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Abstract

Weakly-supervised object localization (WSOL) enables
finding an object using a dataset without any localization
information. By simply training a classification model using
only image-level annotations, the feature map of the model
can be utilized as a score map for localization. In spite
of many WSOL methods proposing novel strategies, there
has not been any de facto standard about how to normal-
ize the class activation map (CAM). Consequently, many
WSOL methods have failed to fully exploit their own capac-
ity because of the misuse of a normalization method. In this
paper, we review many existing normalization methods and
point out that they should be used according to the property
of the given dataset. Additionally, we propose a new nor-
malization method which substantially enhances the perfor-
mance of any CAM-based WSOL methods. Using the pro-
posed normalization method, we provide a comprehensive
evaluation over three datasets (CUB, ImageNet and Open-
Images) on three different architectures and observe signifi-
cant performance gains over the conventional min-max nor-
malization method in all the evaluated cases (See Fig. 1).

1. Introduction

Given nothing but the class information of an object,
weakly-supervised object localization (WSOL) allows a
convolutional neural network (CNN) to localize the object
in a scene. Although many fully-supervised object detectors
guarantee considerable performance in locating objects in
an image, localization techniques in the absence of bound-
ing box annotations are still in need.

WSOL using neural networks has been initially intro-
duced by the class activation map (CAM) [30] approach.
Training a convolutional neural network (CNN) model with
a classification problem enables the model to generate an
activation map from the last layer of it. After that, simply
cutting out the activation map with a proper threshold en-
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Figure 1: Comparison of several WSOL methods with differ-
ent kinds of normalization methods for a class activation map.
The accuracy has been evaluated under the evaluation metric sug-
gested in [6] with CUB-200-2011 dataset. All scores in this figure
are the average scores of ResNet50, VGG16, and InceptionV3.
In all WSOL methods, the performance using our normalization
method, IVR, is the best.

ables the localization of an object. In spite of the plausible
axiom that features contributing better to a specific class are
likely to represent the location of the object, the problem
still exists that the discriminative parts of an object hoax the
activation of the model to make an inaccurate localization
of the target object. Many methods have been proposed to
overcome this problem [21, 27, 28, 7, 25] and persuasive
evidences of performance improvement have been demon-
strated qualitatively and quantitatively.

However, prior works have been evaluated under differ-
ent conditions and their hyperparameters have been cho-
sen empirically. Usually, the feature from the last layer of
the model is post-processed to be used as a class activation
map. The normalization scheme used by every method dif-
fers each other and makes the comparison unfair. The work
of [6] has proposed a new evaluation protocol and offered
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a thorough comparison of six previous WSOL methods. In
their experiments, the min-max normalization has been ap-
plied to every method for the fair comparison and the best
hyperparameters have been found using a random search
[2]. According to it, all methods have shown almost no im-
provement compared to the original CAM [30].

In the work of [1], the authors suggest a thresholding
strategy that excludes exceptionally high activation values
in each image. In the sense that the valid value range in the
activation map changes, this can be compared with other
normalization methods. With this new method, some meth-
ods such as CAM [30] and HaS [21] have shown perfor-
mance improvements in several datasets.

In this paper, we investigate the problem that can oc-
cur when using the min-max normalization. Even though
the min-max normalization is the most popular scheme in
recent WSOL works, we verify that the min-max scheme
can deteriorate the performance of most WSOL methods.
We revisit max normalization which has been prevalent for
a long time and point out that it can resolve the problem
above. Also, although other methods including percentile
as a standard for thresholding (PaS) [1] have shown bet-
ter results than the min-max normalization, they still suf-
fer from problems which will be described in this paper.
To resolve these problems, we propose a new normaliza-
tion method inferior value removal (IVR). Through exten-
sive experimental results, IVR has been shown to improve
the localization performances of almost all WSOL meth-
ods. Enabling better exploitation of each WSOL method, a
comprehensive re-evaluation and ordering of several WSOL
methods have been conducted. The contribution of this pa-
per is as follows:

• We provide a thorough investigation about problems
of commonly used normalization methods in WSOL.
The problem originating from using min-max normal-
ization is explained qualitatively and quantitatively.

• We propose a new normalization method which can
better exploit the performance of many WSOL meth-
ods. It can be used in any kind of WSOL methods
which use a class activation map.

