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Abstract

The generalization capability of deep neural networks
has been substantially improved by applying a wide spec-
trum of regularization methods, e.g., restricting function
space, injecting randomness during training, augmenting
data, etc. In this work, we propose a simple yet effective
regularization method named progressive self-knowledge
distillation (PS-KD), which progressively distills a model’s
own knowledge to soften hard targets (i.e., one-hot vec-
tors) during training. Hence, it can be interpreted within
a framework of knowledge distillation as a student becomes
a teacher itself. Specifically, targets are adjusted adaptively
by combining the ground-truth and past predictions from
the model itself. We show that PS-KD provides an effect of
hard example mining by rescaling gradients according to
difficulty in classifying examples. The proposed method is
applicable to any supervised learning tasks with hard tar-
gets and can be easily combined with existing regularization
methods to further enhance the generalization performance.
Furthermore, it is confirmed that PS-KD achieves not only
better accuracy, but also provides high quality of confidence
estimates in terms of calibration as well as ordinal rank-
ing. Extensive experimental results on three different tasks,
image classification, object detection, and machine trans-
lation, demonstrate that our method consistently improves
the performance of the state-of-the-art baselines. The code
is available at https://github.com/lgcnsai/PS-KD-Pytorch.

1. Introduction
The recent progress made in deep neural networks

(DNNs) has significantly improved performance in various
tasks related to computer vision as well as natural language
processing, e.g., image classification [14, 18, 22, 37], object
detection / segmentation [13, 32], machine translation [41]
and language modeling [20]. Scaling up of DNN is widely

*Corresponding author

adopted as a promising strategy to achieve higher perfor-
mances [12, 14, 39]. However, deeper networks require a
large number of model parameters that need to be learned,
which could make models more prone to overfitting. Thus,
DNNs typically produce overconfident predictions even for
incorrect predictions, and this is because the predictions are
highly miscalibrated [10, 26].

To improve generalization performance and training ef-
ficiency of DNNs, a number of regularization methods have
been proposed. The widely employed methods in practice
include: L1- and L2-weight decay [23, 27] to restrict the
function space, dropout [36] to inject randomness during
training, batch normalization [19, 33] to accelerate train-
ing speed by normalizing internal activations in every layer.
There also have been several methods that are specifically
designed for a particular task. For example, advanced data
augmentation techniques that are specific to computer vi-
sion tasks such as Cutout [5], Mixup [51], AugMix [16] and
CutMix [49] have shown to boost classification accuracy
and also improve robustness and uncertainty of a model.
Another effective regularization method is to adjust the tar-
gets when they are given in the form of one-hot coded vec-
tors (i.e., hard targets), including label smoothing (LS) [38],
label perturbation [43], etc.

Among those methods about adjusting targets, LS [38]
has been widely applied to many applications [31, 41, 53]
and has shown to improve generalization performance as
well as the quality of confidence estimates (in terms of cal-
ibration) on image classification and machine translation
tasks [25]. LS softens a hard target as a smoothed dis-
tribution by assigning a small amount of probability mass
to non-target classes. However, it is also empirically con-
firmed that it is not complementary to current advanced reg-
ularization techniques. For example, if we utilize LS and
CutMix simultaneously for image classification, the perfor-
mance on both classification and confidence estimation is
substantially degraded [3].

One natural question raised on LS could be: is there a
more effective strategy to soften hard targets so as to obtain
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Figure 1. A schematic of PS-KD. At epoch t, a student at epoch (t− 1) becomes a teacher and a model at epoch t is trained with the soft
targets computed as a linear combination of hard targets and the predictions from the teacher.

more informative labels? To answer this question, we pro-
pose a simple regularization technique named progressive
self-knowledge distillation (PS-KD) that distills the knowl-
edge in a model itself and uses it for training the model. It
means that a student model becomes a teacher model itself,
which gradually utilizes its own knowledge for softening
hard targets to be more informative during training. Specif-
ically, the model is trained with the soft targets which are
computed as a linear combination of the hard targets and
the past predictions at a certain epoch, which are adjusted
adaptively as training proceeds.

To justify our proposed method, we have shown that PS-
KD gives more weights to hard-to-learn examples by a gra-
dient rescaling scheme during training, which clearly re-
veals that a student model can be enhanced even if trained
with a teacher worse than the student (e.g., past predictions).
The proposed method is easy to implement, can be applied
to any supervised learning tasks where the hard targets are
given as the ground-truth labels. Moreover, it can be easily
combined with current advanced regularization techniques,
thereby enhancing further their generalization performance.
With this simple method, the generalization ability of DNNs
can be greatly improved regarding the target metrics (e.g.,
accuracy) as well as the quality of confidence estimates in
terms of both calibration and ordinal ranking (i.e., misclas-
sification detection) [9, 24].

