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Abstract
We present a novel framework for controllable image

restoration that can effectively restore multiple types and
levels of degradation of a corrupted image. The proposed
model, named TASNet, is automatically determined by our
neural architecture search algorithm, which optimizes the
efficiency-accuracy trade-off of the candidate model archi-
tectures. Specifically, we allow TASNet to share the early
layers across different restoration tasks and adaptively ad-
just the remaining layers with respect to each task. The
shared task-agnostic layers greatly improve the efficiency
while the task-specific layers are optimized for restoration
quality, and our search algorithm seeks for the best balance
between the two. We also propose a new data sampling strat-
egy to further improve the overall restoration performance.
As a result, TASNet achieves significantly faster GPU latency
and lower FLOPs compared to the existing state-of-the-art
models, while also showing visually more pleasing outputs.
The source code and pre-trained models are available at
https://github.com/ghimhw/TASNet.

1. Introduction
Restoration of real-world corrupted images is a challeng-

ing problem since the types and the severity (or level) of
degradation are unknown. Previous works on blind image
super-resolution [4, 26] or blind deblurring [35, 14, 1] tackle
this problem by learning to predict the unknown degradation
kernel, and then using the predicted kernel to restore clean
images. Recently, controllable image restoration has been
gaining increased attention as alternative approaches. In this
scenario, instead of accepting a single restored image given
by the final model, users can control the output restoration to
generate multiple images and choose the output image that
best fits their preferences.

Early works on controllable image restoration (CIR) [15,
27, 31, 32] mostly consider a single type of degradation
and modulate the levels of restoration. For instance, the de-
noising model from [15] allows continuous modulation of
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Figure 1: An example of controllable image restoration. Our
model generates visually more pleasing outputs while adjusting
restoration levels with 3 times faster GPU latency and 95.7%
reduced FLOPs compared to CResMD [16].

denoising a Gaussian noise with σ = 15 ∼ 75. More re-
cently, CResMD [16] proposed an extended framework that
learns multiple types of degradation (Gaussian blur, Gaus-
sian noise, and JPEG compression) jointly with a single
network, so that users can interactively adjust not only the
level but also the type of degradation. However, as more
flexible control is enabled, two new challenges arise for the
practical application of CIR models: 1) the high computation
cost of generating multiple images to choose from, and 2)
the difficulty of finding the true types and the levels of degra-
dation, in which failing to do so may lead to significantly
deteriorated outputs.

To alleviate these limitations, we present TASNet, a novel
deep-learning-based CIR model that is optimized to achieve
better visual quality and substantially reduced computa-
tional complexity. Figure 1 demonstrates a sample result.
Our TASNet consists of two parts: task-agnostic layers and
task-specific layers, where we denote “task” as a restoration
problem w.r.t. a combination of degradation types and levels.
The task-agnostic part is composed of the early layers of the
baseline supernetwork, where the parameters of the layers
are shared across all tasks. Sharing the early layers greatly
improves the efficiency of CIR model, since we do not need
to re-compute the output of the shared layers each time a
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Figure 2: The overview of our efficient architecture for controllable image restoration. (a) CResMD [16] has a fixed network across all
tasks and requires separate inference through the full model whenever the target restoration task becomes different. (b) Our task-agnostic
and task-specific network (TASNet) shares the early layers to facilitate feature reuse. When we perform inference for multiple tasks,
the task-agnostic part requires only a single computation, of which the output feature can be reused multiple times as the input for the
task-specific network. The architecture of the task-specific network is adaptively adjusted for each given task. The width and the height
of boxes represent the number of layers and channels of neural networks, respectively. In this example, two popular restoration tasks of
denoising and deblurring are visualized, where different colors represent the corresponding inference path.

user changes the task (the type or the level of degradation).
On the other hand, the remaining layers that consist of the
task-specific parts are differently adjusted for each task. The
main concept is summarized in Figure 2. However, deciding
the architectural hyperparameters that balances the efficiency
and the performance is still a very challenging problem.

