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Figure 1: Examples of single-image face texture completion results. Our neural network, trained in an unsupervised manner
without any complete face texture, can generate high-fidelity results with natural skin details and facial hair.

Abstract

For face texture completion, previous methods typically
use some complete textures captured by multiview imaging
systems or 3D scanners for supervised learning. This paper
deals with a new challenging problem – learning to com-
plete invisible texture in a single face image without using
any complete texture. We simply leverage a large corpus
of face images of different subjects (e. g., FFHQ) to train
a texture completion model in an unsupervised manner. To
achieve this, we propose DSD-GAN, a novel deep neural
network based method that applies two discriminators in
UV map space and image space. These two discriminators
work in a complementary manner to learn both facial struc-
tures and texture details. We show that their combination is
essential to obtain high-fidelity results. Despite the network
never sees any complete facial appearance, it is able to gen-
erate compelling full textures from single images.

1. Introduction
Human face analysis and digitization are among the most

popular topics in computer vision and graphics. Most face
photos we take do not represent a full view of a face due
to occlusion by the face itself or other objects. In fact, self-
occlusion is ubiquitous for face images in the wild as shown
by the examples in Fig. 1, leading to invisible texture con-
tent. The task of face texture completion is to infer the in-
visible face content and recover full-face appearance. It has
a wide variety of applications ranging from 3D avatar cre-
ation [14, 20], 3D morphable model construction [2, 31],
and face image manipulation [13, 36], to high-level vision
tasks such as face recognition [13, 6]. This work is devoted
to texture1 completion learning using deep neural networks
for single face images.

However, learning face texture completion is not

1Following [6], we use texture to refer to a facial appearance on an
image, not an albedo or intrinsic image.
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straightforward due to the difficulty of collecting labeled
training data. For single images, obtaining complete tex-
ture by manually labeling or painting is not a viable op-
tion. Using multi-view images to obtain high-resolution
and high-quality textures is also not a trivial task, which ne-
cessitates sophisticated face image capture and processing
pipelines. Previous works often use some special devices
placed in controlled environments for training data capture,
such as a multi-view DSLR capturing system or a 3D scan-
ning system [4, 37, 6, 20]. Most datasets from these works
are not publicly available. Note that most of them capture
face albedo which is different from the texture we consider
in this paper, but the requirements for face scanning, regis-
tration, and stitching are similar for obtaining both.

To step aside from the effort for labeled data collection,
we propose using a large collection of high-resolution face
photos captured in unconstrained settings to train a face tex-
ture completion model. Although this would eliminate the
need for complete texture acquisition, it poses new chal-
lenges for the learning task, since, for each input face im-
age, there’s no image of the same person that can be used
for supervision.

To this end, we propose a novel generative adversarial
learning method called Dual-Space-Discriminator Genera-
tive Adversarial Network (DSD-GAN) to learn face texture
completion in an unsupervised fashion. To make full use
of the partially visible face appearance, we apply two dis-
criminators designed differently in the UV texture space and
image space. Our key observation is that the former is more
suitable to learn texture details, whereas the latter is more
important to learn facial structure.

In the UV texture space, a discriminator takes small lo-
cal patches as input to focus on detailed textural patterns.
Real and fake patches are obtained on one image accord-
ing to their visibility. Since the discriminator focuses on
local patches, it may get stuck into local minima and ig-
nore global textural consistency. Therefore, we make the lo-
cal discriminator conditioned on the patch coordinates and
train it to regress these coordinates. On the other hand, we
employ a differentiable mesh renderer [10] to convert the
generated UV texture into the image space and apply a dis-
criminator taking the full image as input. The goal here is
to capture the general face structure, core semantic compo-
nents, and overall color gradient caused by different illumi-
nation conditions. The raw face photos are used as real sam-
ples, which naturally provide reliable training signals. To
make the discriminator focus more on missing regions and
avoid confusing it when missing regions are small, we ap-
ply spatially-varying labels for more effective training. We
show that our dual space discriminators are very effective
for the unsupervised learning task and the trained generator
can produce high-fidelity face texture completion results.

