were demonstrated on this dataset.

We propose a new large scale multi-illuminant dataset,
to solve the white balancing problem under multiple illumi-
nation. Fig. 2 and Table 1 compares images and character-

istics of different datasets, respectively. Our dataset is much
larger in scale and more natural compared to other datasets.
While the dataset in [29] is also a large scale dataset, the
scene is limited to a small area as shown in Fig. 2 as the
dataset was not designed only for the white balancing. In
addition, multi-illuminant images in [29] are synthesized
by mixing multiple images with different illuminations. In
comparison, the images in our dataset cover various ranges,
from small to large areas, and look natural due to the de-
sign of the data acquisition. Many scenes that are likely to
be captured by a consumer camera are collected in a real
illumination setting. Moreover, each multi-illuminant im-
age in our dataset is captured with one camera shot, without
requiring additional synthesis.

3. LSMI Dataset

3.1. Image Model

We use the following imaging model for designing our
dataset,

I(x) = r(x)⊙ η(x)ℓ, (1)

where I is an RGB image, r represents the surface re-
flectance in RGB, η is the scaling term that includes the
intensity of the illumination and shading, ℓ denotes an RGB
illuminant chromaticity vector, and x is the pixel location.
In addition, ⊙ represents element-wise multiplication. We
assume that the value of the green channel in ℓ is normal-
ized to 1.

If there are two illuminants a, b in the scene, Eq. (1) can
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Light 1
(on)

Light 2 
(on/off)

Light 3 
(on/off)

Figure 3. Example illustration of capturing environment for a
three-illuminant scene.

be extended as follows:

Iab(x) = r(x)⊙ (ηa(x)ℓa + ηb(x)ℓb). (2)

The white balancing problem can be interpreted as making
all illuminants to have a canonical chromaticity, e.g. white
illuminant 1. Let Î denote a properly white balanced image,
which can be described as follows:

Îab(x) = r(x)⊙ (ηa(x)1+ ηb(x)1). (3)

The relationship between Iab and Îab under two-illuminant
scene is then as follows (pixel location x omitted):

Iab = r⊙ (ηaℓa + ηbℓb)

= r⊙ (ηa1+ ηb1)⊙ (
ηaℓa

ηa + ηb
+

ηbℓb
ηa + ηb

)

= Îab ⊙ (αℓa + (1− α)ℓb)

= Îab ⊙ ℓab, where α =
ηa

ηa + ηb
.

(4)

The above equation shows that the pixel-level illumina-
tion under multi-illuminant scene can be formulated as the
weighted combination of two illuminant chromaticity vec-
tors ℓa and ℓb using α = ηa

ηa+ηb
as the weight. Since both ηa

and ηb are varying according to pixels, α also has different
values spatially.

3.2. Dataset Acquisition

We use three types of cameras with different maximum
sensor values (10bit and 14bit) to cover a wide range of
raw sensor data – Samsung Galaxy Note 20 Ultra, Sony
α9 (ILCE-9) with SEL24105G lens, and Nikon D810 with
Nikon24-70vr lens. As shown in Fig. 3, the scenes are
captured under the natural configuration of multiple light
sources including both the sunlight and artificial lamps. For

two-illuminant three-illuminant

light 1 light 2 light 1 light 2 light 3

shot 1 on off on off off
shot 2 on on on on off
shot 3 on off on
shot 4 on on on

Table 2. Light source on&off compositions of two and three-
illuminant scenes.

2-illum
Scenes

3-illum
Scenes

Total
Scenes

Total
Images

Samsung Galaxy Note 20 Ultra 1,000 125 1,125 2,500
Nikon D810 916 39 955 1,988

Sony α9 1,135 182 1,317 2,998

Table 3. Dataset subset compositions captured with different cam-
eras. Since there is scene overlap between camera subsets, the
total number of unique scenes is 2,762. There is a total of 7,486
images in our dataset.

the artificial lights, we use the indoor lighting installed in
the scene, and a portable lamp. To acquire the ground truth
illumination map, we capture multiple images of the same
scene under different combination of the lights. Specifi-
cally, we take images by turning the controllable lights on-
and-off according to the combination described in Table 2.
Details on the number of scenes and the number of images
for different cameras are shown in Table 3. For the scene
diversity, we captured various real-world places such as of-
fices, studios, living rooms, bedrooms, restaurants, cafes,
etc. For each scene, 3 Macbeth color charts were arranged
in places that are well affected by each light source in the
scene. The charts are used to extract the chromaticity of
each light source, which is described in the following sub-
section. All multiple images of the same scene are taken
under the same camera settings. We also made an effort to
firmly fix the camera with a tripod and used remote captur-
ing to maintain the pixel correspondence between images.