To rigorously evaluate the advantages of PS-KD, we con-
duct extensive experiments on diverse tasks with popular
benchmark datasets: image classification on CIFAR-100
and ImageNet, object detection on PASCAL VOC, and ma-
chine translation on IWSLT15 and Multi30k. The exper-
imental results demonstrate that training with PS-KD fur-
ther enhances the generalization performance of the state-
of-the-art baselines. For image classification on CIFAR-100
and ImageNet, our results show that the model trained with
PS-KD provides not only better predictive performance, but
also high quality of confidence estimates. We further con-
firm that the advanced image augmentation techniques such
as Cutout and CutMix also benefit from PS-KD. From the
evaluation on object detection with PASCAL VOC, it is ob-
served that PS-KD makes a model learn better representa-

tions compared to the existing approaches. To show the
wide applicability of PS-KD, we also conduct the experi-
ments on machine translation, which improve BLEU scores
of baselines significantly.

2. Related Work

Conventional Knowledge Distillation (KD) [17] meth-
ods use knowledge from a larger and better performing
teacher model to generate soft targets for a student network.
Recently, several works have tried to use the student net-
work itself as a teacher, named self-knowledge distillation
(self-KD) [11, 45, 50].

One approach to self-KD is to reduce the feature dis-
tance between similar inputs from a single network. Xu and
Liu [45] propose a mechanism based on image distortion.
Given an image, it generates two separate distorted images
by using random mirroring and cropping. Then, model is
trained to decrease the distance between features extracted
from those two images. Yun et al. [50] propose a method
called class-wise self-KD (CS-KD) which focuses on dis-
tilling knowledge between samples in the same class. For
an input x, another data x′ with the same label is randomly
sampled, and the KL divergence between predictive distri-
butions from those is minimized during training. However,
this approach may cause overfitting since it forces all sam-
ples in a specific class to have a high density in the learned
representation space.

Another approach is to directly use outputs from a
teacher whose architecture is exactly the same as a stu-
dent. This approach is closer to the original notion of KD
than the aforementioned approach. Born-Again Networks
(BANs) [8] first train a network and use this pretrained
network as a teacher for next generation. Then, it repeats
this process, and thereby, performs multiple generations of
KD where the k-th generation model is trained with knowl-
edge distilled from the (k − 1)-th model. Similar to BANs,
Yuan et al. [48] empirically examine the common belief
on KD and suggest the teacher-free KD (TF-KD) method,
which uses a pretrained student as a teacher for a single
generation. Zhang et al. [52] propose a method which di-
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vides a network into several blocks and attaches auxiliary
classifiers to them independently. These auxiliary classifiers
are trained using outputs of the final classifier as a teacher’s
knowledge. Yang et al. [47] introduce utilizing a snapshot
model at a certain epoch as a teacher: the whole training
process is split into multiple mini-generations and the last
snapshot model of each mini-generation is used as a teacher
for the next mini-generation. These methods require aug-
menting a network’s architecture [52] or several hyperpa-
rameters to be carefully tuned, e.g., a learning rate policy
and the number of mini-generation [47].

Along with previous studies, our proposed PS-KD
method uses a model’s own predictions as a teacher’s
knowledge to enhance the generalization performance of
DNNs. However, our method provides distinct advantages
over them from a practical viewpoint: it does not require
a pretraining phase unlike BANs [8] and TF-KD [48], and
can be easily applied to any supervised learning tasks due
to its generality and simplicity compared to [45, 11, 52, 47].
More importantly, it is shown that we can enjoy the advan-
tages of KD even if a student is taught by a poor teacher
(i.e., lower predictive performance than a student), which
is distinguishable from previous works relying on a well-
performing teacher.

3. Self-Knowledge Distillation
3.1. Knowledge Distillation as Softening Targets

KD is a technique to transfer knowledge from one model
(i.e., a teacher) to another (i.e., a student), usually from a
larger model to a smaller one. The student learns from more
informative sources, the predictive probabilities from the
teacher, besides one-hot labels. Hence, it can attain a similar
performance compared to the teacher although it is usually
a much smaller model, and show comparable or even better
performance when the student has the same capacity as the
teacher [8, 48].

For an input x and a K-dimensional one-hot tar-
get y, a model produces the logit vector z(x) =
[z1(x), · · · , zK(x)], and then outputs the predicted proba-
bilities P (x) = [p1(x), · · · , pK(x)] by a softmax function.
Hinton et al. [17] suggest to utilize temperature scaling to
soften these probabilities for better distillation:

p̃i(x; τ) =
exp(zi(x)/τ)∑
j exp(zj(x)/τ)

(1)

where τ denotes a temperature parameter. By scaling the
softmax output PT (x) of the teacher as well as PS(x) of
the student, the student is trained with the loss function
LKD, given by:

LKD(x,y) =(1− α)H
(
y, PS(x)

)
+

ατ2H
(
P̃T (x; τ), P̃S(x; τ)

) (2)

where H is a cross-entropy loss and α is a hyperparame-
ter. Note that when the temperature τ is set to 1, Eq. (2) is
equivalent to the cross-entropy of PS(x) to the soft target,
a linear combination of y and PT (x):

LKD(x,y) = H
(
(1− α)y + αPT (x), PS(x)

)
. (3)

Therefore, the existing methods that use the soft targets for
regularization can be interpreted within the framework of
knowledge distillation. For example, LS [25] is equivalent
to distilling the knowledge from the teacher which produces
uniformly distributed probabilities on any inputs.