• A comprehensive evaluation with various kinds of
normalization methods in three different datasets and
three different architectures has been made. We pro-
vide a renewed benchmark of six WSOL methods.

2. Related works
Locating objects in images is one of the most important

and frequently studied tasks in the field of computer vision.
Depending on the type of supervision given to the model,
semantic segmentation [31, 29, 5, 11, 8] and object detec-
tion [15, 13, 14, 12, 3, 26, 23] can be powerful localization
methods.

There has been a constant demand on a localization
method relying only on the image-level annotation. Class
activation mapping (CAM) [30] is the first approach using
the activated convolutional feature as a score map to locate
an object in an image, and it has provided a great mile-
stone for other following research. Hide-and-seek (HaS)
[21] makes a grid in an image and randomly erases multi-
ple patches. The model struggles to make a correct decision
with the corrupted image and this induce the feature of the
model to be activated in the location of the target object.
Adversarial complementary learning (ACoL) [27] uses two
branches which adversarially get rid of the highlighted ac-
tivated region from each other. This approach is different
from HaS in that the feature is erased instead of the image
itself. Self-produced guidance (SPG) [28] generates acti-
vation masks in each layer and uses them as a pseudo su-
pervision for the preceding layer. Attention-based dropout
layer (ADL) [7] adds attention modules to the model and
adversarially drops highly activated regions. CutMix [25]
has originally been designed to enhance the robustness of
any CNN model. Patches from training images are cut
and pasted to one another and this helps the model to cap-
ture less discriminative parts of the target object. Aside
from CAM-based WSOL methods mentioned above, var-
ious gradient-based WSOL methods [18, 4, 19, 17] have
been proposed as well. However, they are often heavy to be
used practically and we do not consider these methods in
this paper.

Meanwhile, a comprehensive and fair evaluation of
CAM-based methods mentioned above has been made in
[6]. More reasonable evaluation metrics have been pro-
posed and all the considered WSOL methods have been
re-evaluated with a thorough hyperparameter search and a
unified min-max normalization method. As a result, it has
been claimed that all WSOL methods after the emergence
of CAM have turned out to be not significantly different in
performance from CAM. To make a better use of the class
activation map, a percentile based threshold modification
method has been proposed [1]. This method assumes that
large values must be treated as outliers and excluded from
the class activation map. With the help of other techniques,
several existing methods have succeeded to improve the per-
formance. However, empirical choice of threshold violates
the evaluation protocol in [6] that every WSOL method has
its own optimal threshold. In this paper, we review the prob-
lems which most CAM-based WSOL methods experience
and reset the benchmark for the future research.

3. Preliminary
WSOL is a task of finding an object belonging to a spe-

cific class in an image. While training a CNN with a classi-
fication problem, intermediate layers inside the model gen-
erate activation patterns to provide a correct output. Af-
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ter a given image X ∈ RW×H×3 is processed by a CNN
f , its generated feature map is usually average-pooled and
handed to a classifier. A weight vector wc

i from the classi-
fier is multiplied to the average-pooled feature and then the
logit of the class c becomes available. On the other hand,
by multiplying back this weight vector wc

i to the activated
feature map f(X) ∈ RW ′×H′×K , we can infer the location
of an object belonging to class c within an image. After the
multiplication, averaging along the channel dimension pro-
duces F ∈ RW ′×H′

, which we call as class activation map
in this paper:

Fc =
1

K

K∑
i=1

wc
i · fi(X) (1)

F′
c = H(Fc). (2)

Here, K denote the number of channels. From now on, we
omit the subscript c denoting the class index for brevity.

In all WSOL methods, values in F typically lie in a cer-
tain range whose minimum value is a negative value in most
cases and maximum value may be either a very small or
large positive value. To apply a consistent level of thresh-
old to all images, F is normalized by a normalization func-
tion H into the range of [0, 1] producing a score map F′.
Not many of researchers have looked upon the importance
of feature normalization. We discuss the effect of many dif-
ferent normalization functions H in this paper and suggest
strategies for a better evaluation of WSOL.

