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Abstract

Recently, the encoder-decoder and intensity transfor-
mation approaches lead to impressive progress in image
enhancement. However, the encoder-decoder often loses
details in input images during down-sampling and up-
sampling processes. Also, the intensity transformation has
a limited capacity to cover color transformation between
low-quality and high-quality images. In this paper, we pro-
pose a novel approach, called representative color trans-
form (RCT), to tackle these issues in existing methods. RCT
determines different representative colors specialized in in-
put images and estimates transformed colors for the repre-
sentative colors. It then determines enhanced colors us-
ing these transformed colors based on the similarity be-
tween input and representative colors. Extensive exper-
iments demonstrate that the proposed algorithm outper-
forms recent state-of-the-art algorithms on various image
enhancement problems.

1. Introduction

Nowadays, more and more people take photographs to
record and to share their valuable moments. Unfortunately,
their photographs often have low dynamic ranges or dis-
torted color tones due to inadequate lighting conditions.
Therefore, image enhancement becomes popular to improve
the visual aesthetics of these photos. For image enhance-
ment, many attempts have been proposed, and considerable
progress has been made.

In particular, some studies [6, 50, 52, 22] based on
the encoder-decoder architecture [38] in Figure 1a provide
promising results by learning a robust non-linear mapping
from large amounts of paired data composed of low-quality
and high-quality images. In these models, the encoder ex-
tracts features from the input image to exploit the high-
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level context information for image enhancement. The de-
coder conveys the high-level information to low-level pixel
values while recovering the spatial information. Although
these methods have led to the performance improvement,
they have some limitations. First, details of the input im-
age are not preserved in the up-sampling process of the de-
coder, even though they employ skip-connections. Second,
these approaches train networks with fixed input size, which
makes it difficult to enhance images of arbitrary spatial res-
olutions in the inference phase.

To overcome these issues, some methods [7, 21, 34, 16,
25, 13] estimate transformation functions to enhance im-
ages globally as in Figure 1b. Since these global enhance-
ment methods do not require the down-sampling and up-
sampling processes for image enhancement, images can be
enhanced while preserving details. However, the existing
global methods rely on intensity transformation functions
on specific color space e.g. RGB [21, 13] or CIELab [7],
pre-defined lookup tables [54], and pre-defined enhance-
ment operations [34, 16, 25]. Also, they perform channel-
wise color transformation and thus fail to consider all chan-
nels simultaneously. These pre-defined models have the
limited capacity to cover color transformation between low-
quality and high-quality images.

In this paper, we propose a novel enhancement approach,
called representative color transform (RCT), which effec-
tively achieves a large capacity for color transformation.
First, we encode an input image to extract the high-level
context information for image enhancement. Using the
high-level context, we determine representative colors for
the input image and estimate transformed colors for the rep-
resentative colors, as in Figure 1c. Then, we compute the
similarity between the input image and the representative
colors in an embedding space. Finally, we develop a repre-
sentative color transform to obtain the enhanced image by
combining the similarity and the representative color trans-
formation. Based on the proposed RCT, we propose a rep-
resentative color transform network (RCTNet), which con-
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Figure 1: Outlines of image enhancement approaches: (a) encoder-decoder, (b) intensity transformation, and (c) representa-
tive color transform models.

sists of encoder, feature fusion, global RCT, and local RCT
modules. The proposed RCTNet predicts different repre-
sentative colors specialized in input images as in Figure 1c
and enlarges the capacity for color transformation by com-
bining several representative color transformations.

Experimental results demonstrate that the proposed
RCTNet outperforms recent state-of-the-art algorithms on
the MIT-Adobe 5K dataset [3]. Also, we validate the scala-
bility of the proposed RCT on specific image enhancement
problems: low-light image enhancement [49] and underwa-
ter image enhancement [28, 19].

The main contributions of this paper are three folds:

• The representative color transformation to enlarge the
capacity for color transformation is developed for im-
age enhancement.

• Development of RCTNet composed of encoder, fea-
ture fusion, global RCT, and local RCT modules.

• We demonstrate excellent scalability of RCTNet for
various image enhancement problems.