3.2. Distilling Knowledge from the Past Predictions

We propose a new way of KD, called progressive self-
knowledge distillation (PS-KD), which distills the knowl-
edge of itself to enhance the generalization capability. In
other words, the student becomes the teacher itself, and uti-
lizes its past predictions to have more informative supervi-
sions during training as can be seen in Fig. 1. Let PS

t (x) be
the prediction about x from the student at t-th epoch. Then,
our objective at t-th epoch can be written as:

LKD,t(x,y) = H
(
(1− α)y + αPS

i<t(x), P
S
t (x)

)
. (4)

Note that using the predictions from t-th epoch as the
teacher’s knowledge is trivial since it will not incur any loss.

The main difference from the conventional KD is that
the teacher is not a static model, but dynamically evolves
as training proceeds. Among all past models that are candi-
dates for the teacher, we use the model at (t−1)-th epoch as
the teacher since it can provide most valuable information
among the candidates. Concretely, in t-th epoch of training,
the target for the input x is softened as (1−α)y+αPS

t−1(x).
It is empirically observed that this approach utilizing the
past model as a teacher regularizes the model effectively.

One more thing we have to consider is how to determine
α in Eq. (4). The α controls how much we are going to trust
the knowledge from the teacher. In the conventional KD,
the teacher remains unchanged so the α is usually set to a
fixed value during training. However, in PS-KD, the reli-
ability of the teacher should be considered since the model
generally does not have enough knowledge about data at the
early stage of training. To this end, we increase the value of
α gradually. Like the learning rate scheduling, there are sev-
eral strategies to increase the α as a function of the epoch,
e.g., step-wise, exponential, linear growth, etc. To minimize
the number of hyperparameters involved in the scheduling,
we apply the linear growth approach. Therefore, the α at
t-th epoch is computed as follows:

αt = αT × t

T
, (5)

where T is the total epoch for training and αT is the α at
the last epoch, which is a single hyperparameter to be de-
termined via validation process. Surprisingly, this simple
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strategy combined with past predictions improves the gen-
eralization performance significantly across a wide range of
tasks. To summarize, our objective function at t-th epoch
can be written as:

LKD,t(x,y) = H
(
(1− αt)y + αtP

S
t−1(x), P

S
t (x)

)
.
(6)

Theoretical support. We show that PS-KD pays more at-
tention to hard examples during training when a hyperpa-
rameter αt is properly set, and the αt value should be grad-
ually increased to preserve such an effect of hard example
mining. This effect is realized by example re-weighting,
motivated by Proposition 2 in Tang et al. [40]. The gra-
dient of LKD,t in Eq. 6 with respect to a logit value zi,
i = 1, ...,K for a fixed α1 is given by

∂LKD,t

∂zi
= ∂KD,t

i = (1−α)(pt,i − yi) +α(pt,i − pt−1,i).

(7)
Therefore, for zGT where GT denotes the target class,

∂KD,t
GT = (1− α)(pt,GT − 1) + α(pt,GT − pt−1,GT )

= (pt,GT − 1)− α(pt−1,GT − 1),
(8)

and for zi, i ̸= GT ,

∂KD,t
i = (1− α)pt,i + α(pt,i − pt−1,i)

= pt,i − αpt−1,i

(9)

If α is set to be pt,i − αpt−1,i ≥ 0 for all i ̸= GT , i.e., α ≤
mini (pt,i/pt−1,i), then (pt,GT − 1)−α(pt−1,GT − 1) < 0
and

∑
i ̸=GT |pt,i−αpt−1,i| = (1−pt,GT )−α(1−pt−1,GT )

holds. Therefore, L1 norm
∑

i |∂
KD,t
i | of the gradient can

be written as:∑
i

|∂KD,t
i | = 2(1− pt,GT )− 2α(1− pt−1,GT ). (10)

Let us consider the ratio of L1 norms∑
i |∂

KD,t
i |/

∑
i |∂i|, which represents the gradient

rescaling factor induced by PS-KD. By combining Eq. 10
and the fact that

∑
i |∂i| = 2(1 − pt,GT ), the rescaling

factor is given by:∑
i |∂

KD,t
i |∑

i |∂i|
= 1− α

(
1− pt−1,GT

1− pt,GT

)
≡ 1− α

(
γt−1

γt

)
.

(11)
Note that γ represents the probability of being incorrect.
Without loss of generality, it can be assumed that pt,GT ≥
pt−1,GT and pt,i ≤ pt−1,i for all i ̸= GT since PS

t pro-
vides better prediction than PS

t−1 on training data. There-
fore, γt−1 ≥ γt always holds. A large γt−1

γt
means that

1For notational simplicity, we ignore t in αt.
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Figure 2. (a) Target and (b) maximum probabilities for 100 hard-
to-learn samples (correctly classified less than 50 times during 300
epochs) on CIFAR-100. PS-KD keeps learning from hard exam-
ples by giving more weights to them.

predictions on that example are greatly improved during it-
erations (i.e., easy-to-learn). Conversely, hard-to-learn ex-
amples will have a small value. Consequently, the gradient
rescaling factors for hard-to-learn examples are greater than
those for easy-to-learn examples, which implies that PS-
KD gives more weights on hard-to-learn examples during
training, and it is empirically confirmed as shown in Fig. 2.
Fig. 2 shows that other methods are more overconfident on
incorrect predictions than PS-KD, and clearly demonstrates
that PS-KD focuses on hard examples implicitly by the gra-
dient rescaling scheme.