3.3. Ground Truth Labelling

Since the combination of multiple illuminants is linear
in the unprocessed RAW space, we can decompose each il-
luminant from the scene using our captured images. For
simplicity, we describe our method for calculating per-pixel
illuminants and their mixture coefficients under the two-
illuminant setting.

Fig. 4 depicts the overview of the method. Let Ia and
Iab denote an image captured under the illuminant a and
an image captured under both illuminants a and b, respec-
tively. According to Eq. (2), we can get an image under the
illuminant b by subtracting Ia from Iab, which is formally

2413



(a) Get 𝐈! only under illuminant b through subtraction

𝐈"𝐈"! − = 𝐈!

coefficient map

𝛼 ≈
𝐈!,#

𝐈!,# + 𝐈$,#

ℓ"! = 𝛼ℓ" + (1 − 𝛼)ℓ!

(b) Coefficient map & Ground truth illumination map acquisition

𝐈!,$𝐈",$

ℓ" from 𝐈" ℓ! from 𝐈!

White balanced, .𝐈"!

ℓ" , ℓ!

Figure 4. Visualization of the generation process of illuminant coefficient map and ground truth illumination map. (a) We get image Ib only
under illuminant b, through image pair subtraction. Next, inspect the Macbeth color chart in each image Ia and Ib, to get the chromaticity
of each illuminant. (b) Here, we derive the coefficient map through approximation of scaling term ηa and ηb, utilizing the green channel
value of each image, Ia,G and Ib,G. Now we can calculate the ground truth illumination map ℓab, through linear combination of ℓa and ℓb.
By using ℓab, properly white balance image, Îab is obtained. Daylight white blance is applied to Ia, Ib, Iab, and ℓab, to increase visibility.

described as

Ib = r⊙ (ηbℓb)

= r⊙ (ηaℓa + ηbℓb)− r⊙ (ηaℓa)

= Iab − Ia.

(5)

We find a chromaticity of each illuminant, ℓa and ℓb, using
the color chart in Ia and Ib, respectively. We average the
pixels of the brightest achromatic patch among the charts
without saturation in an image to compute the chromaticity.

To compute the illuminant coefficient α in Eq. (4), we
use the pixel intensity of Ia and Ib as an approximation of
ηa and ηb respectively, since it is proportional to η accord-
ing to Eq. (1). Among RGB channels, we use the green
channel to compute the coefficient because the sensitivity
of the Bayer pattern sensors of digital cameras is highest in
the green channel and the intensity of the green channel is
typically normalized to 1 in white balancing. Our approxi-
mated coefficient is formally described as

α(x) =
ηa(x)

ηa(x) + ηb(x)

≈ Ia,G(x)

Ia,G(x) + Ib,G(x)
,

(6)

where Ia,G(x) and Ib,G(x) are the intensity of the green
channel. With this procedure, pixel-level α, ℓa, and ℓb are
obtained. The per-pixel ground-truth illumination map ℓab
is computed using these variables following Eq. (4).

[Original] [Coefficient map] [Relighted]

Figure 5. Pixel-level relighting example of two-illuminant scene
from LSMI.

3.4. Pixel-level Relighting

Even though LSMI contains many images with vari-
ous lighting settings, the diversity is still limited compared
to the entire space of real-world lighting conditions. Our
dataset has the flexibility to augment the diversity of light-
ing by adjusting the chromaticity of illuminants. Since the
chromaticity and the mixture of each illuminant are decom-
posed, we can freely manipulate the color of the lighting
while maintaining the scene geometry as shown in Fig. 5.

To perform pixel-level relighting on our LSMI data,
we sample HSV color vectors within the range H[0,1],
S[0.2,0.8], and V=1. The sampled color vector is converted
to RGB space and normalized so that G = 1. And they are
linearly combined using the original pixel-wise illuminant
coefficient α, and then multiplied to original raw image. We
provide more details about the pixel-level relighting process
in the supplementary material.

4. Pixel-level White Balancing Models

The large amount of scenes provided by our dataset
and its pixel-level ground truth allow for the training of
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pixel-level white balancing models, which is different from
previous patch-based methods used for multi-illumination
scenes. We train two types of pixel-level inference model,
HDRnet [18] and U-Net [30]. These models were trained to
output white balanced images.
HDRnet. HDRnet [18] is proposed as a lightweight CNN
for image enhancement on mobile devices. To train HDR-
net, we use 256×256 and 128×128 as the size of a high res-
olution and a low resolution input, respectively. We use the
default hyperparameters of the network and the model out-
puts the RGB values of each pixel of images as the original
work. For optimization, we use both a cosine similarity loss
and a mean squared error (MSE) loss to enforce the model
to learn about the chromaticity of each pixel of images.
U-Net. U-Net [30] is originally designed to be used in the
field of image segmentation, but it is widely used in various
pixel-level tasks such as image processing and image-to-
image translation [24, 27]. We train a U-Net with 7 down-
sampling steps and the input size of 256×256. The input
image is transformed to a single luminance channel l and
two chrominance channels u and v before being fed into the
network since the chromaticity information is more useful
than RGB values in our task [29, 2]. Our transformation is
formulated as

l = log(IG + ϵ),

u = log(IR + ϵ)− log(IG + ϵ),

v = log(IB + ϵ)− log(IG + ϵ),

(7)

and the model output is two channel chrominance of ground
truth white balanced image. Since our U-Net utilizes the
chrominance values as input and output, not the RGB val-
ues, the MSE loss between chrominance vectors works in
a similar way to the mixture of MSE and cosine similarity
loss of HDRnet.