2. Related Work

Deep image completion. Image completion with a deep
neural network has been actively studied in the past few
years. Pathak et al. proposed a context-encoder architec-
ture, which employs adversarial and pixel-wise reconstruc-
tion losses [29]. To efficiently enlarge receptive field, Iizuka
et al. [15] deployed a dilated convolution for image comple-
tion. Later, to deal with irregular hole shapes, a partial con-
volutional (PCONV) was proposed by Liu et al. [25] where
a mask is used to consider only valid pixels and valid re-
gions are gradually grown through a network.

On the other hand, many methods adopt both a local and
global discriminator to enhance image quality [15, 41, 6].
The local discriminator is applied for some fixed regions
like facial center [6] or regions with generated content [15,
41]. Compared to these methods, our discriminators are de-
signed in two different spaces to learn texture completion
without any complete texture.

3D face geometry and texture. Face UV texture is closely
related to the 3D geometry of human faces. The 3D Mor-
phable Model (3DMM) [2, 30] has been one of the most
popular tool for 3D face reconstruction . The model is gen-
erally built based on a set of real captured data, then PCA is
applied to form a parametric model. Many works employed
the analysis-by-synthesis approach for 3D reconstruction.
Recently, deep neural networks are employed for 3D face
reconstruction using synthetic data for training [8, 12, 32]
or trained in a weakly-supervised way [7, 10, 34].

Parametric facial texture models were also proposed in
the past [3, 9]. Booth et al. [3] used a robust principal com-
ponent analysis to build a model from incomplete “in-the-
wild” textures. This method has an implicit texture com-
pletion during the construction of a texture model but loses
fine details. In [9], a GAN-based texture model is proposed
where 10,000 high-resolution complete UV data were used.
However, for texture inference, the generated results are
limited to their parametric model space. Contrarily, our ap-
proach generates a complete texture while preserving the
visible pixels and details from the input. Lin et al. [24]
proposed to generate fine-detail-textures based on a recon-
structed texture using a parametric model. Their model only
focuses on the visible part and does not handle the natural-
ness of the self-occluded textures.

Similar to our approach, there have been a few meth-
ods proposed for texture completion based on 3D geometry
[33, 37, 6]. Saito et al. [33] proposed a DNN to extract
features from the partial images and used multi-scale detail
analysis. Though it could generate plausible results, it re-
quires heavy computation resources. Yamaguchi et al. [37]
employed GAN for albedo prediction, face texture comple-
tion, and super-resolution of face texture. Deng et al.[6]
proposed a GAN-based UV texture completion using hy-
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Figure 2: Overview of the proposed framework. The image-space discriminator is trained to learn coarse structure while the
texture-space discriminator learns detailed textures.

brid discriminators. However, both methods heavily depend
on high-quality and high-resolution training data.

On the other hand, SG-NN proposed a self-supervised
completion model for 3D structure [5] without complete
data. However, while SG-NN utilizes direct supervision by
imposing artificial masks, DSD-GAN learns the distribution
of the partial textural information using discriminators.

3. Method

We have two key goals: (1) learning face texture comple-
tion without complete texture data and (2) generating high-
resolution and high-quality textures. To achieve both, we
carefully designed our framework to fully make use of vis-
ible pixels in the training data. The overview of the frame-
work is demonstrated in Fig. 2. A generator infers com-
plete texture from an incomplete input texture and its visi-
bility mask. Then, the texture is fed into two discriminators
working in two different spaces: UV-atlas texture space and
rendered image space. Since there is no full ground-truth in
texture space, we crop the inferred textures to form several
real and fake patches, which are fed into the texture-space
discriminator. In the case of image space, the original im-
age itself is regarded as real data while the rendered image
is fake data as the inputs to the discriminator. The detailed
processes are described in the following sections.