To expect such hard example mining effects, α should
satisfy the condition described above for all examples.
From this, α should be set to a sufficiently small value dur-
ing an early training phase. As training proceeds, the differ-
ences of γt−1

γt
’s for all examples become smaller. Therefore,

α should be gradually increased to preserve the effect.

Implementation. For PS-KD, the predictions from the
model at (t − 1)-th epoch are necessary for training at t-th
epoch. There are two ways to obtain these past predictions.
One is to load the model at (t − 1)-th epoch on memory
when t-th epoch is started so that the past predictions for
softening targets are also computed in forward passes. The
other is to save the past predictions on disk in advance dur-
ing (t − 1)-th epoch, and read this information to compute
the soft targets at t-th epoch. These two approaches have
pros and cons. The former way may need more GPU mem-
ory. On the other hand, the latter way does not need addi-
tional GPU memory but requires more space to store past
predictions.

The choice of how to obtain the past predictions depends
on the task we are dealing with. For example, on machine
translation with a large-scale corpus, it is nearly impossi-
ble to store the predicted probabilities over all tokens. For
this, we can choose the former strategy. Note that soften-
ing targets via a moving average [1] or distilling knowledge
with task-specific operations [45, 50] is not applicable to
this task. In our experiments, we employ an efficient way
according to the task, e.g., the past predictions from the
model on GPU memory is utilized for the tasks on Ima-
geNet classification and IWSLT15 machine translation.
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4. Experimental Results

In this section, we show the effectiveness of PS-KD
across a variety of tasks including image classification,
object detection, and machine translation. More details
on datasets, evaluation metrics and experimental settings
are available in the supplementary material. All experi-
ments were performed on NVIDIA DGX-1 system with Py-
Torch [30].

4.1. CIFAR-100 Classification

On CIFAR-100 classification, we consider four CNN
models: ResNet [14], ResNeXt [44], DenseNet [18], and
PyramidNet [12]. First, we compare PS-KD with LS and re-
cent self-KD methods, CS-KD [50] and TF-KD [48], on the
architectures we consider. Then, we demonstrate that PS-
KD is complementary to the existing regularization meth-
ods including data augmentation (e.g. Cutout [5], Cut-
Mix [49], etc.), and ensembles.

Experimental settings. The detailed architectures we
consider are PreAct ResNet-18 [15], ResNet-101 [14],
ResNeXt-29 (cardinality=8, width=64) [44], DenseNet-121
(growth rate=32) [18] and PyramidNet-200 (widening fac-
tor=240) [12]. We follow standard data augmentation
schemes: 32×32 random crop after padding with 4 pix-
els and random horizontal flip. All CNNs are trained using
SGD with a momentum of 0.9 for 300 epochs, and the learn-
ing rate is decayed by a factor of 10 at 150 and 225 epochs.
For ResNet, ResNeXt, and DenseNet, we set the mini-batch
size, a weight decay, and an initial learning rate to 128,
0.0005, and 0.1, respectively. For PyramidNet, the mini-
batch size, a weight decay, and an initial learning rate are
set to 64, 0.0001, and 0.25, respectively, following [12, 49].

To compare the performance of PS-KD with LS, CS-
KD2 and TF-KD3, the hyperparameters are set according
to those reported in the corresponding studies. Our PS-KD
has only a single hyperparameter αT . To determine the op-
timal αT , we use randomly sampled 10% of training data
as a validation dataset. In this experiment, we set the αT

to 0.8 which shows the optimal validation performance in
terms of accuracy and calibration on ResNet-18.4 With this
parameter value, we then train a model on the entire train-
ing dataset for a fair comparison. Note that the value tuned
for ResNet-18 is also used for other all architectures since
we expect that PS-KD is fairly robust to the hyperparameter
αT , and it is confirmed from the experimental results.

For existing regularization methods to be combined with
PS-KD, we also follow the hyperparameter values reported

2https://github.com/alinlab/cs-kd
3https://github.com/yuanli2333/Teacher-free-Knowledge-Distillation
4The hyperparameters of each method and the ablation study on αT

are provided in the supplementary material.

Model
+ Method

Top-1
Err (%)

Top-5
Err (%) NLL ECE

(%)
AURC
(×103)

ResNet-18 24.18 6.90 1.10 11.84 67.65
+ LS 20.94 6.02 0.98 10.79 57.74
+ CS-KD 21.30 5.70 0.88 6.24 56.56
+ TF-KD 22.88 6.01 1.05 11.96 61.77
+ PS-KD 20.82 5.10 0.76 1.77 52.10

ResNet-101 20.75 5.28 0.89 10.02 55.45
+ LS 19.84 5.07 0.93 3.43 95.76
+ CS-KD 20.76 5.62 1.02 12.18 64.44
+ TF-KD 20.10 5.10 0.84 6.14 58.8
+ PS-KD 19.43 4.30 0.74 6.92 49.01

DenseNet-121 20.05 4.99 0.82 7.34 52.21
+ LS 19.80 5.46 0.92 3.76 91.06
+ CS-KD 20.47 6.21 1.07 13.80 73.37
+ TF-KD 19.88 5.10 0.85 7.33 69.23
+ PS-KD 18.73 3.90 0.69 3.71 45.55