2. Related Work
Early studies on image enhancement improve the global

contrast of an input image. For instance, power-law
(gamma) and logarithmic transformation [12], which map
input pixel values to output pixel values using pre-defined
transformations, are well-known enhancement methods.
Histogram equalization [12] improves the limited dynamic
range of an image by modifying its histogram. Many at-
tempts [23, 48, 41, 2, 26] have been developed based on
these approaches to enhance the visual quality.

Recent image enhancement methods mainly focus on
learning mapping functions between low-quality and high-
quality images based on data-driven approaches. By-
chkovsky et al. [3] provided the MIT-Adobe 5K dataset that
includes 5,000 input images, where 5 different photogra-
phers manually enhance each image. This dataset is widely
adopted to train image enhancement models based on deep
learning. Yan et al. [51] proposed the first deep learning
model for image enhancement, where the network predicts
a pixel-wise color mapping from hand-crafted feature de-
scriptors. Lore et al. [32] employed a stacked sparse denois-
ing autoencoder to enhance a low-light image. However,
these methods [3, 32] employed neural networks with small
receptive fields. As a result, their models may be insuffi-
cient to exploit high-level contexts for image enhancement.

The encoder-decoder structure [38] in Figure 1a has
drawn much attention to image enhancement. The encoder
incrementally increases the size of receptive fields by re-
ducing the input’s resolution to extract a deep feature con-
taining the useful high-level information. From the deep
feature, the decoder recovers the original resolution while
enhancing images. Based on the encoder-decoder approach,
Chen et al. [6] introduced the U-Net structure, which yields
a residual image to enhance the input image. Gharbi et
al. [11] predicted affine coefficients for each pixel in a
low-resolution image and developed the bilateral interpo-
lation method that effectively restores the image’s original
resolution. Wang et al. [46] decomposed an input image
into the reflectance and illumination and estimated the illu-
mination to enhance the input image. Xu et al. [50] de-
veloped the frequency-based decomposition for enhance-
ment of low-light images. Yang et al. [53] constructed two
encoder-decoder structures for image correction of under-
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exposed inputs. Yang et al. [52] proposed the deep re-
cursive band network and trained it in the semi-supervised
framework. Kim et al. [22] designed the encoder-decoder
network to produce a personalized image according to the
user’s preference. However, these encoder-decoder archi-
tectures [6, 11, 46, 50, 52, 22] have the problem that details
of input images are not preserved in down-sampling and up-
sampling processes. Also, they train networks with fixed
input sizes, which makes it difficult to enhance images of
arbitrary spatial resolutions.

As in Figure 1b, some methods [7, 13, 21, 34, 16, 25, 54]
perform global enhancement through transformation func-
tions or pre-defined enhancement operations. Deng et
al. [7] estimated piece-wise intensity transform functions
on the CIELab color space. Guo et al. [13] developed
pixel-wise and high-order curves for dynamic range ad-
justment of an input image. Kim et al. [21] proposed
the non-monotonic and channel-wise intensity transforma-
tion for both paired and unpaired image enhancement.
In [34, 16, 25], neural networks are trained to select the
best operation among some pre-defined enhancement op-
erations based on deep reinforcement learning. Zeng et
al. [54] learned image-adaptive 3-dimension lookup tables
for global image enhancement. These global-based meth-
ods [7, 13, 21, 34, 16, 25, 54] can enhance low-quality im-
ages without image resize unlike the encoder-decoder mod-
els. However, they have the limitation in that transformation
functions on the pre-defined color space, pre-defined lookup
tables, or pre-defined operations may not be sufficient to es-
timate highly non-linear mapping between low-quality and
high-quality images. In contrast, the proposed method esti-
mates adaptive representative colors according to the input
image, and predicts color transformation for each represen-
tative color based on the attention mechanism.

Finally, we review palette-based image enhancement
methods [5, 42], which interpolate colors based on the
palette colors. Chang et al. [5] set initial palettes using the
K-mean clustering, and then users manually change pallet
colors for image enhancement. Tan et al. [42] determined
initial palettes using vertices of the convex hull wrapped
around input colors. The proposed algorithm is related
to them in that representative colors are similar to initial
palettes. However, the proposed algorithm automatically
determines representative colors and their transformed col-
ors, while they require user interaction to update palettes.

3. Method
In this section, we propose the representative color trans-

form (RCT), which is a simple and effective approach to im-
prove the visual quality of input images. Based on RCT, we
develop the representative color transform network (RCT-
Net) that contains global and local enhancement modules,
which are trained in an end-to-end manner. Figure 2 sum-

marizes the proposed RCTNet architecture.