4. Normalizing the class activation map
The context of images in a dataset or the portion of an

object inside the image can induce a substantially differ-
ent range of values in the score map F′. Many normaliza-
tion methods have been suggested but how the normaliza-
tion can affect the performance has never been dealt with.
Here in this section, we explain all the existing normaliza-
tion methods up to our knowledge including the one we pro-
pose.

4.1. Min-max normalization

Min-max normalization is the most frequently used nor-
malization method for WSOL which has been used in ACoL
[27], SPG [28], ADL [7] and CutMix [25]. After the min-
imum value is subtracted from the class activation map, it
is divided by its maximum value. This can be expressed as
follows:

F′ =
F−min(F)

max(F)−min(F)
. (3)

By aligning the minimum value to zero and the maxi-
mum to one, all values in the score maps fall within the
score range. This is described visually in (a) of Fig. 2. To

Figure 2: Illustration of how each normalization method
aligns values in the class activation map. In this case, all
methods share the same class activation map F whose range
is assumed to be [-0.1, 0,4]. Different methods map F into
different score maps F′ all ranging from 0 to 1. Conse-
quently, we can assume that the region colored in red is ex-
cluded from the final score map.

provide a fair comparison under a consistent normalization
method, the work of [6] suggests a well designed evalua-
tion metric and compares every methods under min-max
normalization. The conclusion of [6] is that the WSOL
methods that have emerged after CAM actually do not
show a significant performance enhancement. However, we
observed that using min-max normalization experiences a
problem that has not been considered in the work of [6].
Outlier values which are too large or small may distort other
values during normalization. Within a dataset, class activa-
tion maps of some images (but not rare) often include ex-
ceptionally smaller minimum values and this often signifi-
cantly drops the localization performance on those images.
For most images which have an ordinary level of minimum
value in the class activation map F, this minimum value
does not affect the overall score map F′. However, when
it comes to images that have an exceptionally smaller mini-
mum value, it raises the activation level of the whole image
and almost the entire image region is localized as the object
in question (See Fig. 3, especially, CAM, HaS and CutMix).

4.2. Max normalization

Max normalization has been first used in CAM [30] and
then in HAS [21]. Unlike min-max normalization, max nor-
malization divides feature values by their maximum value
and constrains the class activation map to be lower than one.
This is described visually in (c) of Fig. 2. This can be ex-
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(a) CAM (b) HaS

(c) ADL (d) CutMix

Figure 3: Visualization of score maps and activated areas by the optimal thresholds in CAM, HaS, ADL, and CutMix on
CUB dataset. Red, green and blue area are regions extracted by the optimal thresholds of IoU 0.3, 0.5 and 0.7.

pressed as follows:

F′ =
F

max(F)
(4)

Negative values may exist after the normalization. Al-
lowing values below zero, this method linearly transforms
F into F′. As typically the optimal activating threshold τ∗

of a WSOL method is expected to be positive, max normal-
ization can be considered simply as a method that ignores
negative values. However, the value range of all images dif-
fer considerably and there is possibility that negative values
may contribute to the quality of score maps.

4.3. Percentile as a Standard for Thresholding (PaS)

Percentile as a Standard for Thresholding (PaS) has been
proposed in [1]. The authors say that exceptionally large
values in the activation map make other relatively small val-
ues to be ignored. These large values must be excluded from
the score map by using a percentile instead of their maxi-
mum value. This is described visually in (b) of Fig. 2. Ac-
cording to the code1 available by the author, PaS uses min-
max normalization except the maximum value is substituted
with 90 percentile of all score map values. Therefore, it can
be seen as a variety of the min-max normalization. This can

1https://github.com/won-bae/rethinkingCAM

be expressed as follows:

F′ =
F−min(F)

Pctp(F−min(F))
. (5)

Pctp(·) denotes a function which finds p percentile from
the given values. In the original paper, the optimal thresh-
old τ∗ is fixed to a specific value for every dataset and p is
set to be 90 heuristically. However, the evaluation metric
suggested in the work of [6] validates all threshold values
and picks the best threshold since WSOL methods are quite
vulnerable to the un-optimized threshold. We re-evaluate
PaS based on this metric and report the performance of this
method. Also, we further apply PaS in all other WSOL
methods and datasets mentioned in other papers [1, 6].