To this end, we propose a new supernetwork-based neural
architecture search (NAS) algorithm that can automatically
search for the task-agnostic and task-specific architectures
on the efficiency-accuracy trade-off curve. Since we need
to consider a large number of tasks for continuously vary-
ing levels of restoration, the search space of our algorithm
should be able to represent a diverse set of architectures.
This is why our algorithm allows channel-level selection for
each layer as well as layer-wise decision of whether to share
its parameters or not. Specifically, the proposed NAS algo-
rithm selects: 1) the number of layers to share (task-agnostic
part), 2) the important channels for the shared layers, and 3)
the important channels for each task-specific layer, where
these task-specific channel selection is adaptive for each task.
We also formulate the overall learning objective to be dif-
ferentiable for efficient end-to-end training of our searching
framework, which results in the final TASNet. Moreover, we
propose a new data sampling strategy to reduce the visual
artifacts, which is empirically shown to be effective for cases
when the task given by the user is very different from the
true degradation of an input image.

Experimental results show that TASNet runs 3.7 times
faster than the state-of-the-art CIR model on modern high-
end GPUs with 95.7% FLOPs reduction when generating
4K images with 27 modulations. Also, the visual quality of
the generated restoration using TASNet is much better than
the previous approaches with significantly less artifacts.

Overall, our contributions can be summarized as follows:

• We present a novel neural network, named TASNet, for
controllable image restoration (CIR) that remarkably
improves the model efficiency and output image quality.

• We propose a supernetwork-based NAS algorithm that
finds efficient CIR networks in a differentiable manner.

• We introduce a new data sampling strategy to improve
the generated image quality in CIR problems.

• The proposed TASNet outperforms the state-of-the-
art models in image quality and computation costs of
FLOPs and CPU/GPU latency.

2. Related Work
2.1. Image restoration

Image restoration, including denoising, deblurring, super-
resolution, and compression artifact removal, is a classical
topic in computer vision which aims at restoring the origi-
nal image from its degraded versions. Deep-learning-based
image restoration networks [10, 11, 12, 18, 19, 21, 40, 42]
have achieved breakthroughs in restoring accurate image de-
tails. While the conventional approaches specialize in deal-
ing with a single degradation type, general image restoration
aims to restore the corrupted image with multiple types of
degradation. Notable approaches include learning a policy to
determine a specialized restoration network for the input im-
age [36, 37], or using an operation-wise attention module to
produce the specialized feature maps w.r.t. each degradation
type [29]. However, these approaches cannot control the di-
verse restoration levels for the input images, and sometimes
generate overly smooth or sharpened outputs.

On the other hand, controllable image restoration is re-
cently gaining interests from the computer vision research
community, to control the output restoration of an image
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corrupted by unknown degradation. Existing works learn
to control restoration levels for a single type of degrada-
tion [15, 27, 31, 32]. In particular, AdaFM [15], CFSNet [31],
and Dynamic-Net [27] design their network architectures
with tuning modules, which modulate the feature maps layer-
wise [15] or block-wise [31, 27] with respect to the tasks of
interest at test time. Instead, DNI [32] interpolates all param-
eters of the differently trained networks for modulation. For
the general controllable image restoration, CResMD [16]
controls restoration levels in multiple types of degradation
with a block-wise tuning module. While the prior works may
have provided good performance to control the restoration
levels, they have solely focused on the image quality and
do not consider computational efficiency. By contrast, using
CResMD as the baseline, the proposed TASNet significantly
reduces the computations and running time.

2.2. Efficient CNNs for image restoration

To make the image restoration models efficient with less
computation cost, several novel architectures have been de-
veloped for diverse restoration tasks. The early works down-
scale the spatial resolution of the input image to reduce the
computation costs of the convolution operations for denois-
ing [41] and super-resolution [12]. More recently, CARN [3]
presents a cascading residual block with multiple skip con-
nections, leading to a fast and light-weight super-resolution
network. For deblurring, a method using spatially variant
deconvolution is proposed in [38] to achieve accurate per-
formance with its efficient backbone network. Meanwhile,
FALSR [8], ESRN [28], and FGNAS [17] adopt neural
architecture search (NAS) algorithms for efficient super-
resolution networks. Path-Restore [37] and AdaDSR [23]
save computation costs via adaptive inference for general
image restoration and super-resolution, respectively. Prior
works also employ network quantization [9, 34] or prun-
ing [13, 20, 24, 30, 39], but they are not task-adaptive.