3.1. Representative Color Transform

Let X ∈ RH×W×3 denote an input low-quality image,
where H × W is the spatial resolution of the image. We
encode it to a feature representation Z to embed the high-
level context for image enhancement. Given Z, we extract
features and transformed colors forN representative colors.
Let R denote the set of representative features, which is
given by

R = [r1, r2, · · · , rN ] ∈ RC×N (1)

where ri denotes a feature vector of ith representative color
and C is a feature dimension. Also, the set of transformed
colors is defined as

T = [t1, t2, · · · , tN ] ∈ R3×N (2)

where ti denotes the transformed RGB values of ith repre-
sentative color. In other words, the ith representative color
should be transformed to ti for image enhancement.

Note that T contains the transformation for only N rep-
resentative colors, not all colors. Thus, we should map each
pixel color in the input image to the representative colors.
For this purpose, we compute the similarity between the
input color and the representative features in the embed-
ding space and perform the color transformation based on
the similarity. We extract a image feature F ∈ RH×W×C

from the input X using a stack of convolution layers. Then,
we perform the matrix multiplication to obtain the attention
matrix A via the scaled-dot product [45],

A = softmax(
FrR√
C

) ∈ RHW×N (3)

where Fr ∈ RHW×C a is reshaped tensor of F. The ele-
ment aij of A is the attention weight that represents the sim-
ilarity between ith pixel in the input image and the jth rep-
resentative color. Thus, the attention matrix determines all
similarities on every transformed color in T for each pixel
in the input image.

Let us consider enhancement of ith pixel in the input im-
age. Then, enhanced RGB values of ith pixel is determined
by the combination of N transformed colors for the repre-
sentative colors with attention weights as

∑N
j=1 aijtj . To

this end, the enhanced image Y is obtained by

Y = ATT . (4)

Compared to existing image enhancement models, the
proposed RCT has several advantages. First, the proposed
method has a large capacity to cover the color transforma-
tion between input and enhanced images. This is because
the proposed algorithm yields adaptive representative col-
ors specialized in the input image and enhances input im-
ages based on the combination of N transformed colors.
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Table 1: Specification of the encoder architecture.

Stage Operations Outputs

0 resize 256× 256× 3
1 conv-bn-swish, k3x3 128× 128× 16
2 conv-bn-swish, k3x3 64× 64× 32
3 conv-bn-swish, k3x3 32× 32× 64
4 conv-bn-swish, k3x3 16× 16× 128
5 conv-bn-swish, k3x3 8× 8× 256
6 conv-bn-swish-pool, k1x1 1× 1× 1024

Second, the proposed method is independently performed
on each pixel. In other words, it can enhance an input im-
age of the arbitrary size without any image resizing. This
prevents performance degradation due to artifacts, such as
blur, that occurs in the resize of enhanced images.

3.2. Representative Color Transform Network

As in Figure 2, the proposed RCTNet consists of four
modules: encoder, feature fusion, global RCT, and local
RCT. Given an input low-quality image X, RCTNet pro-
duces a high-quality image:

Ỹ = αYG + βYL (5)

where YG and YL are enhanced images obtained from the
global and local RCT modules, respectively. Also, α and β
are non-negative learnable weights to combine two images
effectively. Let us describe each module subsequently.

Encoder: Encoder is a convolutional neural network to
encode an input image to extract the high-level context in-
formation for image enhancement. Table 1 describes the
detailed architecture of the encoder. The input image is re-
sized to 256 × 256 and fed into the encoder, composed of
a stack of 6 ‘conv-bn-swish’ blocks. Each ‘conv-bn-swish’
block contains a convolution, a batch normalization [17],
and a swish activation [37] layers. All convolution layers
except the last block have 3 × 3 filters. Unlike the others,
the last block uses a convolution layer with 1× 1 filter and
employs a global average pooling layer to extract a global
feature vector. In the encoder, we extract multi-scale fea-
ture maps from the last four blocks to combine them in the
feature fusion module.