3.1. Data Preparation

In this work, we leverage a large collection of face im-
ages for the texture completion training task. We use two
face image datasets: Flickr-Faces-HQ (FFHQ) [18] and
CelebA-HQ [17]. FFHQ consists of 70K high-resolution
face images and CelebA-HQ has about 30K.

Input image Texture TextureInput image
Figure 3: Samples in the generated training dataset.

To obtain UV textures and generate our training data,
we developed an automated pipeline which consists of
three steps: (1) DNN-based 3D face reconstruction, (2)
optimization-based refinement, and (3) data cleaning. For
the first step, we employ an off-the-shelf algorithm from [7]
to obtain the initial 3D reconstruction results. To further im-
prove the alignment accuracy, we then apply an offline op-
timization with losses similar to [7]. With the recovered 3D
geometry, face textures and visibility maps cab be extracted.
Finally, we refine the textures to remove bad samples: we
first simplify the visibility mask boundary by using sim-
ple morphological operations, and then remove background
(non-face) pixels introduced in texture space using the face
parsing information [23]. If there are too many background
pixels in a texture, we simply discard it.

Some example textures generated from our pipeline are
presented in Fig. 3. In our experiment, the resolutions of
UV texture data and image space data are 512×512 and
448×448, respectively.

3.2. Generator

Motivated from [35], our generator consists of down-
sampling, residual blocks, and upsampling layers. Between
each residual block, we add dilated convolutions [39] to en-
large the receptive field, which we found to be important

13992



especially for high-resolution images. For the input of the
generator, we first concatenate a texture with a Gaussian
random noise image where noise appears only in the hole
regions of the texture map, then we flip the data horizontally
and concatenate it with the original one to impose a weak
symmetric consistency as used in previous studies [6, 37].

We denote the input texture as Tinc, visibility mask as
Mtex, and the inferred texture as Tpred. For Mtex, valid
and hole regions are indicated with 1 and 0 respectively.
The output of the generator is used to calculate the self-
reconstruction loss for the valid pixels as

Lrec =
1∑

(i,j) M
′
tex

∑
(i,j)

|(Tinc − Tpred)⊙M ′
tex| (1)

where M ′
tex is the inverse of Mtex and ⊙ is a Hadamard

product. Detailed network architectures are explained in the
suppl. material.

3.3. Discriminators

Texture-space discriminator. From the inferred face tex-
ture Tpred, we extract local patches to represent real and fake
labels for the discriminator. To make the selection process
simpler and faster, we first define discrete candidate loca-
tions with the stride of stridec and cropping size widthc.
Then, using each visibility mask, we calculate the ratio of
the number of valid pixels over that of total pixels in each
cropping region and classify them into three categories: a
hole patch (ratio<0.65), a valid patch (ratio>0.9), and the
rest. Among them, only the hole patches Chol and valid
patches Cval are used for training. The optimal cropping
size, widthc is chosen based on experiments. If widthc is
too small, the model is less likely to catch important textural
patterns, while large cropping results in fewer possible can-
didates. In the experiment, we set stridec = widthI/32
and widthc = stridec × 2.

To calculate the adversarial loss, we deploy a least square
GAN [26] as

Lloc = E
Cval

[(DT (Cval)− 1)2]− E
Chol,z

[DT (Chol)
2] (2)

where DT (·) indicates the texture-space discriminator, and
z is the random noise of the input.

Face texture has a canonical structure, and there is
a strong relationship between texture patterns and loca-
tions. For example, beard exists only around the mouth
and chin, while cheeks usually have homogeneous textures.
Therefore, we consolidate the positional information of the
patches into their textural information to generate seman-
tically correct details. Specifically, we train a conditional
discriminator by regressing the coordinates of the input
patches in the original full texture. We add a subbranch at
the end of the convolutional layers in the discriminator as a

Figure 4: Illustration of local patch selection. Blue squares
are real patches and green squares are fake patches.

regressor like AC-GAN [22, 27]. The coordinate regression
loss is calculated as

Lcoord =
1

K
(Reg(C)− posC)

2 (3)

where Reg(C) indicates the predicted coordinate by the re-
gressor, posC is the normalized coordinate of C, and K is
the total number of patches. For the coordinate normaliza-
tion, values are rescaled to range between [0, 1].