ResNeXt-29 18.65 4.47 0.74 4.17 44.27
+ LS 17.60 4.23 1.05 22.14 41.92
+ CS-KD 18.26 4.37 0.80 5.95 42.11
+ TF-KD 17.33 3.87 0.74 6.73 40.34
+ PS-KD 17.28 3.60 0.71 9.15 39.78

PyramidNet 16.80 3.69 0.73 8.04 36.95
+ LS 17.82 4.72 0.89 3.46 105.02
+ CS-KD 18.31 5.70 1.17 14.70 70.05
+ TF-KD 16.48 3.37 0.79 10.48 37.04
+ PS-KD 15.49 3.08 0.56 1.83 32.14

Table 1. Evaluation results on CIFAR-100 compared to other
methods with popular architectures, averaged over three runs. The
best result is shown in boldface.

in the literature, for example, the hole size in Cutout is set
to 8 and the parameter α of Beta distribution in CutMix is
set to 1. Cutout and CutMix produce randomly synthesized
images from two inputs at every iteration. In this case, ap-
plying PS-KD with them at the same time is not straight-
forward. Therefore, for the experiments where PS-KD is
combined with Cutout or CutMix, each data selects the reg-
ularization method with a probability of 0.5. Simply, PS-
KD is applied to the half of the data in a randomly shuffled
mini-batch, and Cutout or CutMix is performed on another
half of the data.

Evaluation metrics. We use top-1 and top-5 error as
standard performance measures for multi-class classifica-
tion. We also employ the negative log-likelihood (NLL),
expected calibration error (ECE) [29] and the area under
the risk-coverage curve (AURC) [9] to evaluate the qual-
ity of predictive probabilities in terms of confidence estima-
tion. ECE is a widely used metric to determine whether a
model’s predictions are well-calibrated, approximating the
difference in expectation between classification accuracy
and confidence estimates. AURC measures the area under
the curve from plotting the risk (i.e., error rate) according to
coverage. A low AURC implies that correct and incorrect
predictions can be well-separable based on confidence esti-
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mates. In these experiments, the maximum class probability
is used as a confidence estimator.

Result. The comparison results are summarized in Ta-
ble 1. Note that we report average values over three runs.
First, we observe that training with PS-KD performs bet-
ter than baseline and LS in terms of classification accu-
racy across all architectures, e.g., an improvement of 1.37%
and 0.32% from baseline and LS on ResNeXt, respectively.
Compared with CS-KD and TF-KD, PS-KD also shows bet-
ter accuracy while significantly improving the performance
on confidence estimation, for example, it improves accu-
racy by 1.74% and 1.15% from CS-KD and TF-KD on
DenseNet-121, respectively, and it reduces ECE by 12.87%
and 8.65% from CS-KD and TF-KD on PyramidNet, re-
spectively. The performance improvement on confidence
estimation is consistently observed across all metrics (i.e.,
NLL, ECE, and AURC) except for the two cases, ECE
on ResNet-101 and ResNeXt.5 Nevertheless, PS-KD pro-
vides robust calibration performance on all architectures,
e.g., less than 10% in ECE, as can be seen from the cal-
ibration plots in Fig. 3. Interestingly, ResNeXt provides
well-calibrated predictions in terms of ECE, and it would
be worth investigating which architectural factors of CNNs
affect calibration performance.

From the results, it is confirmed that PS-KD is the only
method which shows consistent and robust performance im-
provement across all metrics. Importantly, CS-KD performs
worse than LS or even baseline in some cases from our
experiments. We suspect that these results are caused by
the implicit property of CS-KD, which pulls all samples in
the same class each other, and it may accelerate overfitting
when a model has high capacity or hyperparameters are not
properly tuned.

To show that PS-KD can be used in conjunction with
other advanced regularization methods, we present the de-
tailed experimental results on PyramidNet in Table 2. Com-
pared with Cutout and CutMix on PyramidNet, PS-KD
shows slightly higher accuracy while significantly improv-
ing performances on confidence estimation. We observe the
top-1 error of 14.82% when Cutout is combined with PS-
KD, which is 1.23% improvement of Cutout. When PS-
KD, CutMix, and SD are utilized simultaneously, the top-1
error from the combination of CutMix and SD is reduced by
0.48%. In this setting, it is confirmed again that PS-KD pro-
vides a positive effect on confidence estimation: all metrics,
NLL, ECE, and AURC, are improved by PS-KD. More ex-
perimental results on other self-KD methods are presented
in the supplementary material. These results demonstrate
that current state-of-the-art regularization methods benefit

5When αT is tuned on ResNeXt-29, we observed that most metrics
are further improved: for αT = 0.7, Top-1=17.06%, Top-5=3.68%,
NLL=0.69, ECE=6.3%, and AURC=38.64.