On the other hand, we study the network acceleration
approaches for controllable image restoration for the first
time, especially when it requires a large number of inference
passes per image. A neural architecture accelerated by our
algorithm can be considered as a special instance of multi-
task learning [7, 43], a network design paradigm that uses
a shared network for multiple tasks or optimization. The
main difference from the previous multi-task learning ap-
proaches is employing NAS for continuously varying tasks
from an input image. Our search algorithm is a variant of
supernetwork-based NAS methods [17, 22], which aim to
find an efficient or performance-wise optimal network by
pruning from a supernetwork. Our search process is per-
formed over a search space of channels and shared layers
across tasks, each combination of which provides a candidate
network derived from a supernetwork.

3. Method
Controllable image restoration (or modulation) aims to

control the restoration levels of a corrupted image. Follow-
ing the CResMD setting, we formulate multi-dimensional
restoration levels to be controllable. Formally, given D num-
ber of degradation types, t ∈ RD denotes a task vector,
where td ∈ [0, 1] encodes the restoration level for the d-th
degradation type. For instance, a task vector of (1,0,0) for
three degradation types (e.g., blur, noise, JPEG compres-
sion) indicates that the task requires the maximum level of
deblurring but no denoising or compression artifact removal.
During training, a training image pair (input and target) deter-
mines the corresponding values of task vector. At inference
time, the task vector values are controlled by the users.

3.1. Efficient architecture design

Unknown degradation of real images demands interactive
image restoration with adjustable restoration levels. In this
scenario, a network for image modulation computes its oper-
ations multiple times for a single input image with different
task vectors. Formally, the total computation cost for M
times of inferences is given by,

Rtotal(f,x, t) =

M∑
m=1

R(f,x, tm), (1)

where R(f,x, tm) denotes FLOPs or latency to generate an
output with the network architecture f , the input image x,
and the m-th task vector tm. Architectures used in CResMD
and other previous works [15, 27, 31, 32] follow the compu-
tation cost of Equation (1), as outlined in Figure 2(a).

Our goal is to design a network architecture which is effi-
cient under the aforementioned multiple -inference scenario.
To this end, we propose TASNet that shares the feature map
of early layers with the remaining task-specific architecture,
as described in Figure 2(b). The task-agnostic shared layers
facilitate feature reuse for repeated inferences from a sin-
gle image. On the other hand, our task-specific architecture
adaptively transforms itself to be efficient as it is difficult to
find a single fixed network that is efficient for continuously
varying restoration levels.

For TASNet, we reformulate Equation (1) and divide the
network f into the early layers fa and the remaining layers
fs. Then, the total computation cost becomes:

Rtotal(f,x, t) =

M∑
m=1

[R(fa,x) +R(fs, x̃, tm)]

≥ R(fa,x) +

M∑
m=1

R(fsm, x̃, tm),

(2)

where x̃ = fa(x) and R(fa,x) is the computation cost of a
single inference for fa(x), and fm denotes the transformed
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Figure 3: The neural architecture search process for each layer of TASNet. Our algorithm automatically determines the number of shared
layers and channels in each feature map from the supernetwork. Task-specific (TS) part (ϕn = 0) adaptively selects channels based on
the given task (blue arrow). By contrast, task-agnostic (TA) part (ϕn = 1) selects fixed channels across tasks (red arrow). A feature map
is determined to be shared if the channel importance is similar among tasks and the previous feature map is shared. All processes are
differentiable via a straight-through estimator (g). During the inference, ϕ, za, and thus task-agnostic (TA) part are fixed.

task-specific architecture. Although Equation (2) should the-
oretically reduce the computational redundancy, designing
efficient architectures (fa and fsm) is still an open problem.

3.2. Search formulation

Overview. In order to find efficient TASNet architectures,
we propose a supernetwork-based neural architecture search
algorithm. Our search algorithm determines 1) the number
of early layers that are shared across tasks, 2) the impor-
tant channels for task-agnostic layers, and 3) the important
channels for each task-specific layer, where the channels are
selected from the supernetwork CResMD [16]. TASNet aims
to minimize both restoration error and computation cost of
Equation (2) via following rules, as illustrated in Figure 3:

• Learn task-specific channel importance (zsm).

• Learn task-agnostic channel importance (za).

• Share a feature map across tasks (ϕn = 1), when impor-
tant channels are similar across tasks (ηn = 1) and the
feature map of its previous layer is shared (ϕn−1 = 1).