5. Experiments
5.1. Multi-illumination Dataset Analysis

In addition to the statistic of the datasets provided ear-
lier, we provide deeper analysis on image quality of differ-
ent multi-illumination datasets. Fig. 6 (a) is an example of
applying multi-illumination synthesis method [6, 21, 32] on
our dataset. The images are synthesized by applying dif-
ferent color casts to parts of an image, which are arbitrarily
divided. The boundaries are smoothed by a Gaussian ker-
nel. The resulting image does not look natural as the scene
geometry is ignored during the synthesis. Additionally, the
actual mix of multiple illumination only occurs in a small
region around the boundaries.

Fig. 6 (b) shows an example from [29], where images
with multiple-illumination are synthesized by combining
multiple images captured under different directions of a

(a) Conventional relighting method [21, 32, 6]

(b) Multi Illumination in the Wild [29]

(c) Ours

Figure 6. Multi-illumination images and their coefficient maps
from different datasets.

LSMI (ours) Multi Illumination in the Wild [29]

two-illuminant 0.1504 0.0838
three-illuminant 0.1633 0.1118

Table 4. Mean standard deviation of illuminant coefficient for our
dataset and Multi Illumination in the Wild [29]. The results indi-
cate that our data contains more spatially-diverse illumination.

flash light. We have observed that this synthesis can result
in images with almost uniform lighting, especially when us-
ing the indirect lighting that is bounced by the wall or the
ceiling. When using directional flash light, we have also ob-
served that it tends to saturate pixels too much, so a careful
engineering was required when selecting lights to be used
for the synthesis.

In comparison, our dataset is captured in a real-word il-
lumination setting without further synthesis. As shown in
Fig. 6 (c), our dataset provides more natural images with
wide field-of-view that include larger variation of mixture
ratio of illuminants.

We also compare the mean standard deviation of illu-
minant coefficients of datasets, to further show the differ-
ence of [29] and our data quantitatively. Since the origi-
nal dataset in [29] does not provide synthesized images for
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MAE Single Multi Mixed

mean median mean median mean median

Patch-based statistical [20] 7.49 6.04 12.38 9.57 10.09 7.43
learning [6] 4.15 3.30 5.56 4.33 4.89 3.83

Pixel-level HDRnet 2.85 2.20 3.13 2.70 3.06 2.54
U-Net 2.95 1.86 2.35 2.00 2.63 1.91

PSNR Single Multi Mixed

mean median mean median mean median

Patch-based statistical [20] 29.4 30.0 25.4 25.2 27.3 26.8
learning [6] 34.0 33.4 28.6 28.3 31.1 30.4

Pixel-level HDRnet 45.0 44.5 38.3 37.6 41.1 40.1
U-Net 44.6 43.9 39.1 39.5 41.7 41.4

Table 5. Mean Angular Error (MAE) and Peak Signal-to-Noise
Ratio (PSNR) values of patch-based infernce model and pixel-
level inference model.

multi-illuminant scenes, we generated the dataset from the
provided images. Note that we excluded highly saturated
images while synthesizing images, then followed the pro-
cedure described in the paper. We calculated the standard
deviation of illuminant coefficients for each image, and av-
eraged those for all images in the dataset. High values of
the mean standard deviation indicate that the mixture ratio
of illuminants is changing across the scene, which is com-
mon in typical multi-illuminant scenes. In contrast, low val-
ues indicate that the lights are mixed in similar proportions
and the scene looks almost like a single light illuminated
scene. As can be seen in Table 4, the values of our dataset
are higher than those of [29], which demonstrate that our
dataset contains more realistic and challenging examples of
multi-illuminant scenes.

5.2. Pixel-level White Balance Results

Comparison with patch-based methods
To demonstrate the effectiveness of the pixel-level white

balancing approach for multi-illumination scenes, we com-
pare pixel-level models U-Net and HDRnet in Sec. 4 with
two existing patch-based methods which we modified from
patch-based model [6], and statistic-based model [20]. For
the patch-based methods, training on multi-illuminant im-
ages is technically not feasible. Following the original
works, we train them only with single-illuminated images
using the relighting augmentation technique, and applied
them to multi-illuminant scenes in a patch-wise manner. All
images are resized to 256×256 images as used in U-Net and
HDRnet, and we set the patch size to 16×16. In all exper-
iments, we use a subset of our LSMI dataset captured with
Galaxy Note 20 Ultra, which is split into train, validation,
and test set with the ratio of 0.7, 0.2, and 0.1. Results on
other cameras are provided in the supplementary material.