Model
+ Method

Top-1
Err (%)

Top-5
Err (%) NLL ECE

(%)
AURC
(×103)

PyramidNet 16.80 3.69 0.73 8.04 36.95
+ PS-KD 15.49 3.08 0.56 1.83 32.14

+ Cutout [5] 16.05 3.42 0.67 7.15 33.20
+ Cutout + PS-KD 14.82 2.86 0.54 3.69 29.77

+ CutMix [49] 15.62 3.38 0.68 8.16 34.60
+ CutMix + PS-KD 15.03 2.91 0.58 5.81 30.22

+ CutMix + SD [46] 14.07 2.38 0.51 3.96 28.65
+ CutMix + SD + PS-KD 13.59 2.18 0.49 3.46 25.98

Table 2. Performance enhancement of data augmentation methods,
Cutout and CutMix, by PS-KD, averaged over three runs. The best
result is shown in boldface.

Model
+ Method

Top-1
Err (%)

Top-5
Err (%) NLL ECE

(%)
AURC
(×103)

ResNet-18 21.36 5.05 0.89 4.29 54.61
+ CS-KD 18.39 4.21 0.74 3.07 43.33
+ TF-KD 21.07 4.80 0.90 6.48 52.70
+ PS-KD 18.79 4.17 0.68 5.12 44.29

ResNet-101 18.27 3.99 0.74 4.01 44.46
+ CS-KD 17.97 4.00 0.78 4.61 43.83
+ TF-KD 18.16 3.97 0.71 1.52 43.66
+ PS-KD 17.26 3.42 0.63 2.15 37.85

DenseNet-121 17.09 3.51 0.65 1.96 39.01
+ CS-KD 17.04 3.85 0.73 4.08 42.40
+ TF-KD 16.96 3.32 0.71 5.36 39.31
+ PS-KD 16.25 2.85 0.57 1.92 34.64

ResNeXt-29 16.72 3.44 0.65 3.78 36.98
+ CS-KD 16.86 3.51 0.75 8.58 37.06
+ TF-KD 16.03 3.33 0.70 8.89 35.14
+ PS-KD 15.99 3.10 0.68 11.1 21.79

PyramidNet 14.58 2.85 0.60 2.63 30.04
+ CS-KD 15.29 3.93 0.76 4.72 36.53
+ TF-KD 14.77 2.77 0.65 5.60 30.55
+ PS-KD 14.11 2.58 0.50 2.79 27.29

Table 3. Performance improvement of ensembles by PS-KD. For
ensembling, three trained models in Table 1 are used. The best
result is shown in boldface.

from PS-KD in terms of not only classification accuracy, but
also confidence estimation. From the previous study [3], it
is known that LS might be harmful to generalization perfor-
mance when applied concurrently with the advanced meth-
ods. Our empirical findings reveal that how to soften the
hard targets is important and the distilled knowledge from a
model itself can be a good source to create more informative
targets.

We also examine the ensemble effects of PS-KD. For en-
sembling, we utilize the three trained models from the pre-
vious experiment. Table 3 shows the performances of en-
sembles from baseline, CS-KD, TF-KD, and PS-KD mod-
els. From the results, it is shown that ensembles can also
benefit from PS-KD, which implies that PS-KD does not
degrade the diversity of independently trained models.
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(a) ResNet-18
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(b) ResNet-101
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(c) DenseNet-121
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(d) ResNext-29
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(e) PyramidNet

Figure 3. Calibration plots of all architectures on CIFAR-100. A diagonal dashed line represents perfect calibration.

Model
+ Method

Top-1
Err (%)

Top-5
Err (%) NLL ECE

(%)
AURC
(×103)

DenseNet-264* [18] 22.15 6.12 - - -
ResNeXt-101* [44] 21.20 5.60 - - -

ResNet-152 22.19 6.19 0.88 3.84 61.79
+ LS 21.73 5.85 0.92 3.91 68.24
+ CS-KD 21.61 5.92 0.90 5.79 62.12
+ TF-KD 22.76 6.43 0.91 4.70 65.28
+ PS-KD 21.41 5.85 0.84 2.51 61.01

+ CutMix 21.04 5.56 0.81 2.19 58.43
+ CutMix + LS 20.77 5.36 0.85 1.90 63.45
+ CutMix + CS-KD 21.08 5.53 0.83 1.56 59.02
+ CutMix + TF-KD 22.00 5.93 0.85 2.18 62.57
+ CutMix + PS-KD 20.76 5.34 0.80 0.54 58.25

Table 4. Top-1/top-5 error, NLL, ECE and AURC results on Ima-
geNet validation dataset.‘*’ denotes results reported in the original
papers. The best result is in bold.

4.2. ImageNet Classification

In the case of a large-scale dataset like ImageNet [4],
the knowledge (i.e., predictions) from the previous snapshot
model at (t − 1)-th epoch might be too outdated since the
model at t-th epoch further learns from a large number of
samples during a single epoch. Nevertheless, we observe
that the model benefits from PS-KD even for such a large-
scale dataset.

Experimental settings. As a baseline, we train PS-KD
using ResNet (depth=152) with standard data augmenta-
tion schemes including random resize cropping, random
horizontal flip, color jittering, and lighting, following [49].
We train ResNet-152 for 90 epochs with a weight decay
of 0.0001 and an initial learning rate of 0.1, followed by
decaying the learning rate by a factor of 10 at 30 and 60
epochs. We employ SGD with a momentum of 0.9 as an
optimizer and set the mini-batch size to 256. For LS, we set
the hyperparameter ϵ as 0.1. Since the optimal hyperparam-
eters of CS-KD and TF-KD on ImageNet are not reported
in the literature, we conduct a random search over five runs
to compare in a fair setting.6

Result. Table 4 shows performances evaluated by the
metrics used in the previous section. Our method shows

6All results can be found in the supplementary material.