Image-space discriminator. To learn the global structural
information, we consider another discriminator defined in
image space. Different from texture-space data, natural
faces images in image space are faultless as themselves, that
is, they can be regarded as real data for adversarial learning.
Besides, image space data is less sensitive to alignment ac-
curacy and it is easy to collect a large corpus of face images.

Using a differentiable mesh renderer [10], we render the
inferred texture Tpred to multiple face images Ipred. In this
stage, choosing proper face poses to be rendered is impor-
tant. We choose the new poses at random but ensure they
are sufficiently far from the original face pose. For the real
data, we simply apply the face boundary mask to the raw
images, which we denote by Iraw.

Our image-space discriminator takes a whole image as
input and outputs a 14×14 fake/real label predictions. The
receptive field size for each output point is 286×286, which
is large enough to capture the facial structural information.
For the 14×14 predictions, we propose spatially-varying la-
bels for the adversarial learning to deal with highly unbal-
anced real and fake pixels. Generally, in a rendered image
Ipred, the number of hole pixels is smaller compared to the
whole face region. The rest pixels are from the original
valid face texture. If we naively handle these valid pix-
els as fake data, it could potentially confuse the discrim-
inator. Therefore, different from the PatchGAN discrim-
inator [16] where the whole patches in one image have a
uniform label, our labels are spatially-varying. The individ-
ual labels are generated using the rendered visibility mask
Mimg = DR(Mtex,p) where DR(·) is the differentiable
mesh renderer, and p is the new pose. We resize Mimg to
form the label map having the same size as the output of the
image-space discriminator, and binarize it with the thresh-
old of 0.9. More details can be found in the suppl. material.

The loss function for our image-space discriminator can
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Input texture (4) Full DSD-GAN(3) w/o tex. DSC(2) w/o img. DSC(1) w/o img. DSC & c.r.

Figure 5: Comparison of completion results with different modules. (Best viewed with zoom)

(a) FFHQ (b) CelebA-HQ (c)

Figure 6: (a) and (b) are the yaw angle distributions of
FFHQ and CelebA-HQ; and (c) is the average of visibility
maps (darker means less number of visible pixels).

be written as

Limg=E
Igt
[(DI(Igt)− 1)2]− E

Ipred,z
[(DI(Ipred)−limg)

2] (4)

Ipred = DR(Tpred,p) (5)

where DI(·) is the image space discriminator, and limg is
the spacially-varying label.

3.4. Overcoming Data Bias

FFHQ and CelebA-HQ are highly biased to front faces
as shown in Fig. 6 (a) and (b). To mitigate the bias issue,
we applied several workarounds in data sampling.

Sampling pose to render. If we choose too far poses
from its original, most of Ipred become profile faces, while
the majority of Iraw is near-front faces. This can make the
discriminator sensitive to pose rather than textural quality.
Thus, the new pose was randomly sampled from the nor-
mal distribution with the estimated mean and covariance of
FFHQ and CelebA-HQ. To guarantee the rendered face in-
cludes hole pixels, sampling was repeated until the new yaw
meets two conditions: (1) >20◦ difference from the original
(2) opposite side based on front angle. This leads to slightly
broader distribution then real, but the model less suffered
from the bias issue. We will add details in the revision.

Sampling local patches. Due to the biased pose distribu-
tion, the distribution of valid/hole patches in the UV space
along the vertical direction is highly biased to upper/lower

50°0°50°

Original
complete
texture

Figure 7: Pose invariance test. More visual results can be
found in suppl. material.

regions, as depicted in Fig. 6 (c). Naive random patch sam-
pling from the valid/hole patch pool will result in imbal-
anced training data. To avoid this issue, we first uniformly
and independently sampling a row index, then uniformly
sampled a column index. This way, the training path distri-
bution along the vertical direction will be made uniform.