Feature Fusion: Feature maps provide different context
information according to resolutions. In general, coarse-
scale feature maps contain the global context due to large
receptive fields. In contrast, fine-scale feature maps pre-
serve the detailed local context. Since both global and local
contexts are essential for image enhancement, we aggregate
multi-scale feature maps through the feature fusion module.

To construct the feature fusion module, we employ the
bidirectional cross-scale connections [43]. In the feature

fusion in Figure 2, nodes that have a single input repre-
sents the ‘conv-bn-swish’ block. On the other hand, nodes,
which have multiple inputs, contains a feature fusion layer
before the ‘conv-bn-swish’ block to mix multiple inputs ef-
fectively. When M inputs are provided to the feature fusion
layer, the output of the feature fusion layer is defined as

O =

M∑
i=1

wi

ε+
∑

j wj
· Ii (6)

wherewi is a non-negative learnable weight for the ith input
Ii and ε = 0.0001. All nodes have 128 convolution filters
of size 3 × 3 except nodes at the coarsest-scale (red nodes
in Figure 2). Since the spatial resolution of the coarsest
feature map is 1× 1, these node have convolution filters of
size 1× 1.

Global RCT: Let ZG ∈ RC′
denote an output feature

at the coarsest-scale in the feature fusion module, where
C ′ is set to 128. By analyzing the feature vector ZG,
which includes the global context for image enhancement,
the global RCT module determines representative features
RG ∈ RC×NG and transformed colors TG ∈ R3×NG

through two different ‘conv-bn-swish-conv’ blocks. One
‘conv-bn-swish-conv’ block yields a vector with CNG di-
mension, while another block produces a vector with 3NG

dimension. These output vectors are reshaped to the 2D
structures, RG and TG, respectively. In this work, we set
C and NG to 16 and 64, respectively. Also, the input im-
age is transformed to the image feature F ∈ RH×W×C

through one ‘conv-bn-swish-conv’ block and F is reshaped
to Fr ∈ RHW×C . Finally, the global enhanced image YG

is obtained by applying RG, TG, and Fr to (3) and (4).

Local RCT: The local RCT module determines region-
wise representative colors to consider local region charac-
teristics for image enhancement. For this purpose, the local
RCT module takes a feature map ZL ∈ R32×32×C′

, ex-
tracted from the finest-scale in the feature fusion module,
whose the spatial resolution is 32×32. Then, given ZL, the
sets of representative features and transformed colors are
generated for each spatial position. Specifically, ZL are fed
into two different ‘conv-bn-swish-conv’ blocks, where the
first convolution layers have 128 convolution filters of size
3× 3 and each second convolution layer has CNL and 3NL

filters of size 3 × 3, respectively. Then, the local RCT pro-
duces the representative feature sets RL ∈ R32×32×C×NL

and the transformed color sets TL ∈ R32×32×3×NL , where
NL is 16. To this end, the set of representative features
RL(u, v) and the set of transformed colors TL(u, v) are ob-
tained for each spatial position (u, v).

Given RL and TL, the local RCT module assigns differ-
ent sets of representative features and transformed colors to
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Figure 2: An overview of the proposed RCTNet.

Figure 3: An illustration of Local RCT.

an input color according to its pixel coordinates. First, we
set a 31 × 31 uniform mesh grid on the input image, and
thus there are 32× 32 corner points. We regard representa-
tive features and transformed colors at corner points on spa-
tial position (u, v) as RL(u, v) and TL(u, v), respectively.
Then, grid-wise RCT is performed in the local RCT mod-
ule. Specifically, the kth grid Bk has four corner points,
which means that Bk are related to the four sets of repre-
sentative features and transformed colors. We then deter-
mine the representative features Rk for the grid Bk by con-
catenating the four sets of representative features at corner
points. Also, the transformed colors Tk for Bk is obtained
similarly. From the image feature F, a grid feature Fk is
extracted by cropping on the grid region. Finally, given Rk,
Tk, and Fk, enhanced colors forBk is computed by (3) and
(4). The local RCT module repeat this process for all grids
to yield the local enhanced image YL. Figure 3 shows an
example of how the local RCT is performed for the gridBk.
For the simplicity, we set a 5× 5 mesh grid in this example.

Though the encoder requires the fixed-size input to ex-
tract multi-scale feature maps, both global and local RCT

modules enhance input images without any image resize by
extracting the image feature F without any down-sampling.

