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Abstract

In general, an experimental environment for deep learn-
ing assumes that the training and the test dataset are sam-
pled from the same distribution. However, in real-world
situations, a difference in the distribution between two
datasets, i.e. domain shift, may occur, which becomes a
major factor impeding the generalization performance of
the model. The research field to solve this problem is called
domain generalization, and it alleviates the domain shift
problem by extracting domain-invariant features explicitly
or implicitly. In recent studies, contrastive learning-based
domain generalization approaches have been proposed and
achieved high performance. These approaches require sam-
pling of the negative data pair. However, the performance
of contrastive learning fundamentally depends on quality
and quantity of negative data pairs. To address this is-
sue, we propose a new regularization method for domain
generalization based on contrastive learning, called self-
supervised contrastive regularization (SelfReg). The pro-
posed approach use only positive data pairs, thus it re-
solves various problems caused by negative pair sampling.
Moreover, we propose a class-specific domain perturbation
layer (CDPL), which makes it possible to effectively apply
mixup augmentation even when only positive data pairs are
used. The experimental results show that the techniques in-
corporated by SelfReg contributed to the performance in a
compatible manner. In the recent benchmark, DomainBed,
the proposed method shows comparable performance to the
conventional state-of-the-art alternatives.

1. Introduction

Machine learning systems often fail to generalize out-of-
sample distribution as they assume that in-samples and out-
of-samples are independent and identically distributed – this
assumption rarely holds during deployment in real-world
scenarios where the data is highly likely to change over time
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Figure 1. Our model utilizes the self-supervised contrastive losses
for the model to learn domain-invariant representation by mapping
the latent representation of the same-class samples close together.
Note that different shapes (i.e. circles, stars, and squares) indicate
different classes Ci∈{1,2,3}, and we differently color-code accord-
ing to their domain Di∈{1,2,3,4,Target}.

and space. Deep convolutional neural network features are
often domain-invariant to low-level visual cues [35], some
studies [10] suggest that they are still susceptible to domain
shift.

There have been increasing efforts to develop models
that can generalize well to out-of-distribution. The liter-
ature in domain generalization (DG) aims to learn the in-
variances across multiple different domains so that a classi-
fier can robustly leverage such invariances in unseen test
domains [40, 15, 29, 28, 31, 38]. In the domain gener-
alization task, it is assumed that multiple source domains
are accessible during training, but the target domains are
not [4, 31]. This is different from domain adaptation (DA),
semi-supervised domain adaptation (SSDA), and unsuper-
vised domain adaptation (UDA) problems, where examples
from the target domain are available during training. In this
paper, we focus on the domain generalization task.

Some recent studies [7, 20, 33] suggest that contrastive
learning can be successfully used in a self-supervised learn-
ing task by mapping the latent representations of the posi-
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tive pair samples close together, while that of negative pair
samples further away in the embedding space. Such a con-
trastive learning strategy has also been utilized for the do-
main generalization tasks [30, 11], similarly aiming to re-
duce the distance of same-class features in the embedding
space, while increasing the distance of different-class fea-
tures. However, such negative pairs often make the training
unstable unless useful negative samples are available in the
same batch, which is but often challenging.

In this work, we revisit contrastive learning for the do-
main generalization task, but only with positive pair sam-
ples. As it is generally known that using positive pair
samples only causes the performance drop, which is of-
ten called representation collapse [17]. Inspired by recent
studies on self-supervised learning [8, 17], which success-
fully avoids representation collapse by placing one more
projection layer at the end of the network, we successfully
learn domain-invariant features and our model trained with
self-supervised contrastive losses shows the matched or bet-
ter performance against alternative state-of-the-art methods,
where ours is ranked at top places in the domain generaliza-
tion benchmarks, i.e. DomainBed [18].