4. Experiments

Implementation details. Our method is implemented us-
ing Tensorflow [1]. We use Adam optimizer [19] and learn-
ing rate 1e−4 to train all the models. We use four GPUs
for training where the batch size of each GPU was 4. More
details can be found in the supp. material.

4.1. Ablation Study

Effect of each proposed module. To validate the efficacy
of each module, we conduct experiments with different sub-
modules. We compare the four different settings: (1) DSD-
GAN with only texture-space discriminator without coordi-
nate regression, (2) DSD-GAN with only texture-space dis-
criminator, (3) DSD-GAN with only image-space discrimi-
nator, and (1) full DSD-GAN. Each result is shown in Fig. 5.
For models (1), (2), and (3), the self-reconstruction loss was
used for training with a small weight.

As seen in Fig. 5, model (2) works well for near-front
faces with natural textures. However, significant artifacts
appear for a large-pose, especially when a large part of the
core facial component is missing. The inferred texture has
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SSIM Perceptual similarity
-60◦ -30◦ 0◦ 30◦ 60◦ Avg. -60◦ -30◦ 0◦ 30◦ 60◦ Avg.

DeepFillv2 0.5974 0.6988 0.7696 0.6839 0.5759 0.6651 0.5783 0.6943 0.7232 0.6688 0.5445 0.6418
PICNet 0.6332 0.7264 0.7711 0.7168 0.6230 0.6941 0.6054 0.7482 0.7544 0.7320 0.5724 0.6825
RFRNet 0.6237 0.7120 0.7747 0.7034 0.6129 0.6853 0.5738 0.7064 0.7245 0.6892 0.5546 0.6497
Base-MPIE 0.6521 0.7153 0.7450 0.7108 0.6420 0.6930 0.6787 0.7575 0.7799 0.7483 0.6485 0.7226
Base-BFM 0.7115 0.7561 0.7769 0.7561 0.7164 0.7434 0.7170 0.7872 0.7934 0.7788 0.7180 0.7589
w/o img. DSC. & c. r. 0.6731 0.6780 0.6677 0.6823 0.6780 0.6758 0.6373 0.6078 0.5954 0.6603 0.6445 0.6290
w/o img. DSC. 0.6820 0.6881 0.6884 0.6913 0.6941 0.6888 0.6250 0.6712 0.6663 0.6822 0.6870 0.6663
w/o tex. DSC. 0.7323 0.7732 0.7873 0.7635 0.7347 0.7582 0.7277 0.7922 0.7987 0.7805 0.7419 0.7682
DSD-GAN 0.7531 0.7755 0.7876 0.7736 0.7522 0.7684 0.7500 0.7914 0.7985 0.7839 0.7594 0.7767

Table 1: Comparison of SSIM (↑) and perceptual similarity (↑) under different input poses on the FaceScape dataset. (red
and blue indicate the best and second-best models.)

DeepFillv2 PICNet RFRNet Base-MPIE Base-BFM w/o img. dsc. & c. r. w/o img. dsc. w/o tex. dsc. DSD-GAN
24.3861 40.3863 44.9248 30.3546 17.2121 56.4223 43.0560 9.9678 3.3124

Table 2: Comparison of FID scores (↓) on the FaceScape dataset. (red and blue indicate the best and second-best models.)

high-frequency details but they are not consistent with valid
regions. For model (4) where the coordinate regression is
additionally excluded, the overall facial structure is col-
lapsed. On the other hand, the image-space discriminator
(model (3)) can capture the overall structure well, but the
textural detail is poor compared to model (4). We can ob-
serve weird stripe patterns in the inferred region and a more
noticeable seam when zoomed in. Comparing (3) and (4) in
Fig. 5, it is obvious that incorporating coordinate helps the
texture-space discriminator learn the structural information
indirectly. Our full model takes advantage of each module
and can generate high-fidelity textures as shown in (b).