• Maximize the number of shared layers (Equation (10)).

• Prune unimportant channels across tasks (g(zan,c) = 0)
in shared feature maps (ϕn = 1).

• Adaptively select important channels (g(zsm,n,c) = 1)
to the task tm in non-shared feature maps (ϕn = 0).

Channel selection. Variants of straight-through estima-
tor [5] have been widely used for differentiable NAS ap-
proaches [33, 6]. To select or de-select each channel from
the super network, channel selection virtually multiplies a
binary value to the channel. Our straight-through estimator
enables this process differentiable, formally given by,

g(z) =

{
I [z > 0] if forward
sigmoid(z) if backward,

(3)

where z ∈ R, and I [·] is an indicator function that returns 1
when its input is true (and 0 otherwise). We introduce two
types of z which determine task-specific and task-agnostic
channels, respectively, in the following.

Task-specific channel importance. To learn channel im-
portance for a given task tm, we introduce architecture con-
troller h, formally given by,

zsm,n ≡ hn(tm), (4)

where zsm,n,c ∈ R denotes the importance of c-th channel
to the task vector tm in the n-th feature map of the super-
network. hn is the architecture controller, composed of few
fully connected layers, for the n-th feature map.

Task-agnostic channel importance. To learn general
channel importance across tasks, we simply average the
values of the task-specific channel importance as follows:

zan,c ≡
1

M
·
M∑
m=1

zsm,n,c, (5)

where zan,c ∈ R denotes the task-agnostic channel impor-
tance and M is a large enough number of inference. Empiri-
cally, we adopt exponential moving average over iterations
with the small mini-batch size.

Channel importance similarity across tasks. To deter-
mine whether a feature map should be shared across tasks,
we compute the agreement criterion via the similarity be-
tween selected channels from za and zs as follows:

1

M
·
M∑
m=1

C∑
c=1

g(zsm,n,c) · g(zan,c) > γ ·
C∑
c=1

g(zan,c), (6)

where γ is a threshold hyperparameter. Whether Equation (6)
holds is represented by a boolean variable ηn. If the equation
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holds (ηn = 1), a large number of tasks have an agreement
on the channel importance for a given layer, and thus this
layer is likely to be shared across all tasks.

Recursive layer sharing. To facilitate feature reuse across
tasks, the shared layers need to be located together at the
initial stage of the network. To this end, the n-th feature map
is shared if the n-th and all previous feature maps satisfy the
agreement criterion on the position of pruning across tasks
(ηi = 1) , formally given by,

ϕn =

{
1 if ηi = 1,∀i = 1, 2, ..., n

0 otherwise,
(7)

where ϕ ∈ ZN2 denotes a decision variable, in which the
n-th element ϕn is 1 if the n-th feature map is task-agnostic.

Objective function. By using all equations above, we can
formulate the objective function with differentiable resource
regularization terms. Let L(·, ·) denote a standard ℓ1 loss
function for image restoration tasks. The overall objective
function is formally given by,

min
θ,ψ

L(θ, ψ) + λ1 · R1(ψ) + λ2 · R2(ψ), (8)

where θ and ψ are learnable parameters in the supernetwork
and architecture controller, respectively. The first resource
regularizer R1(·) penalizes FLOPs of currently searched
architectures by de-selecting channels, formally defined as:

R1(ψ) = RFLOPs(f
a,x) +

M∑
m=1

RFLOPs(f
s, x̃, tm)

= 2

N∑
n=1

K2
nHnWn · [ϕn ·

C∑
c=1

g(zan,c) ·
C∑
c=1

g(zan−1,c)

+ (1− ϕn) ·
M∑
m=1

{
C∑
c=1

g(zsm,n,c) ·
C∑
c=1

g(zsm,n−1,c)}],

(9)
where Kn is the kernel size of convolution operation to
generate the n-th feature map, Hn and Wn are the height
and the width of the n-th feature map, respectively, and
za0,c and zsm,0,c the channel of input images and are fixed
to be 1. The second regularizer R2 enforces the network to
maximize the number of the early shared layers by penalizing
the disagreement of selected channels across tasks as follows:

R2(ψ) =

N∑
n=1

ϕn−1 ·
C∑
c=1

M∑
m=1

∥∥g(zsm,n,c)− g(zan,c)
∥∥
1
,

(10)
where layer at n = 0 denotes an input image and ϕ0 ≡ 1
since the input image is fixed over tasks. The hyperparame-
ters λ1 and λ2 balance three terms.
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Figure 4: Absolute ground truth vs. relative ground truth. (a) Map-
ping from all degraded versions to its original image. (b) Mapping
from degraded versions to relatively higher-quality images.