However, self-supervised contrastive losses are only part
of the story. As we generally use a linear form of the loss
function, properly balancing gradients is required so that
network parameters converge to generate domain-invariant
features. To mitigate this issue, we advocate for apply-
ing the following three gradient stabilization techniques: (i)
loss clipping, (ii) stochastic weights averaging (SWA), and
(iii) inter-domain curriculum learning (IDCL). We observe
that the combined use of these techniques further improves
the model’s generalization power.

To effectively evaluate our proposed model, we first
use the publicly available domain generalization data set
called PACS [26], where we analyzed our model in detail
to support our claims. We further experiment with much
larger benchmarks called DomainBed [18] where our model
shows matched or better performance against alternative
state-of-the-art methods.

We summarize our main contributions as follows:
• SelfReg facilitates the application of metric learning

using only positive pairs without negative pairs.
• We devised a CDPL by exploiting a condition that use

only positive pairs. The combination of CDPL and
mixup improves the weakness of mixup approach.

• The performance comparable to that of the SOTA DG
methods was confirmed in the DomainBed that facil-
itated the comparison of DG performance in the fair
and realistic environment.

2. Related Work
The main goal of domain generalization (DG) is to gen-

erate domain-invariant features so that the model is gen-

eralizable to unseen target domains, which are generally
outside the training distribution. Of a landmark work,
Vapnik et al. [40] introduces Empirical Risk Minimization
(ERM) that minimizes the sum of errors across domains.
Notable variants have been introduced to learn domain-
invariant features by matching distributions across differ-
ent domains. Ganin et al. [15] utilizes an adversarial net-
work to match such distributions, while Li et al. [29] instead
matches the conditional distributions across domains. Such
a shared feature space is optimized by minimizing maxi-
mum mean discrepancy [28], transformed feature distribu-
tion distance [31], or covariances [38]. In this work, we
also follow this stream of work, but we explore the benefit
of self-supervised contrastive learning that can inherently
learn to domain-invariant discriminating feature by explic-
itly mapping the “same-class” latent representations close
together.

To our best knowledge, there are few that applied
contrastive learning in the domain generalization set-
ting. Classification and contrastive semantic alignment
(CCSA) [30] and model-agnostic learning of semantic fea-
tures (MASF) [11] aimed to reduce the distance of same-
class (positive pair) feature distributions while increasing
the distance of different-class (negative pair) feature distri-
butions. However, using such negative pairs often make the
training unstable unless useful negative samples are avail-
able in the same batch, which is often challenging. To
address this issue, we focus on minimizing a distance be-
tween the same-class (positive pair) features in the embed-
ding space as recently studied for the self-supervised learn-
ing task [7, 20, 33], including BYOL [17] and SimSiam [8].

Inter-domain mixup [45, 44, 43] techniques are intro-
duced to perform empirical risk minimization on linearly
interpolated examples from random pairs across domains.
We also utilize such a mixup, but we only interpolate same-
class features to preserve the class-specific features. We ob-
serve that such a same-class mixup help obtaining robust
performance for unseen domain data.

As another branch, JiGen [5] utilizes a self-supervised
signal by solving a jigsaw puzzle as a secondary task to
improve generalization. Meta-learning frameworks [27]
are also explored for domain generalization to meta-
learn how to generalize across domains by leveraging
MAML [14]. Some also explored splitting the model into
domain-invariant and domain-variant components by low-
rank parameterization [26], style-agnostic network [32],
and domain-specific aggregation modules [12].

3. Method
We start by motivating our method before explaining its

details. The main goal of domain generalization is to learn
a domain-invariant representation from multiple source do-
mains so that a model can generalize well across unseen
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Figure 2. An overview of our proposed SelfReg. We propose the self-supervised (in-batch) contrastive losses to regularize the model
to learn domain-invariant representations. These losses regularize the model to map the representations of the “same-class” samples
close together in the embedding space. We compute the following two dissimilarities in the embedding space: (i) individualized and (ii)
heterogenerous self-supervised dissimilarity losses. We further use the stochastic weight average (SWA) technique and the inter-domain
curriculum learning (IDCL) to optimize gradients in conflict directions.

target domains. While domain-variant representation can
be achieved to some degree through deep network architec-
tures, invariant representations are often harder to achieve
and are usually implicitly learned with the task. To address
this, we argue that a model should learn a domain-invariant
discriminating feature by comparing among different sam-
ples – the comparison can be performed between positive
pairs of same-class inputs and negative pairs of different-
class inputs.