4.4. Inferior Value Removal (IVR)

In this paper, we propose a new normalization method,
Inferior Value Removal (IVR), with a thorough investiga-
tion. The basis of IVR is that extremely small values in the
class activation map unnecessarily raise the overall values in
the score map and this disturbs the consistent thresholding
among images. Unlike PaS, IVR is a normalization methods
which restricts the minimum value of the activation map.
Before dividing all values in F by their maximum value, a
percentile value from its minimum value is subtracted. This
is described visually in Fig. 2 (d). In other words, IVR uses
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Figure 4: Distribution of minimum and maximum values from class activation map F of all test images. Each point represents
a single image whose values from horizontal and vertical axes are minimum value and maximum value respectively. Black
dots correspond to correctly localized images while red dots are not. Note that IVR shows overall higher density of positive
samples (black dots) than other methods as highlighted with green circles.

max normalization except the minimum value is substituted
with a certain percentile value of all activation map values.
This can be expressed as follows:

F′ =
F− Pctp(F)

max(F− Pctp(F))
. (6)

Values up to p-percentile are excluded from the activa-
tion map and the remaining values are re-arranged by their
maximum value. The percentile parameter p is decided
from the validation set and the performance tendency has
been verified to be the same with the test set. By using IVR,
we can use the original activation map which is relatively
unaffected from the value shift by its minimum value while
the range is calibrated according to the given values.

5. Experiments
5.1. Settings

Dataset: For the evaluation of WSOL, Caltech-UCSD
Birds-200-2011 (CUB) [24], ImageNet [16] and OpenIm-
ages [10] are most frequently used. In the work of [6],
both datasets are separated into three different divisions:
train-weaksup, train-fullsup and test. We
follow the details of all datasets described in [6]. In all
three datasets, we select the best percentile for IVR from
the train-fullsup set both in CUB and ImageNet.
Evaluation metric: In this paper, we use MaxBox-
AccV2 and PxAP as the evaluation metric as suggested in
[6]. For CUB and ImageNet, MaxBoxAccV2(δ) measures
the performance in multiple intersection over union (IoU)

δ ∈ {0.3, 0.5, 0.7} to address the trade-off between pre-
cision and recall. PxAP measures the pixel-wise average
precision when masks are available for evaluation. Unlike
preceding metrics, MaxBoxAccV2(δ) and PxAP choose
the best operating threshold and report its score. In this re-
gard, we can make sure that any performance improvement
made in this paper is not dependent on the choice of the
threshold. The evaluation has been conducted over VGG-
GAP [20, 30], InceptionV3 [22], and ResNet50 [9].

5.2. Analysis on the class activation map

Qualitative analysis: Fig. 3 shows the class activation map
and the region with values above the operating threshold
τ∗30, τ∗50 and τ∗70 (red, green and blue respectively). Note
that τ∗70 is usually smaller than τ∗30 and τ∗50, capturing wider
area in the images. In all methods, min-max normaliza-
tion and PaS suffer from mishandled class activation maps.
A region with exceptionally small values in the score map,
which looks like a hole in black, raises the overall scores
of all other pixels and makes the background more brighter
than that of max normalization and IVR. Especially for PaS,
values in the background is even more higher than in min-
max normalization. Quite a lot of images possess sinkhole
values in the class activation map and the optimal thresh-
old becomes too low for them. Consequently, the bounding
box simply holds the whole image leading to a performance
collapse. Max normalization and Our IVR show localize
the object tightly in all three IoU thresholds by leaving the
background behind.

Even though the activated area in the class activation
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Table 1: Evaluating WSOL using MaxBoxAccV2 with different normalization methods.

Method Norm ImageNet (MaxBoxAccV2) CUB (MaxBoxAccV2) OpenImages (PxAP)
VGG Inception ResNet Mean VGG Inception ResNet Mean VGG Inception ResNet Mean

CAM

Minmax 60.02 63.40 63.65 62.36 63.71 56.68 62.98 61.13 58.30 63.23 58.49 60.01
Max 60.85 64.77 64.88 63.50 64.54 59.10 63.47 62.37 59.65 64.97 59.49 61.37
PaS 61.77 64.20 64.72 63.57 63.16 55.07 62.67 60.23 55.94 60.33 55.37 57.21
IVR 61.47 65.49 65.57 64.18 65.27 60.76 66.83 64.29 59.25 63.66 58.97 60.62