3.3. Data sampling strategy

Degradation level vs. restoration level. Previous works
train a network to restore the original image from the de-
graded images with arbitrary degradation level (see Fig-
ure 4(a)). However, CIR algorithms should be able to restore
images to various extents to facilitate better user interaction
experience. Thus, we redefine a restoration level as a map-
ping from more degraded images (input) to less degraded
images (relative GT) (see Figure 4(b)).

Task vector with relative GT. A task vector t is a model
input that encodes restoration levels. In training, an input-GT
image pair (sampled with two different multi-dimensional
degradation levels) determines its task vector as follows:

td ≡ lind − lgtd , (11)

where lind ∈ [0, 1] and lgtd ∈ [0, 1] denote the levels of d-th
degradation type for the input and GT images, respectively.
We assume GT images are less degraded than input (lind ≥
lgtd ). Each training image pair randomly selects the number
of degradation types (single or multiple) and the granularity
of degradation levels (continuous or binary).

4. Experiments
In this section, we present the experimental results and

comparisons between TASNet and CResMD in terms of
network computation cost and output image quality. Then,
we thoroughly analyze the effectiveness of our proposed
algorithm with the ablation studies. Implementation details
are described in the supplementary document.

4.1. Dataset

In this work, we use DIV2K [2] dataset for training and
CBSD68 [25] dataset for testing, unless specified otherwise.
DIV2K consists of 800 clean 2K-resolution training images
and 100 validation images while CBSD68 consists of 68
clean HVGA-resolution test images. Following the degra-
dation setting in CResMD [16], to create degraded images,
we use three types of degradation: Gaussian blur, Gaussian
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Table 1: Comparisons on the average computation cost. TASNet
outperforms CResMD [16] w.r.t. all measures and resolutions.

Cost metric Resolution CResMD TASNet

HD 1,124.3 G 45.2 G
FLOPs↓ 2K 2,698.4 G 108.4 G

4K 10,119.2 G 406.7 G
HD 22.8 s 5.5 s

CPU latency (single)↓ 2K 55.6 s 13.5 s
4K 209.3 s 55.5 s
HD 5.1 s 1.7 s

CPU latency (multi)↓ 2K 11.7 s 4.2 s
4K 40.6 s 13.1 s
HD 144.4 ms 68.4 ms

GPU latency↓ 2K 280.8 ms 99.2 ms
4K 930.0 ms 250.7 ms

Table 2: Non-blind quantitative image quality results on CBSD68.

Method PSNR↑ SSIM↑ NIQE↓ BRISQUE↓ FLOPs↓

CResMD 25.86 dB 0.8194 6.7165 54.13 189.1 G
TASNet 25.64 dB 0.8137 6.6301 50.60 7.5 G

Input CResMD TASNet Original
(26.60 dB/7.0624) (33.67 dB/6.3134) (32.05 dB/5.9478) (PSNR/NIQE)

Input CResMD TASNet Original
(22.98 dB/8.8662) (29.24 dB/8.1103) (28.63 dB/7.4633) (PSNR/NIQE)

Figure 5: Non-blind qualitative image quality comparison. TASNet
produces sharper images with better NIQE scores than CResMD.

noise, and JPEG compression. Each degradation is sequen-
tially applied to the clean images. For Gaussian blur, we use
the kernel size of 21 × 21 with the radius r ∈ [0, 4]. The co-
variance for the Gaussian noise is denoted as σ ∈ [0, 50]. The
JPEG compression quality factor is denoted as q ∈ [10, 100]
(We also include images with no JPEG compression as in
CResMD). The training dataset is constructed by applying
the degradation levels with a stride of 0.1, 1, and 2 for r, σ,
and q, respectively.

4.2. Computation cost comparison

Latency and FLOPs reduction. Table 1 presents the aver-
age computation cost of TASNet (ours) and the state-of-the-
art network, CResMD [16], across diverse image resolutions
and devices. The experiments are performed for the control-
lable image restoration setting, in which a multiple number
(M = 27) of inferences are performed for each input image.
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Figure 6: Blind setting (artifact). CResMD often produces signifi-
cant artifacts when deburring images that are corrupted with noise
or compression artifacts. By contrast, TASNet successfully reduces
the blur in input images.