Figure 4. Predicted probabilities for samples in the validation
dataset from baseline and PS-KD. The ground-truth labels of these
images are “bulletproof vest” (top), and “stove” (bottom).

better accuracy than LS and other self-KD methods, achiev-
ing a top-1 error of 21.41%. Also, PS-KD achieves better
performance on confidence estimation, i.e., it reduces ECE
by 3.28% for CS-KD and 2.19% from TF-KD, respectively.
From our validation results provided in the supplementary
material, we observe that CS-KD is sensitive to the hyper-
parameters while PD-KD is much more robust to the hy-
perparameter αT . Additionally, PS-KD is further improved
on all metrics when combined with CutMix, especially in
terms of ECE. It is consistent with the results on CIFAR-
100, which demonstrates that PS-KD provides additional
benefits to the existing regularization methods. On the other
hand, other self-KD methods in conjunction with CutMix
are even worse than the vanilla CutMix. We expect that the
performance improvement can be greater if the knowledge
from the recent past model is utilized, for example, the pre-
dictions from the model at (t− 0.5)-th epoch.

Examples of how our PS-KD improves the quality of
predicted probability are shown in Fig. 4 (see the supple-
mentary material for more examples). For the top image
whose label is “bulletproof vest”, both baseline and PS-
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KD produce an incorrect prediction. However, PS-KD out-
puts the class probabilities distributed over the classes that
have similar visual characteristics while the baseline out-
puts overconfident prediction on non-target class. The bot-
tom image is labeled as “stove” while containing multiple
objects including “coffee pot” and “stove”. Both baseline
and PS-KD correctly classify this image, however, PS-KD
also produces a high probability on “Dutch oven” that is
visually similar to the objects in the image. These quantita-
tive and qualitative results support the advantage of PS-KD
which acts as an effective and strong regularizer.

4.3. Object Detection

We also examine that other visual recognition tasks can
benefit from PS-KD. For this, we perform the experiment
on the task of object detection using PASCAL VOC [7]
dataset. We use the 5k VOC 2007 trainval and 15k VOC
2012 trainval as training sets, and use the PASCAL VOC
2007 test as a test set, following [32, 49]. As a baseline,
Faster R-CNN [32] is considered, and the improvement of
detection performance is examined by replacing the original
VGG-16 [34] backbone network with a ResNet-152 trained
on ImageNet. We utilize six different backbones trained
for the previous section: ResNet-152, ResNet-152 with LS,
PS-KD, CS-KD, TF-KD, and PS-KD+CutMix. We then
fine-tune Faster R-CNN with each backbone network for 10
epochs with a mini-batch size of 1, an initial learning rate
of 0.001 decayed by a factor of 10 at 5 epochs.

Method mAP (IoU > 0.5) (%)

ResNet-152 78.26
+ LS 78.44
+ CS-KD 78.33
+ TF-KD 78.28
+ PS-KD 79.50
+ PS-KD + CutMix 79.72

Table 5. Effect of PS-KD as a pretrained backbone network for
Faster R-CNN. The mAP value is computed by averaging APs
over classes.

As shown in Table 5, ResNet-152 with PS-KD sig-
nificantly improves the detection performance by 1.06%,
1.17%, and 1.22% of the mean average precision (mAP)
compared to ResNet-152 with LS, CS-KD, and TF-KD, re-
spectively.7 Furthermore, PS-KD shows better mAP when
it is combined with CutMix. Note that this improvement
is achieved by just replacing the backbone network. From
this result, it is verified that training with PS-KD provides
a strong backbone network, which provides generic repre-
sentations that can be transferred to other visual recognition
tasks.

7APs over all classes are presented in the supplementary material.

4.4. Machine Translation

To verify the effectiveness of PS-KD on other tasks
rather than multi-class classification, a machine translation
task where classification is performed on a token-level, not
an input-level is considered.

We use two benchmark datasets including IWSLT15 En-
glish to German (EN-DE) and German to English (DE-
EN) [2], and Multi30k [6] from WMT16 [35]. The original
purpose of Multi30k is for multimodal learning, consist-
ing of images and descriptions associated with them. For
the experiment, we extract only image descriptions written
in English and German translations by professional transla-
tors. This dataset consists of 29K train data, 1K validation
data, and 10K test data with 9,521 vocabularies.

We consider Transformer [41] as our baseline model.8

All hyperparameters involved in the architecture and train-
ing are set to those reported in [42]. In specific, we use
the architecture with N = 6, dmodel = 512, h = 4,
dk = 64, dff = 1024. We train the model for 150 epochs
with a maximum of 4,096 tokens per a mini-batch, and em-
ploy Adam optimizer [21] with β1 = 0.9, β2 = 0.98. As
a metric, BLEU, commonly used to evaluate the perfor-
mance on machine translation, is used. The hyperparameter
αT = 0.7 is determined through validation.