Fig. 7 shows a qualitative comparison of results. It can
be seen that the pixel-level estimation models perform bet-
ter white balancing compared to patch-based methods. The
patch-based algorithms have the disadvantage that the in-

MAE Single Multi Mixed

mean median mean median mean median

HDRnet Original set 3.13 2.53 3.57 3.09 3.42 2.98
Augmented set 3.16 2.56 3.43 2.73 3.30 2.64

U-Net Original set 3.64 2.63 3.43 2.99 3.53 2.83
Augmented set 2.95 1.86 2.35 2.00 2.63 1.91

Table 6. Mean Angular Error (MAE) values of HDRnet and U-
Net trained by the original train set and the augmented train set of
LSMI.

formation available to the model is limited by the patch, not
the entire scene. Consistency between patches is also a ma-
jor drawback. On the other hand, pixel-level methods can
be trained to estimate the pixel-level illumination with the
context of the whole image, resulting in better white bal-
anced images.

Quantitative results are shown in Table 5 . The test set is
divided into three subsets – single illumination images (99),
multiple illuminating images (112), and mixture of both
(211). While the mean angular error (MAE) is a conven-
tional evaluation metric for white balancing, we also pro-
vide PSNR as the objective is to recover white balanced im-
ages close to the ground truth. As expected, the pixel-based
algorithms using DNNs perform better with larger gap in
the case of multi-illumination.
Effect of data augmentation by relighting

To show the effectiveness of the data augmentation with
relighting, we additionally compare results of U-Net and
HDRnet on the original and the augmented dataset. We gen-
erated 4 more images for each scene using the pixel-level
relighting, and the total of 7,345 images are used for the
augmented training set. The quantitative results are shown
in Table 6, and there is a clear improvement in performance
using the augmented training set. It demonstrates that our
dataset provides a way to further boost the performance of
multi-illuminant white balancing models through data aug-
mentation with relighting.

5.3. User study

An interesting study on white balancing under multiple
illumination was presented in [10]. Under two illumination
– indoor and outdoor illumination – they conducted a user
study to find the preference between correcting the illumi-
nation with either indoor or outdoor lighting. According to
their investigation, images corrected by the outdoor illumi-
nation were preferred by almost 80%.

We conducted a similar user study through Amazon Me-
chanical Turk to learn about users’ preference on white bal-
ancing. On images with two illumination, we provided
users with four white balanced images – white balanced
with respect to outdoor illumination, indoor illumination,
auto white balanced using LibRaw library, and pixel-wise
white balance using the ground truth illumination map. Two
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Input Patch-based 
& statistic

Patch-based 
& learning

HDRnet U-Net GT

2.842.275.427.26 0.00 

2.423.087.159.97 0.00
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16.8
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20.9

Figure 7. Visualization of various white balanced results using two patch-based models and two pixel-level models. Illumination mean
angular errors provided for the reference.
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Figure 8. User response of our Amazon Mechanical Turk survey.
All labels are expressed in percentage.

different studies were conducted. In the first task, we asked
the users which photos were likely to be captured under
the white light. For the second task, we asked the users to
choose the picture they liked the most, paying attention to
the color tone of the image. A total of 30 multi-illuminant
scenes were provided, and for each scene, 50 answers were
recorded in the first study, and 26 answers in the second
study. Fig. 8 shows the results of the studies. According to
the survey, pixel-level white balanced images received the
most votes by a large margin. These results show the ne-
cessity of the pixel-level white balance algorithm for multi-
illumination environments. Due to the lack of data, we have
not seen much progress in this direction. Our new dataset
opens the door for more efforts to be made in developing
multi-illumination white balance algorithms.

6. Conclusion

In this paper, we introduced a new large scale multi-
illuminant dataset for data-driven mixed illumination white
balance algorithm. Our dataset provides the large amount
of multi-illuminant scenes captured under the real-world
setting, pixel-level labels of the chromaticity of illumi-
nants and their mixture ratio. Our experiments show that
CNN-based pixel-level methods outperform existing patch-
based methods, and pixel-level white balance is mostly pre-
ferred by human observers compared with single illuminant
white balance. Both the dataset and insightful experiments
are expected to bring more attention on multi-illuminant
white balance in future works, especially for pixel-level ap-
proaches. estimation. There is still a room for improvement
in CNN-based methods used in this work, which may in-
clude incorporating domain knowledge of multi-illuminant
white balance to the design of deep networks.
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