While displaying similar image restoration performance (as
described in the next section), TASNet manages to reduce
95.7% FLOPs from CResMD and shows faster speed on
all reported devices: ×3.8 on a single-core CPU, ×3.1 on
a multi-core CPU, and ×3.7 on a GPU, when generating
4K (3840×2160) images, compared with CResMD. Notably,
TASNet only requires 0.07s to restore an HD (1280×720)
image. We also observe that the latency difference between
two models becomes small in the case of low-resolution
images. As the input resolution decreases, the size of each
feature map also decreases, reducing the benefit of selecting
channels or shared layers to some extent.

4.3. Image quality comparison

Non-blind setting. Table 2 illustrates the quantitative im-
age quality comparisons in a non-blind image restoration
setting, where the degradation type and level of input im-
ages are known. This setting allows models to generate their
best results with a single inference. The results demonstrate
that the images restored by TASNet have lower PSNR than
the images generated by CResMD but better NIQE, which
means that TASNet in general restores sharper image details,
as illustrated in Figure 5.

Blind setting. Controllable image restoration (CIR) algo-
rithms aim to tackle a blind setting, in which the types and
levels of degradation are unknown. CResMD [16] strug-
gles to handle such challenging scenario, generating images
with artifact (Figure 6) or over-smoothing effect (Figure 7)
and restoring images unevenly across continuously varying
restoration levels (Figure 8). Figure 6 presents images re-
stored by algorithms that modulate an input image using dif-
ferent levels of deblurring when the input image is corrupted
with a mixture of blur, noise, and compression degradation.
Images restored by TASNet are shown to be less blurry (in
fact, the outputs become sharper as deblurring level becomes
higher), compared to CResMD that generates critical arti-
facts. An interesting observation is that other degradations
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Figure 7: Blind setting (over-smoothing). When denoise levels
are higher than the actual noise levels of input images, CResMD
over-smoothes images whereas TASNet noticeably removes noise.
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Figure 8: Blind setting (uneven modulation). CResMD restores
blurred images negligibly or drastically by deblur level changes,
while TASNet gradually modulates outputs.

(noise and JPEG artifact) still remain in images deblurred by
TASNet, implying that our algorithm manages to learn a dis-
entangled restoration process for each restoration type and
level. As observed in Figure 7, denoising by CResMD results
in over-smooth images while TASNet maintains the overall
contents and structures of input images. Figure 8 illustrates
the restored images when varying the restoration (deblurring
in this case) levels for identical degradation and restoration
types. With the same amount of change in restoration levels,
CResMD restores the degradation unevenly (the restoration
quality changes negligibly or drastically), whereas TASNet
generates images with smoothly-varying restoration quality.

Restoration on real images. Figure 9 displays the output
images restored from real images with unknown degradation
(downloaded from the internet). Similar to the synthetic ex-
amples, CResMD generates images with over-smooth effect
or significant artifacts while TASNet successfully reduces
the degradation of input images. For more restored output
images, please refer to the supplementary document.

4.4. Ablation study

The effectiveness of sharing layers in TASNet. Table 3
studies the importance of task-agnostic layers in TASNet. In

Input CResMD TASNet

Task vector (0, 0.9, 0) (0, 0.9, 0)

Task vector (0, 0.8, 0.8) (0, 0.8, 0.8)

Task vector (0.4, 0.4, 0.4) (0.4, 0.4, 0.4)

Figure 9: Restoration from real images. A task vector (·,·,·) de-
notes the levels of (Deblur, Denoise, Dejpeg). Compared to TASNet,
CResMD generates more artifacts or over-smoothed images.

Table 3: Ablation study for the effectiveness of shared layers. TA
and TS, respectively, denote task-agnostic layers and task-specific
layers. TSNet is our searched model without forcibly sharing layers.
Image quality is measured on CBSD68 using the non-blind setting.