Here we propose the self-supervised contrastive losses
to regularize the model to learn domain-invariant represen-
tation by mapping the representations of the “same-class”
samples close together, while that of “different-class” sam-
ples further away in the embedding space. This may share
a similar idea with contrastive learning, which trains a
discriminative model on multiple input pairs according to
some notion of similarity. Thus, we start with the recent
batch contrastive approaches and extend them to the domain
generalization setting. While some domain generalization
approaches need to modify the model architecture during
learning, our proposed contrastive method is much simpler
where no modification to the model architecture is needed.

In the next section, we explain our proposed self-
supervised contrastive losses for domain generaliza-
tion tasks, which mainly measures the following two
feature-level dissimilarities in the embedding space: (i)
Individualized In-batch Dissimilarity Loss (Section 3.1)
and (ii) Heterogeneous In-batch Dissimilarity Loss (Sec-
tion 3.2). Note that these losses can be applied to both
the intermediate features and the logits from the classifier
(Section 3.3). In fact, in our ablation study (Section 4.4),
the combined use of both regularization achieves the best
performance. In Section 3.4, we also discuss the stochas-

tic weight average (SWA) technique that we use with our
self-supervised contrastive losses and observe a further per-
formance improvement, which is possibly due to SWA
provides the more flatness in loss surface by ensembling
domain-specific models. Lastly, in Section 3.5, we discuss
the inter-domain curriculum learning (IDCL) strategy so
that examples from source domains are exposed in a mean-
ingful order to gradually provide more complex ones.

3.1. Individualized In-batch Dissimilarity Loss

Given latent representations zci = fθ(xi) for a class
label c ∈ C and i ∈ {1, 2, . . . , N}, we compute the in-
dividualized in-batch dissimilarity loss Lind. Note that we
use a feature generator fθ parameterized by θ and we use a
batch size of N . The dissimilarity between a positive pair
of the “same-class” latent representations is measured as in
the following Eq. 1:

Lind(z) =
1

N

N∑
i=1

∣∣∣∣zci − fCDPL
(
zcj∈[1,N ]

)∣∣∣∣2
2

(1)

where zcj is randomly chosen from other in-batch latent rep-
resentations {zci} that has the same class label c ∈ C. Note
that we only consider optimizing the alignment of positive
pairs and the uniformity of the representation distribution
at the same time. As discussed in [17], we use an addi-
tional MLP layer fCDPL, called Class-specific Domain Per-
turbation Layer, to prevent the performance drop caused by
so-called representation collapse. We provide an ablation
study in Section 4.4 to confirm the use of fCDPL achieves
better performance.

For better computational efficiency, we use the following
two steps to find all positive pairs. (i) We first cluster and
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Figure 3. An overview of our proposed self-supervised contrastive
regularization losses.

order latent representations zi into a same-class group, i.e.
{zci} for c ∈ C. (ii) For each same-class group, we modify
its order by random shuffling and obtain SHUFFLE{zci}.
(iii) We finally form a positive pair in order from {zci} and
SHUFFLE{zci}.

3.2. Heterogeneous In-batch Dissimilarity Loss

To further push the model to learn domain-invariant
representations, we use an additional loss, called heteroge-
neous in-batch dissimilarity loss. Given latent representa-
tions ui = fCDPL(z

c
i ) from the previous step, we apply a

two-domain Mixup layer to obtain the interpolated latent
representation z̄i across different domains. This regularizes
the model on the mixup distribution [46], i.e. a convex com-
bination of samples from different domains. This is similar
to a layer proposed by Wang et al. [43] as defined as fol-
lows:

ūc
i = γuc

i + (1− γ)uc
j∈[1,N ] (2)

where γ ∼ Beta(α, β) for α = β ∈ (0,∞). Similarly, uc
j

is randomly chosen from {uc
i} for i ∈ {1, 2, . . . , N} that

have the same class label. Note that γ ∈ [0, 1] is controlled
by hyper-parameters α and β.