Model
+ Method

IWSLT15 Multi30k

EN-DE DE-EN DE-EN

Transformer 28.5 34.6 29.0
+ LS 29.3 35.6 29.3
+ PS-KD 30.0 36.2 32.3

Table 6. BLEU scores on Transformer with LS or PS-KD

The results are summarized in Table 6. Our PS-KD
achieves the best BLEU scores on all datasets. Consistent
with the results from image classification and object de-
tection, PS-KD shows better performance than the baseline
Transformer and that with LS.

5. Conclusion

We propose a simple way to improve the generaliza-
tion performance of DNNs, which distills the knowledge
of a model itself to generate more informative targets for
training. The targets are softened by using past predic-
tions about data from the model at the previous epoch. We
also provide theoretical justification, which shows that our
method performs hard example mining implicitly during
training. From the experimental results conducted across
diverse tasks, we observe that the proposed method is effec-
tive to improve the generalization capability of DNNs.

8Experiments were conducted using Fairseq (https://github.com/
pytorch/fairseq) toolkit [28].
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[20] Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. Exploring the limits of language
modeling. arXiv preprint arXiv:1602.02410, 2016. 1

[21] Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations, 2015. 8

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems, 2012. 1

[23] Anders Krogh and John A. Hertz. A simple weight decay can
improve generalization. In Advances in Neural Information
Processing Systems, 1992. 1

[24] Jooyoung Moon, Jihyo Kim, Younghak Shin, and Sangheum
Hwang. Confidence-aware learning for deep neural net-
works. In International Conference on Machine Learning,
2020. 2

[25] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton.
When does label smoothing help? In Advances in Neural
Information Processing Systems, 2019. 1, 3

[26] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep
neural networks are easily fooled: High confidence predic-
tions for unrecognizable images. In The IEEE Conference
on Computer Vision and Pattern Recognition, 2015. 1

[27] Steven J Nowlan and Geoffrey E Hinton. Simplifying neu-
ral networks by soft weight-sharing. Neural Computation,
4(4):473–493, 1992. 1

[28] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael Auli.
fairseq: A fast, extensible toolkit for sequence modeling. In
North American Chapter of the Association for Computa-
tional Linguistics, 2019. 8

[29] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. Obtaining well calibrated probabilities using
bayesian binning. In AAAI Conference on Artificial Intel-
ligence, 2015. 5

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

6575



Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, 2019.
5

[31] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V.
Le. Regularized evolution for image classifier architecture
search. In AAAI Conference on Artificial Intelligence, 2019.
1

[32] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in Neural Information Pro-
cessing Systems, 2015. 1, 8

[33] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and
Aleksander Madry. How does batch normalization help op-
timization? In Advances in Neural Information Processing
Systems, 2018. 1

[34] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In In-
ternational Conference on Learning Representations, 2015.
8

[35] Lucia Specia, Stella Frank, Khalil Sima’an, and Desmond
Elliott. A shared task on multimodal machine translation
and crosslingual image description. In Association for Com-
putational Linguistics, 2016. 8

[36] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15:1929–1958, 2014. 1

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In The IEEE Conference on Computer Vision
and Pattern Recognition, 2015. 1

[38] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In The IEEE Conference on
Computer Vision and Pattern Recognition, 2016. 1

[39] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking
model scaling for convolutional neural networks. In Interna-
tional Conference on Machine Learning, 2019. 1

[40] Jiaxi Tang, Rakesh Shivanna, Zhe Zhao, Dong Lin, An-
ima Singh, Ed H. Chi, and Sagar Jain. Understand-
ing and improving knowledge distillation. arXiv preprint
arXiv:2002.03532, 2021. 4

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, 2017. 1, 8

[42] Felix Wu, Angela Fan, Alexei Baevski, Yann N. Dauphin,
and Michael Auli. Pay less attention with lightweight and dy-
namic convolutions. In International Conference on Learn-
ing Representations, 2019. 8

[43] Lingxi Xie, Jingdong Wang, Zhen Wei, Meng Wang, and
Qi Tian. Disturblabel: Regularizing CNN on the loss layer.
CoRR, abs/1605.00055, 2016. 1

[44] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep

neural networks. In The IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2017. 5, 7

[45] Ting-Bing Xu and Cheng-Lin Liu. Data-distortion guided
self-distillation for deep neural networks. In AAAI Confer-
ence on Machine Learning, 2019. 2, 3, 4

[46] Y. Yamada, M. Iwamura, T. Akiba, and K. Kise. Shake-
drop regularization for deep residual learning. IEEE Access,
7:186126–186136, 2019. 6

[47] Chenglin Yang, Lingxi Xie, Chi Su, and Alan L. Yuille.
Snapshot distillation: Teacher-student optimization in one
generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019. 3

[48] Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi
Feng. Revisiting knowledge distillation via label smoothing
regularization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3903–
3911, 2020. 2, 3, 5

[49] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In The IEEE International Conference on Com-
puter Vision, 2019. 1, 5, 6, 7, 8

[50] Sukmin Yun, Jongjin Park, Kimin Lee, and Jinwoo Shin.
Regularizing class-wise predictions via self-knowledge dis-
tillation. In The IEEE Conference on Computer Vision and
Pattern Recognition, 2020. 2, 4, 5

[51] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
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