For quantitative evaluation, we use the FaceScape
dataset [38] which contains complete face textures of 938
people. For each texture, we applied 5 different masks with
input yaw rotations of [−60◦,−30◦, 0◦, 30◦, 60◦], then in-
fer complete face texture on them. Each inferred texture is
rendered to image space again for evaluation, with all these
five poses but the input one. We calculate SSIM [43] and
perceptual similarity between these generated face images
and the ground truth, where perceptual similarity is com-
puted as the cosine similarity of embedded features from
VGGface [28]. We further compute the Fréchet inception
distance (FID) to assess the quality of the generated faces.
Table 1 and Table 2 again show the effectiveness of different
modules. Removing any of them will lead to a significant
performance drop.

Invariance to input pose. In Fig. 7, the image in the first
column shows the ground-truth full texture, and the others
are inferred images by DSD-GAN with three different vis-
ibility masks corresponding to different poses. It can be
observed that DSD-GAN can deal with various poses from
frontal ones to large pose angles, producing natural and per-
ceptually stable results. The numerical results in Table 1
also shows the more stable performance of DSD-GAN com-
pared to others.

4.2. Method Comparison

In this section, we evaluate the performance of our DSD-
GAN and compare it with other methods. We consider three
groups of method for comparison:

• Fully-supervised baselines. We train two baseline
models with accessible complete face texture dataset:
Multi-PIE face textures constructed by [6] as their
(partial) training data, and BFM textures from [30]. We
compare our model trained without any complete data
with these two baselines.

• State-of-the-art methods. We compare DSD-GAN to
prior art including two face texture completion meth-
ods of UV-GAN [6] and Yamaguchi et al. [37], and
a state-of-the-art texture model GANFIT [9]. Note
that all the three method leveraged complete face tex-
ture for learning. Unfortunately, none of them provide
their trained models or full training datasets, making
the comparison very difficult. Therefore, we run our
method on relevant image samples from their papers
and visually compare with their results.

• Image inpainting algorithms. To check the advan-
tage of DSD-GAN over existing image inpainting ap-
proaches, we further compare with three deep inpaint-
ing models: DeepFill v2 [40], PICNet [42], and RFR-
Net [21], all trained on face images from CelebA-HQ.
Unlike ours, these methods are trained in image space
using full supervision.

4.2.1 Comparison to fully-supervised baselines

To obtain strong baselines, we carefully augmented the face
texture data and designed the training scheme. The Multi-
PIE dataset contains 2,387 complete face textures of 337
subjects constructed from Multi-PIE database [11]. For
BFM textures, we randomly sampled 500 textures from the
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(a) Input (b) Input texture (e) DSD-GAN(c) Base-MPIE (d) Base-BFM

Figure 8: Comparison of texture completion results with two supervised baseline methods. (Best viewed with zoom)

BFM model and augmented them by changing skin tones,
resulting in 6,500 samples for training. For both, we ap-
plied visibility masks with random shapes and poses sam-
pled online for training. Random lighting was applied to
the BFM textures by using Spherical harmonics (SH) light-
ing [7]. Both baseline models consist of a generator and
discriminator in the texture space with architectures iden-
tical to DSD-GAN. To train them, L1 ground-truth recon-
struction loss and adversarial loss were combined with their
weights properly tuned. We refer to the two trained models
as ‘Base-MPIE’ and ‘Base-BFM’, respectively.

Figure 8 compares the qualitative results of different
methods on the testing data from FFHQ. From the top row
to the bottom row, the yaw angle of the face poses gradu-
ally increases. Baseline models generate reasonable results
for the near-front faces. However, they clearly lack high-
frequency details, especially under large poses. Our DSD-
GAN yields the best quality for both near-frontal and large
poses with rich high-frequency details generated.

Table 1 and 2 compare the quantitative results on the
FaceScape dataset. As can be seen, our results are signif-
icantly more accurate than the baselines under all metrics.