HaS

Minmax 60.59 63.72 63.40 62.57 63.71 53.38 64.63 60.58 58.14 58.11 55.93 57.39
Max 61.16 65.07 64.64 63.62 69.83 58.46 67.84 65.37 59.21 62.06 56.28 59.18
PaS 62.05 64.53 64.57 63.72 61.16 51.27 61.85 58.09 55.97 57.79 52.85 55.54
IVR 61.62 65.71 64.90 64.08 71.77 60.56 71.23 67.85 58.78 61.31 55.68 58.59

ACoL

Minmax 57.43 63.69 62.29 61.14 57.38 56.18 66.43 59.99 54.34 57.02 57.25 56.26
Max 57.17 63.55 62.14 60.95 56.82 55.78 66.45 59.68 53.99 56.83 56.22 55.74
PaS 58.10 63.75 62.70 61.51 57.29 56.02 66.38 59.90 51.29 52.71 52.43 52.14
IVR 57.96 64.76 61.95 61.55 60.22 58.78 66.33 61.78 54.13 57.33 59.54 57.00

SPG

Minmax 59.92 63.27 63.27 62.15 56.28 55.91 60.37 57.52 58.31 62.31 56.71 59.11
Max 60.44 64.63 64.04 63.04 60.21 56.66 60.85 59.24 59.20 64.50 57.42 60.37
PaS 61.20 63.96 64.32 63.16 55.01 54.74 58.77 56.17 55.67 60.08 54.10 56.62
IVR 60.86 65.49 64.59 63.65 60.22 58.41 66.56 61.73 58.79 64.08 56.73 59.87

ADL

Minmax 59.86 61.43 63.65 61.65 66.27 58.81 58.33 61.14 58.65 56.85 55.15 56.88
Max 63.20 62.88 64.59 63.56 67.10 59.92 63.17 63.40 59.87 57.61 55.76 57.75
PaS 60.86 62.30 64.49 62.55 64.97 57.32 56.67 59.65 55.99 54.42 53.06 54.49
IVR 63.71 64.01 65.06 64.26 67.25 60.28 64.30 63.94 59.25 56.88 55.03 57.05

CutMix

Minmax 59.46 63.86 63.27 62.20 62.31 57.43 62.76 60.83 58.07 62.56 57.73 59.45
Max 60.14 65.43 64.60 63.39 69.03 59.79 63.61 64.14 59.51 64.63 59.82 61.32
PaS 61.07 64.40 64.42 63.30 60.94 55.90 62.58 59.90 55.72 60.12 55.47 57.10
IVR 60.57 66.04 64.93 63.84 71.54 61.74 67.14 66.80 58.89 63.24 58.95 60.36

map F is clearly visible in all normalization methods, we
can understand how harmful the low values are in F′. If not
processed properly, the performance of any method will no
longer be evaluated right no matter how well the feature is
trained.

Quantitative analysis: Fig. 4 shows the distribution of
minimum and maximum values within the class activa-
tion maps of all test images. Note that values expressed
in Fig. 4 are those before normalization and the localiza-
tion are done after each normalization method. HaS with
VGG16 has been used for the comparison in CUB and ADL
with VGG16 has been used for ImageNet. The minimum
values are plotted on the x-axis while maximum values are
plotted on the y-axis. In other words, a single point can
express the values range in class activation map F of an im-
age. Applying the optimal threshold τ∗ of IoU 70, black
and red dots represent positive and negative samples of lo-
calization. In both datasets, min-max normalization shows
the most inefficient shape of distribution. Especially, the
variation of maximum values does not seem to affect the
localization performance in a great deal. Meanwhile, nu-
merous number of samples with highly negative minimum
values fail to be localized. This can be proven in that al-
most all samples with a minimum value under -0.07 fail
in localization in CUB. In the graph of max normalization,

much more samples have successfully been localized. In
this point, we can assume that highly negative values in the
class activation map are unnecessary for localization. The
area covered by PaS is a little bit wider than that of min-max
normalization but still it does not completely restrain the in-
fluence of extremely small minimum values. As explained
in the previous sections, IVR can be assumed as a variant
of max normalization and the distribution resembles that of
max normalization.