Finally, we compute the heterogeneous in-batch dissim-
ilarity loss Lhdl(z) as follows:

Lhdl(z) =
1

N

N∑
i=1

∣∣∣∣zci − ūc
i

∣∣∣∣2
2

(3)

3.3. Feature and Logit-level Self-supervised Con-
trastive Losses

The proposed individualized and heterogeneous in-
batch dissimilarity losses can be applied to both the inter-
mediate features and the logits from the classifier. We use
the loss function LSelfReg as follows:

LSelfReg = λfeatureLfeature + λlogitLlogit (4)

where we use λfeature and λlogit to control the strength of
each term. As we use a linear form of the loss function,

which often needs to be properly balanced so that network
parameters converge to generate domain-invariant features
that are also useful for the original classification task. We
observe that our self-supervised contrastive losses LSelfReg
become dominant after the initial training stage, inducing
gradient imbalances to impede proper training. To miti-
gate this issue, we apply two gradient stabilization tech-
niques: (i) loss clipping and (ii) stochastic weights aver-
aging (SWA), and (iii) inter-domain curriculum learning
(IDCL). For (i), we modify gradient magnitudes to be de-
pendent on the magnitude of the classification loss Lc – i.e.
we use the gradient magnitude modifier min(1.0,Lc) and
thus Lfeature = min(1.0,Lc)

[
γLind + (1 − γ)Lhdl

]
. This

technique is effective to dynamically balance these losses
during training. For (ii) and (iii), we discuss details respec-
tively in Section 3.4 and in Section 3.5.

Loss Function Ultimately, we use the following loss func-
tion L that consists of classification loss Lc as well as our
self-supervised contrastive loss LSelfReg:

L = Lc + LSelfReg (5)

3.4. Stochastic Weights Averaging (SWA)

Stochastic Weight Average (SWA) is an ensembling
technique to find a flatter minimum in loss space by aver-
aging snapshots of model parameters derived from multiple
local minima in the training procedure [23]. It is known
that finding a flatter minima guarantees better generaliza-
tion performance [19], and thus it has been used in domain
adaptation and generalization fields that require high gener-
alization performance [48, 6].

Given model weight space Ω = {ω0, ω1, . . . , ωN},
where N is the number of training steps. There is no spe-
cific constraint for sampling model weights, however, in
general, sampling process is performed at a specific pe-
riod while the model is sufficiently converged. We use c
as a cyclic step length and sample weight space for SWA is
Ωswa = {ωm+kc} for k ≥ 0, 0 ≤ m ≤ m+ kc ≤ N , where
m indicates the initial step for SWA. Then we can derive the
averaged weight wswa as follows:

ωswa =
1

k + 1

k∑
i=0

ωm+ic. (6)

3.5. Inter-domain Curriculum Learning (IDCL)

Leveraging the ImageNet-pretrained ConvNet as a back-
bone is a common practice in the domain generalization lit-
erature. Such models are then often fine-tuned with exam-
ples that are randomly presented from all source domains
Di for i ∈ {1, 2, . . . ,M}, which often make the training
unstable as it optimizes gradients in conflict directions.

Here we use a curriculum learning strategy where source
domains are exposed in a meaningful order to gradually
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provide more complex ones during training. We first ar-
range M source domains in a sequence ordered by a dis-
tance from a domain where a backbone is pre-trained, e.g.
ImageNet [9] data set. Given the ordered source domains
D′

i for i ∈ 1, 2, . . . ,M , we divide the overall training pro-
cess into M sub-stages s ∈ {1, 2, . . . ,M}. At each stage
s, a model is only exposed to a subset of source domains,
i.e. {D′

i≤s} – a model is exposed to gradually learn more
complex examples.