3.3. Loss Functions

Let us consider a pair (X,Y), where X and Y are an
input low-quality image and its high-quality image, respec-
tively. Given X, the proposed RCTNet produces an en-
hanced image Ỹ. We then define the loss function between
Ỹ and Y by

L = ‖Ỹ −Y‖1 + λ
∑

k=2,4,6

‖φk(Ỹ)− φk(Y)‖1. (7)

Here, the first term is the mean absolute error between
the predicted and ground-truth enhanced images. And the
second term penalizes the difference between them in the
well-defined embedding space. Specifically, the embedding
function φk(·) is the output of kth layer in VGG-16 [40],
which is pre-trained on the ImageNet [39] dataset. The hy-
per parameter λ is fixed to 0.04 to balance two terms.

4. Experiments

In this section, we verify the effectiveness of the pro-
posed method through extensive experiments:

• We compare the proposed algorithm with recent state-
of-the-arts in standard image enhancement.

• We evaluate the scalability of the proposed RCTNet on
specific image enhancement problems: low-light im-
age enhancement and underwater image enhancement.

• We analyze parameters and components of RCT-
Net through ablation studies on the MIT-Adobe 5K
dataset [3].
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Table 2: Quantitative comparison on the MIT-Adobe 5K
dataset [3]. The best results are boldfaced and the second
best ones are underlined.

Method. PSNR SSIM

HDRNet [11] 23.44 0.882
DPE [6] 23.34 0.873
DUPE [46] 23.61 0.887
DLPF [33] 24.48 0.887
3D LUT [54] 25.21 0.922
GEN-LEN [21] 25.88 0.925

RCTNet 26.02 0.915
RCTNet + BF 26.07 0.923

We adopt PSNR and SSIM metrics for the quantitative eval-
uation in all experiments, which measure color and struc-
tural similarity between predicted and ground-truth images.
More results are available in the supplementary material.

4.1. Datasets

MIT-Adobe 5K: The MIT-Adobe 5K dataset [3] consists
of 5,000 images, each of which was manually enhanced
by five different photographers (A/B/C/D/E). There are five
sets (one set per photographer) consisting of 5,000 pairs of
input and retouched images. Among these sets, we only
use images retouched by photographer C as done in most
existing image enhancement methods [6, 46, 21]. And we
decompose it to 4,500 and 500 images for training and test
set, respectively.

Low Light (LoL): LoL [49] is a dataset for low-light im-
age enhancement. The LoL dataset contains 500 pairs of
low-light and normal-light images in which 500 pairs are
separated into 485 training images and 15 testing images.
We use the training images for training RCTNet and the test
images for experiments.

Enhancing Underwater Visual Perception (EUVP):
The EUVP dataset [19] provides subsets of the paired and
unpaired collections for underwater images. The paired
dataset separates pairs of low-quality and high-quality im-
ages into 11435, 570, and 515 pairs for the training, valida-
tion, and test sets. The pairs in the training and test set are
used for the training and evaluation, respectively.

Underwater Image Enhancement Benchmark (UIEB):
The UIEB dataset [28] includes 890 pairs of underwater
image and its enhanced image. These pairs are divided into
800 and 90 for training and test, respectively. We train RCT-
Net using 800 training images and evaluate the proposed
algorithm on the test set.

4.2. Implementation Details

We train the proposed model for 100, 500, 500, and 100
epochs with batch size of 8 for the MIT-Adobe-5K, LoL,

Table 3: Quantitative comparison on the LoL dataset [49].
The best results are boldfaced and the second best ones are
underlined.

Method PSNR SSIM

NPE [47] 16.97 0.589
LIME [14] 15.24 0.470
SRIE [9] 17.34 0.686
RRM [31] 17.34 0.686
SICE [4] 19.40 0.690
DRD [49] 16.77 0.559
KinD [55] 20.87 0.802
DRBN [52] 20.13 0.830

ZeroDCE [13] 14.86 0.559
EnlightenGAN [20] 15.34 0.528

RCTNet 22.67 0.788
RCTNet + BF 22.81 0.827

EUVP, and UIEB datasets, respectively. We use Adam op-
timizer [24] to minimize the loss function, with an initial
learning rate of 5.0×10−4 and a weight decay of 1.0×10−5.
We decrease learning rate according to the cosine learning
rate scheduling. Following the literature [21], we randomly
crop image and then rotate them by multiples of 90 degrees
for data augmentation. We fix the hyperparameter λ to 0.04.