5.3. Evaluation of WSOL methods

All hyperparameters pioneered by [6] are available on-
line2. Using these optimized values obtained from a hyper-
parameter search, we can avoid issues coming from select-
ing different hyperparameters. WSOL methods, architec-
tures, and datasets are the same as in [6] as well.

Tab. 1 shows the performances of all concerned exper-
iments. In ImageNet, min-max normalization shows the
worst performance in all WSOL methods except ACoL.
With min-max normalization, CAM still works better than
all the other WSOL methods. When using max normaliza-
tion, all methods except ACoL improve from min-max nor-
malization slightly. In this case, ADL performs the best for
ImageNet. A little bit higher overall performance than max

2https://github.com/clovaai/wsolevaluation
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(a) CUB (b) ImageNet (c) OpenImages

Figure 5: Localization accuracy measured with different percentile values when using IVR. The evaluation has been done
only with CAM in the validation set of every datasets. To keep simplicity, the best percentile value in each architecture and
dataset has been used in all other WSOL methods.

normalization can be seen in PaS except ADL. Note that
ADL with PaS is still better than min-max normalization.
IVR has enhanced all WSOL methods without any excep-
tion. In this case, ADL has shown the best performance
when all architectures are averaged. When measured indi-
vidually, CutMix with IVR has recorded 66.04% in Incep-
tion which is the best ImageNet performance in total.

In CUB, PaS shows lower performance than min-max
normalization in all WSOL methods. Note that the reported
scores in this paper are higher than those in [1]. For ex-
ample, [1] reports 65.90 of IoU 50 localization accuracy
in CAM with PaS. In our experiment, IoU 50 accuracy of
CAM with PaS has recorded 71.61 since much more better
hyperparameters from [6] are available. Meanwhile, IVR
has shown a drastic improvement in all experiments. Espe-
cially, HaS and CutMix have exceeded 70% in VGG, which
has never been reached by any other normalization methods.
Unlike in ImageNet, the performance gap among WSOL
methods becomes considerably noticeable.

In OpenImages, the performance of PaS rather decreases
and even the performance of IVR is slightly better than min-
max normalization. Max normalization shows an overall
improvement and CAM is still the best method. IVR is the
second best normalization method while PaS is the worst
one. Even with PxAP, low values rather than high values
affect every pixels in the class activation map leading to a
performance degradation. Consequently, CAM still works
better than or at least almost equal to the best method in
both ImageNet and OpenImages. However, it has yielded
its top position to HaS in CUB. The conclusion of [6] that
many CAM-based WSOL methods have barely improved
the original CAM is correct only in ImageNet and OpenIm-
ages.

We have also conducted experiments using PaS and IVR
simultaneously. In all cases, the resulting score is much
better than using PaS only but slightly worse than using IVR

alone. Therefore, we omit the result in the table to avoid
redundancy.

5.4. Percentile selection in IVR

In PaS, the choice of the maximum value percentile has
been made empirically. To alleviate the ambiguity of choos-
ing a percentile for IVR, we have used the validation set
and chosen the best values. Fig. 5 shows how the per-
centile value affects the performance in CUB, ImageNet,
and OpenImages.

In CUB, class activation maps extracted from images
have shown a large variation in minimum values as de-
scribed in Fig. 4. Consistently, removing much of the por-
tion from an activation map has shown better performance.
Using 45-th, 60-th, and 60-th percentile have peaked in
VGG, ResNet, and Inception respectively. In all cases, these
values are all positive and this implies that even positive
values in the class activation map may not contribute to the
localization performance. In ImageNet, 25-th, 30-th, and
35-th percentile work best in VGG, ResNet and Inception
respectively. In other words, ImageNet uses a wider range
in minimum value distribution than CUB. As in Fig. 4, this
is because the variation of minimum values in ImageNet
is relatively smaller than that in CUB. In OpenImages, us-
ing IVR has constantly degraded the performance from 0-th
percentile in all architectures. Experiments in Tab. 1 uses
5-th percentile in all the cases.
Evaluation with NWC [1] In the previous sections, we
have mainly discussed about the normalization of class ac-
tivation maps and excluded the usage of Thresholded Aver-
age Pooling (TAP) and Negative Weight Clamping (NWC)
proposed in [1] when using PaS. TAP alleviates the problem
that the global averaging pooling layer does not reflect the
difference in different channels. By applying a threshold
during average pooling, the model can focus on important
activations in each channel while training. As this is a tech-
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Table 2: Localization accuracy when using Negative Weight
Clamping additionally [1].