We observe such a curriculum learning-based training
strategy provides the substantial performance improvement
possibly due to regularizing conflict gradients. We provide
details in Section 4.4.

4. Experiments

4.1. Implementation and Evaluation Details

Following Huang et al. [22], we train our model, for
approximately 30 epochs, with a SGD optimizer using
ResNet18 [21] as a backbone, which is pretrained on Im-
ageNet [9]. Our backbone produces 512-dimensional latent
representation from the last layer. The batch size is set to
128 and learning rate to 0.004, which is decayed to 0.1 at 24
epochs. Note that such a decaying learning rate is not used
when it combined with the Stochastic Weights Averaging
technique, where we instead compute the averaged weight
wswa at the every end of each epoch. The loss weights are
λfeature = 0.3 and λlogit = 1.0 were determined using grid-
search. We provide our experimental results of our hyper-
parameters tuning in the supplemental material. For a two-
domain Mixup layer, we use α = β = 0.5. The model
architecture for the class-specific domain perturbation layer
fCDPL is a 2-layer MLPs with the number of hidden units set
to 1024, where we apply batch normalization followed by
ReLU activation function. Following RSC [22], data aug-
mentation is used in our experiments to improve model gen-
eralizability. This is done by randomly cropping, flipping
horizontally, jittering color, and changing the intensity.

Dataset To verify the effectiveness of the proposed method,
we evaluate our proposed method on the publicly avail-
able PACS [26]. This benchmark dataset contains the
overall 10k images from four different domains: Photo,
Art Painting, Cartoon, and Sketch. This dataset is par-
ticularly useful in domain generalization research as it pro-
vides a bigger domain shift than existing photo-only bench-
marks. This dataset provides seven object categories: i.e.
dog, elephant, giraffe, guitar, horse, house, and person. We
follow the same train-test split strategy from [26], we split
examples from training domains to 9:1 (train:val) and test
on the whole held-out domain. Note that we use the best-
performed model on validation for testing.

Table 1. Image recognition accuracy (%) comparison with the
state-of-the-art approach, RSC [22], on PACS [26] test set. We
also report standard deviation from a set of 20 models individually
trained for each model and each test domain.

Model
Test Domain

Average
Photo Art Painting Cartoon Sketch

A. DeepAll 95.66 ± 0.4 79.89 ± 1.3 75.61 ± 1.5 73.33 ± 2.8 81.12 ± 0.8

B. RSC [22] 94.56 ± 0.4 79.88 ± 1.7 76.87 ± 1.2 77.11 ± 2.7 82.10 ± 0.9

C. A + SelfReg (ours) 96.22 ± 0.3 82.34 ± 0.5 78.43 ± 0.7 77.47 ± 0.8 83.62 ± 0.3

4.2. Performance Evaluation

In Table 1, we first compare our model with the state-
of-the-art method, called Representation Self-Challenging
(RSC) [22], which iteratively discards the dominant fea-
tures during training and thus encourages the network to
fully use remaining features for the final verdict. For a
fair comparison, all models use the identical backbone Con-
vNet, i.e. ResNet18. We use the leave-one-out setting, i.e. a
specific single domain is used as a test domain and the oth-
ers as a training domain. To see the performance variance,
we trained each model 20 times for each test domain and
report the average image recognition accuracy and its stan-
dard deviation. As shown in Table 1, our proposed model
clearly outperforms the other approaches in all test domains
(compare the model B vs. model C), and the average image
recognition accuracy is 1.52% better than RSC [28], while
produces lower model variance (0.9 vs. 0.3 on average).

Qualitative Analysis by t-SNE We use t-SNE [39] to com-
pute pairwise similarities in the latent space and visualize
in a low dimensional space by matching the distributions by
KL divergence. In Figure 4, we provide a comparison of
t-SNE visualizations of baseline, RSC, and ours. The bet-
ter a model generalizes well, the points in the t-SNE should
be more clustered. As shown in Figure 4, (a) the baseline
model and (b) RSC [22] produce scattered multiple clus-
ters for each domain and class (see houses in the different
clusters according to their domain). Ours is not the case for
this. As shown in Figure 4 (c), objects from the same class
tend to form a merged cluster, making latent representations
close to each other in the high-dimensional space.