Method TA TS PSNR↑ NIQE↓ FLOPs↓

CResMD - - 25.86 dB 6.7165 189.1 G
TSNet - ✓ 25.59 dB 6.6332 39.6 G
TASNet ✓ ✓ 25.64 dB 6.6301 7.5 G

particular, we examine how the performance and computa-
tion cost change after disabling layer sharing, the resulting
network from which is denoted as TSNet in the table. TAS-
Net is observed to save the computation costs of TSNet by
more than 5 times, owing to its shared layers that allow fea-
ture reuse and thus reducing the redundant computation for
multiple inferences. Regardless, TSNet greatly reduces the
computation cost of CResMD, suggesting the effectiveness
of the task-specific layers that adaptively select important
channels. In stark contrast, conventional channel pruning
approaches do not change their architectures w.r.t. the task.

To further emphasize the effectiveness of TASNet, Fig-
ure 11 shows the computation cost of TSNet and TAS-
Net across various tasks with multiple number (4) of in-
ferences for each image of HVGA resolution (481×321).
Task-specific layers in both networks tend to require more
channels for higher restoration levels, which translate to
more difficult restoration problems. Task-agnostic layer in
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Figure 10: Ablation study for three image modulation problems in the blind setting. Models trained by relative GT reduce (a) network
artifact generation when deblurring images corrupted by a mixture of degradation types and (b) uneven image modulation across deblurring
levels. Further, task-agnostic feature maps from TASNet prevent (c) over-smoothing outputs.
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Figure 11: Computation cost comparisons across restoration levels.
The higher restoration levels demand more computation costs for
TS layers. TASNet is efficient for multiple inferences, as a result
of reusing the feature map of TA layers across tasks. Each graph
presents computation costs of removing blur (upper left), noise
(upper right), and joint degradation of blur and noise (lower left). A
task vector (·,·,·) denotes the levels of (Deblur, Denoise, Dejpeg).

TASNet is computed only once for each input image and
hence requires a substantially smaller amount of computa-
tion from the second pass. Although TASNet requires higher
computation cost than TSNet for the first inference, the over-
head becomes negligible during multiple inferences.

Comparison to naı̈ve shared networks. Table 4 shows
the comparisons between the variations of CResMD with a
different number of early shared layers that is manually de-
termined. For fair comparisons in terms of performance, all
models in the table are trained with absolute GT. TASNet-A
has the same network architecture as TASNet, but is trained
with absolute GT. TASNet-A reduces the computation cost
of CResMD to 1

9 by sharing 62% of the layers while main-
taining the similar PSNR performance.

Image restoration quality analysis. To study the effec-
tiveness of the proposed data sampling strategy and the TAS-
Net architecture, Figure 10 presents quantitative restoration
performance of three major failure cases in CIR when the
controlled restoration levels differ from the actual types and

Table 4: Ablation study of naı̈ve shared networks. We modify
CResMD by sharing its early layers. TASNet-A achieves 9 times
FLOPs reduction than CResMD with 62% shared layers.

Method #Shared Layer PSNR↑ NIQE↓ FLOPs↓

CResMD

0 % 25.86 dB 6.7165 189.1 G
31 % 25.82 dB 6.8035 132.0 G
62 % 25.78 dB 6.8205 69.5 G
99 % 25.34 dB 6.9109 7.0 G

TASNet-A 62 % 25.75 dB 6.7982 7.5 G

levels of degradation in a corrupted image. The results of
CResMD trained with relative GT generates less artifacts and
evenly modulated outputs, validating the capability of the
proposed data sampling to improve image restoration quality.
Also, TASNet achieves higher PSNR (over 3 dB compared
to CResMD) in denoising without over-smoothing (Figure 7
and 10(c)), alluding to the effectiveness of the shared layers
in providing better image quality.

5. Conclusion
We propose a novel neural architecture search algorithm

to find efficient networks for controllable image restoration
(or image modulation). In particular, the proposed algorithm
searches for a network with task-agnostic and task-specific
layers, referred to as TASNet, by determining the number
of layers and channels to share across tasks and adaptively
selecting channels in non-shared feature maps. We formulate
all learning objectives in a differentiable manner and per-
form the architecture search in an end-to-end manner. The
shared layers facilitate feature reuse that pushes the network
efficiency further for controllable image restoration that re-
quires a several number of inferences. Together with the
proposed new data sampling strategy, not only does TASNet
reduce the network computation costs of the state-of-the-art
network greatly but also provides the better image quality.
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