Method Norm Localization accuracy
IoU 30 IoU 50 IoU 70 Mean

HaS

Min-max 97.62 84.43 43.89 75.31
Max 97.45 83.88 43.36 74.89
PaS 94.74 75.47 39.75 69.99
IVR 98.41 86.56 46.82 77.26

CutMix

Min-max 98.50 88.13 48.03 78.22
Max 98.39 87.94 47.53 77.95
PaS 97.39 82.91 42.87 74.39
IVR 98.74 89.25 49.59 79.19

nique used in training time, we do not discuss about it in
this paper. Meanwhile, NWC is a method presuming that
negative weights from the classifier does not contribute to
the localization. Negative weights are clamped to zero and
low values in the class activation map may be excluded.
The authors of [1] claim that PaS improves CAM-based
WSOL methods by itself but verification of other methods
with NWC is necessary. Tab. 2 shows the comparison of all
normalization methods combined with NWC in CUB. Both
in HaS and CutMix, PaS still shows the worst performance.
Even considering the best localization accuracy 78.58% of
HaS at IoU 50 reported in [1], scores of other normalization
methods exceed at least 83%. IVR in CutMix has scored
79.19% in average and especially 89.25% at IoU 50. To
the best of our knowledge, this is the best localization score
reported in CUB.

6. Discussion
In experiments above, max normalization shows the best

result in OpenImages. This can be attributed to the property
of the dataset. Fig. 6 shows the minimum and maximum
values of CAM with three different architectures’ class ac-
tivation maps in OpenImages. As in the figure, the varia-
tion of minimum values is much smaller than those of CUB
and ImageNet. Numerically, the ratio of the standard de-
viation of all maximum values to the one of all minimum
values in VGG has recorded approximately 11, 12.04, and
18.36 in CUB, ImageNet, and OpenImages respectively. In
case of ResNet, this ratio has recorded up to 31.79 and the
performance improvement of max normalization and IVR
in ResNet is insignificant as in VGG. Also, Inception has
recorded 8.19 and the performance improvement is better
than other architectures. Depending on the dataset and ar-
chitecture, we can see that this rate and the optimal per-
centile are inversely proportional. When the variation of
maximum values is much more higher, using max normal-
ization instead of any other normalization is likely to be a
better choice. Therefore depending on the property of the
dataset and architecture, we recommend to use an appropri-

Figure 6: Distribution of minimum and maximum values
from class activation map F of all test images in OpenIm-
ages. Compared to CUB and ImageNet, the distribution of
maximum values is more influential.

ate normalization method.
Also, all WSOL methods emerged after CAM have in-

deed improved CAM in CUB, contrary to [6], while they
have hardly contributed in ImageNet and OpenImages as
concluded in [6]. Because CUB is for a fine-grained clas-
sification problem, all the images share common features
of a bird. Therefore, a classifier for CUB dataset has to
discriminate fine details and the common features have lit-
tle discriminative power. Recent WSOL methods have fo-
cused on compensating these relatively less discriminative
features. According to our investigation, WSOL methods
studied so far have successfully dealt with this problem. On
the other hand, they have not focused on more general clas-
sification problems such as ImageNet and OpenImages and
there remains much room for investigation for this problem.

7. Conclusion

For several years, an issue about whether many pro-
posed weakly supervised object localization methods have
actually derived improvement has been raised. Meanwhile,
there has been few works dealing with the normalization ef-
fect of class activation maps. In this paper, we proposed a
new and effective normalization method along with a solid
evaluation with many other possible normalization meth-
ods. The new proposed normalization method achieves the
new state-of-the-art performance in CUB-200-2011 and Im-
ageNet dataset. Also, we point out that the normalization
method should be selected according to the traits of the
dataset.

For future works in WSOL, we suggest that even though
many WSOL methods successfully improved the perfor-
mance in a dataset like CUB, a new perspective which
will also work in real world datasets such as ImageNet and
OpenImages is still in need.
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