4.3. Comparison with state-of-the-arts

MIT-Adobe 5K: We compare the performance of the pro-
posed method with recent state-of-the-art methods [11, 6,
46, 33, 54, 21]. For comparison, we obtain the results of
existing algorithms using their published source codes and
default settings. Table 2 lists the PSNR and SSIM perfor-
mances on the MIT-Adobe 5K dataset. We resize each test
image to have 512 pixels in the long side of each test im-
age as done in existing algorithms [33, 21] for the compar-
ison. In Table 2, the proposed RCTNet achieves the best
on PSNR, which indicates that the proposed RCTNet is ef-
fective for color enhancement. In contrast, RCTNet yields
the second best performance on SSIM, since it does not
perform the spatial filtering that suppresses noises. To ad-
dress denoising problem, we can employ the simple filtering
method, such as the bilateral filter (BF) [44], as the post-
processing. As in Table 2, the bilateral filter improves the
SSIM score to 0.923.

Low-light Image Enhancement: Next, we evaluate the
proposed RCTNet on the low-light image enhancement
problem. Table 3 compares the proposed RCTNet
with state-of-the-art low-light image enhancement algo-
rithms [47, 14, 9, 31, 4, 49, 55, 52, 13, 20] on the LoL
dataset [49]. ZeroDCE [13] and EnlightenGAN [20] pro-
vides relatively lower performance because they train their
network with unpaired images. The proposed RCTNet
achieves the best PSNR score by enhancing input colors ef-
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(a) Input (b) KinD [55] (c) RCTNet (d) RCTNet + BF (e) Ground-truth

Figure 4: Qualitative comparison on the LoL dataset [49].

Table 4: Quantitative comparison on the UIEB dataset [28].
The best results are boldfaced and the second best ones are
underlined.

Method PSNR SSIM

Fusion [1] 17.60 0.772
Retinex [10] 17.02 0.607
GDCP [35] 12.09 0.512
Histogram [30] 15.82 0.539
Blurriness [36] 15.32 0.603
Water CycleGAN [29] 15.75 0.521
Dense GAN [15] 17.28 0.443
WaterNet [28] 19.11 0.797
Ucolor [27] 20.63 0.770

RCTNet 22.45 0.891

fectively. In contrast, the proposed algorithm provides the
relatively low SSIM score, since low-light images include a
lot of sensor noises due to their shooting conditions. This
indicates that the representative color transform is less ef-
fective in denoising. Figure 4 shows enhancement results
of the proposed RCTNet and KinD [55], which is the best
existing method in Table 3. In these examples, RCTNet en-
hances low-light images to have more similar color-tones
to their ground-truths than KinD, while KinD suppresses
noises more effectively. However, this weakness of the pro-
posed method can be alleviated by employing simple de-
noising techniques as the post-processing. For instance, we
observe that simple bilateral filter improves the PSNR and
SSIM scores to 22.81dB and 0.827 as in Table 3. Also,
the simple post processing successfully suppress noise as in
Figure 4d.

Underwater Image Enhancement: Finally, we assess
the performance of the proposed RCTNet on the under-
water image enhancement problem. Tables 4 and 5 com-
pare the proposed algorithm with the existing underwa-
ter image enhancement algorithms [1, 10, 35, 30, 36, 29,
8, 28, 19, 15, 18, 27] on the UIEB [28] and EUVP [19]

Table 5: Quantitative comparison on the EUVP dataset [19].
The best results are boldfaced and the second best ones are
underlined.

Method PSNR SSIM

U-GAN [8] 23.49 0.842
Funie-GAN [19] 23.40 0.827
Deep SESR [18] 24.21 0.840

RCTNet 26.43 0.891

(a) Input (b) Deep SESR [18] (c) RCTNet (d) GT

Figure 5: Qualitative comparison on the EUVP dataset [19].

datasets, respectively. Underwater images tend to be de-
graded by wavelength-dependent absorption and scattering
due to shooting environments. Nevertheless, RCTNet faith-
fully enhances underwater images and significantly outper-
forms the existing state-of-the-art methods in PSNR and
SSIM scores on both datasets. Figures 5 qualitatively com-
pare the proposed algorithm with the second-best methods
in EUVP dataset. Remarkably, we see that RCTNet pro-
duces visually pleasing results.