The Effect of Dissimilarity Loss We propose two types of
self-supervised contrastive loss that map the ”same-class”
samples close together. We observe in Figure 5 that ”same-
class” pairwise distance is effectively regularized in both
latent (a) feature and (b) logit space (compare dotted (base-
line) vs. red solid line (ours)). This was not the case for
the baseline. Note that we use Euclidean-based distance to
measure the pairwise difference.

Analysis with GradCAM We use GradCAM [37] to visu-
alize image regions where the network attends to. In Fig. 6,
we provide examples for different target domains where we
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Figure 4. Visualizations by t-SNE [39] for (a) baseline (no DG techniques), (b) RSC [22], and (c) ours. We extract latent representations
from each model in leave-one-out setting, and then visualize them. For better understanding, we also provide sample images of house from
all target domains. Note that we differently color-coded each points according to its class. Data: PACS [26]
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Figure 5. Distance between (a) a pair of same-class features and
(b) a pair of same-class logits. We measure such distance at every
epoch during training and compare ours (solid red) with baseline
(dotted). Euclidean-based distance is used to measure distance in
feature space. Data: PACS [26]

compare the model’s attention maps. We observe ours bet-
ter captures the class-invariant feature (i.e. the long neck of
the giraffe), while RSC [22] does not. Red is the attended
region for the network’s final verdict. We will provide more
diverse examples in the supplemental material.

4.3. Single-source Domain Generalization

We also evaluate our model in an extreme case for the
domain generalization task. We train our model with ex-
amples from a single source domain (not multiple source
domains as we see in a previous experimental setting), and

Photo Art Painting
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Figure 6. Original images with a giraffe for different domains (1st
row). We provide visualizations of Grad-CAM [37] for ours and
RSC [22] , which localizes class-discriminative regions. Data:
PACS [26]

then we evaluate with examples from other remaining tar-
get domains. As shown in Table 2, we report scores for
all source-target combinations, i.e. rows and columns for
source and target domains, respectively. As a baseline, we
compare ours with those of RSC [22] evaluated in the same
setting (compare scores in left and right tables). We also
report their differences in the last row (‘+’ indicates that
ours performs better). We observe in Table 2 that ours gen-
erally outperform alternative, where the average accuracy is
improved by 0.93%.

4.4. Ablation Study

In Table 3, we compare variants of our model by remov-
ing each component: i.e. (i) feature-level in-batch dissim-

9624



Table 2. As an extreme case for the domain generalization task, we train our model with a single source domain (rows) and evaluate with
other remaining target domains (columns). As a baseline, we also compare with RSC [22] of the same setting (compare left and right
tables). We also report their differences in the last row (+ indicates that ours performs better).

RSC [22]
Target domain

SelfReg
Target domain

Photo Art Painting Cartoon Sketch Average Photo Art Painting Cartoon Sketch Average

Photo - 66.33 ± 1.8 26.47± 2.5 32.08 ± 2.0 41.63 ± 1.6 Photo - 67.72 ± 0.7 28.97 ± 1.0 33.71 ± 2.6 43.46 ± 1.1

Art Painting 96.28 ± 0.4 - 62.54 ± 2.1 53.19 ± 3.2 70.67 ± 1.2 Art Painting 96.62 ± 0.3 - 65.22 ± 0.7 55.94 ± 3.1 72.59 ± 1.1

Cartoon 85.89 ± 1.1 68.99 ± 1.4 - 70.38 ± 1.7 75.08 ± 1.0 Cartoon 87.53 ± 0.8 72.09 ± 1.2 - 70.06 ± 1.6 76.56 ± 0.8