4.2.2 Comparison to state-of-the-art models

Comparison to UV-GAN [6]. UV-GAN is trained with
77K complete face textures in a supervised fashion and in-
fers up to 256×256 resolution. In contrast, our method
learns to infer 512×512 textures without any complete tex-

ture. Figure 9 (left) compares the two methods using images
from UV-GAN paper. As can be seen, both methods pro-
duce decent results, and UV-GAN handles a larger texture
area than ours. However, our completed textures contain
richer details. The re-rendered face images appear more re-
alistic and better preserve the appearance of the raw input
images. For large-pose faces, it seems that UV-GAN dis-
carded the raw texture details visible in the input face (eye-
brows, gaze, etc.) and regenerated the whole content, as can
be observed from the third sample in Fig. 9 (left).

Comparison to Yamaguchi et al. [37]. The method of
Yamaguchi et al. learns to infer complete UV albedo using
329 production-level full 3D face scans. Figure 9 (right)
compares our result with theirs. Since [37] generates albedo
texture, we ignore the shading difference in the comparison.
As shown in the figure, our texture map covers a larger fa-
cial region. By a closer look, the result of [37] may contain
some seam artifacts on the boundary between visible and
self-occluded parts (marked with green arrows), whereas
ours look more natural.

Comparison to GANFIT [9]. GANFIT is a state-of-the-
art statistical parametric model of facial albedo texture that
can be used for high-fidelity 3D face reconstruction. It is
trained with ∼10K complete and high-quality albedo UV
maps from [4]. In Fig. 10, we compare our results with
GANFIT. Again we should ignore the shading difference
here for a fair comparison. It can be seen that the results of
GANFIT are of high quality and appear natural in general.
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Inputs:

(a) DSD-GAN (b) UV-GAN [5] (c) DSD-GAN (d) Yamaguchi et al. [36]

Inputs:

Figure 9: Comparison with UV-GAN [6] and Yamaguchi et al. [37]. The results of [6] and [37] are from their papers, and a
full comparison can be found in the suppl. material. Green arrows indicate seam artifacts. (Best viewed with zoom)

GANFIT [8]

DSD-GAN

Input

Figure 10: Comparison with GANFIT [9]. The results of
[9] are from their paper, and a full comparison can be found
in the suppl. material.

(b) DeepFill v2 (c) PICNet (d) RFRNet(a) Input (e) DSD-GAN

Figure 11: Inpainting results in texture space (top) and im-
age (bottom) space. Our result in image space is obtained
by unwarpping the image to texture space for completion
then re-rendering back to image space.

However, it may not be the best way to preserve texture
details of the inputs. Our method works consistently well

for all these image samples.
Due to space constraint, more visual results including

a comparison to another approach from Lin et al. [24] are
presented in the suppl. material.

4.2.3 Comparison to inpainting models
In Fig 11, we compare with three image inpainting al-
gorithms: DeepFill v2 [40], PICNet [42], and RFRNet
[21]. For these methods, we use the models released by
the authors which were all trained using face images from
CelebA-HQ. We test them in both UV texture space and
image space. Since they are not trained with texture-space
data, it is expected that they may generate significant arti-
facts on UV texture. Their inpainting results in image space
also suffer from obvious artifacts given large holes. We also
quantitatively evaluate their inpainting performance in im-
age space using the FaceScape dataset, and Table 1 and 2
show that their results less accurate than ours.

5. Conclusion
We presented a face texture completion framework that

does not require any complete face textures, where dual-
space discriminators work in a complementary manner. Our
learned network could generate high-fidelity complete tex-
tures as shown in thorough experiments. DSD-GAN can be
applied to various vision tasks. As shown by [7], generat-
ing synthetic data with largely different poses is a critical
application to support the training of face-vision tasks. Im-
proved texture quality will lead to a reduced domain gap
between real and synthetic data. Furthermore, DSD-GAN
can be used for free-view relighting with the combination of
a simple albedo inference model (e.g. img2img translation).
In addition, high-fidelity UV facial texture is applicable for
realistic facial avatar generation for virtual reality.
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