4.4. Ablation Studies

Component Analysis: We analyze the efficacy of the
three components of feature fusion, global RCT, and local
RCT modules in RCTNet. In this test, we measure the three
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(a) Input (b) Global IT

(c) Global RCT (d) Ground-truth

Figure 6: Qualitative comparison between IT and RCT on
the Adobe5k dataset [3]

performances of RCTNet: 1) without the feature fusion, 2)
without the global RCT, and 3) without the local RCT. Let
us refer to these settings as ‘w/o global RCT,’ ‘w/o local
RCT,’ and ‘w/o feature fusion.’ Table 6 summarizes the av-
erage PSNR scores of theses settings on four datasets. With-
out the global RCT, the local RCT, or the future fusion, the
PSNR scores are degraded severely. This indicates that the
proposed components are essential for image enhancement.

Representative Color Transform: We verify the efficacy
of the proposed RCT by replacing it with different enhance-
ment models. First, we employ the decoder in the U-Net
architecture [6], which includes 6 up-sample blocks to per-
form bilinear interpolation, concatenation, and convolution
filtering. Second, we substitute the proposed RCT with the
channel-wise intensity transform model in [21]. Third, we
exclude the local RCT module from RCTNet for the fair
comparison. All enhancement models include the same en-
coder and the feature fusion module in Figure 2.

Tables 7 summarizes the PSNR scores of three image
enhancement approaches. Here, ‘Decoder,’ ‘Global IT,’ and
‘Global RCT’ denote the encoder-decoder model, the global
intensity transform, and the proposed global RCT, respec-
tively. ‘Decoder’ provides the worst performance on all
datasets except LoL dataset. This indicates that approaches
based on the color transformation are more effective for im-
age enhancement than encoder-decoder structures. Also,
‘Global RCT’ outperforms ‘Global IT’ by providing larger
color transformation capacities.

Figure 6 illustrates enhancement results of ‘Global RCT’
and ‘Global IT’ on the MIT-Adobe5k dataset. The input im-
age in Figure 6a has low intensity values on the blue chan-
nel in most regions including sky, sea, and ground. To en-
hance the input image effectively, intensity values on the

Table 6: PSNR scores according to different components.
The best results are boldfaced.

Method. Adobe 5K LoL UIEB EUVP

RCTNet 26.02 22.67 22.81 26.43
w/o global RCT 25.43 22.12 21.99 24.30
w/o local RCT 25.57 22.35 22.41 24.46
w/o feature fusion 25.68 22.30 22.34 25.19

Table 7: PSNR scores according to image enhancement ap-
proaches. The best results are boldfaced.

Method. Adobe 5K LoL UIEB EUVP

Decoder [6] 24.26 21.25 21.70 23.86
Global IT [21] 24.97 21.20 22.23 24.05
Global RCT 25.57 22.35 22.41 24.46

blue channel in sky and sea should increase more than in
ground. However, ‘Global IT’ increases similar blue inten-
sities in most regions, as in Figure 6b, since pixels in sky,
sea, and ground have similar blue intensities in the input im-
age. Thus, blue intensities in the sky and sea regions are not
sufficiently enhanced. As pointed out in [21], this indicates
that ‘Global IT’ is vulnerable to one-to-many mapping. On
the contrary, as in Figure 6c, ‘Global RCT’ can perform dif-
ferent modifications to sky, sea, and ground. So, it provides
the faithful enhanced result as in the manually retouched
result in Figure 6d.

5. Conclusion

We proposed the novel image enhancement algorithm
based on the representative color transform. The proposed
RCT determines different representative colors specialized
in input images and enhances input images using repre-
sentative features and transformed colors. Then, with the
proposed RCT, we developed RCTNet, composed of en-
coder, feature fusion, global RCT, and local RCT modules.
The global RCT predicts representative colors for an input
image, while the local RCT determines region-wise repre-
sentative colors to consider local region characteristics for
image enhancement. Extensive experiments demonstrated
that the proposed RCTNet outperforms recent state-of-the-
art algorithms on various datasets with standard image en-
hancement, low-light image enhancement, and underwater
image enhancement.
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