Sketch 47.40 ± 3.5 37.99 ± 1.4 56.36 ± 3.0 - 47.25 ± 2.9 Sketch 46.07 ± 5.3 37.17 ± 4.0 54.03 ± 3.2 - 45.76 ± 3.8

Average 76.52 57.77 48.45 51.88 58.66 Average 76.74 (+0.22%) 58.99 (+1.22%) 49.41 (+0.96%) 53.24 (+1.36%) 59.59 (+0.93%)

Table 3. Ablation study of SelfReg on PACS. Abbr. Rf : feature-level in-batch dissimilarity loss, Rl: logit-level in-batch dissimilarity
loss, Mix-up: two-domain mix-up layer, CDPL: class-specific domain perturbation layer, SWA: stochastic weights averaging, IDCL:
inter-domain curriculum learning

Model
Components Test Domain

Average
Llogit Lfeature Mixup CDPL SWA IDCL Photo Art Painting Cartoon Sketch

A. SelfReg (ours) ✓ ✓ ✓ ✓ ✓ ✓ 96.22 ± 0.3 82.34 ± 0.5 78.43 ± 0.7 77.47 ± 0.8 83.62 ± 0.3

B. A w/o IDCL ✓ ✓ ✓ ✓ ✓ 96.09 ± 0.3 81.89 ± 0.6 78.03 ± 0.4 77.21 ± 1.1 83.30 ± 0.3

C. B w/o SWA ✓ ✓ ✓ ✓ 96.10 ± 0.5 81.43 ± 1.0 77.86 ± 1.0 76.81 ± 1.2 83.05 ± 0.5

D. C w/o CDPL ✓ ✓ ✓ 96.04 ± 0.4 81.66 ± 1.3 77.48 ± 1.2 76.16 ± 1.3 82.84 ± 0.6

E. D w/o Mixup ✓ ✓ 96.05 ± 0.3 81.77 ± 1.1 77.45 ± 1.1 75.74 ± 1.6 82.75 ± 0.7

F. E w/o Lfeature ✓ 96.19 ± 0.3 81.59 ± 1.2 76.98 ± 1.3 75.71 ± 1.3 82.62 ± 0.5

G. F w/o Llogit (baseline) 95.66 ± 0.4 79.89 ± 1.3 75.61 ± 1.5 73.33 ± 2.8 81.12 ± 0.8

ilarity regularization, (ii) logit-level in-batch dissimilarity
regularization, (iii) a two-domain mixup layer, (iv) a class-
specific domain perturbation layer (CDPL), (v) stochastic
weights averaging (SWA), and (vi) inter-domain curriculum
learning (IDCL).

Effect of Inter-domain Curriculum Learning (IDCL)
We observe in Table 3 that applying our inter-domain cur-
riculum learning (IDCL) provides the recognition accuracy
(compare model A vs. B). Scores are generally improved in
all target domains, i.e. the average accuracy is improved by
0.32%. With IDCL, source domains are ordered by a dis-
tance from a domain where a backbone is pre-trained, and
specifically, we arrange source domains in a sequence or-
dered by image recognition accuracy on the validation set
in the leave-oneout setup – which uses a single domain as
a test domain and the others as a training domain. Thus,
we only provide examples from D1st stage ∈ {Photo} for the
first 5 epochs, which has a weak domain-shift from our Im-
ageNet pre-trained model. We then provide examples from
D2nd stage ∈ {Photo,Art Painting}, and then from all source
domains for the remaining epochs.

Effect of Stochastic Weights Averaging (SWA) As shown
in Table 3, the use of stochastic weight average technique
further provides better performance (compare model B vs.
C) in all target domains, i.e. the average accuracy is im-

proved by 0.25%. This is probably due to SWA provides
the flatness in loss surface by ensembling domain-specific
models, which generally have multiple local-minima dur-
ing the training procedure.

Effect of Mixup and CDPL As shown in Table 3, we ob-
serve that both CDPL and Mixup components contribute to
improve the overall performance (compare Model C vs. D
for CDPL, and Model D vs. E for Mixup). Such improve-
ment is more noticeable for the Sketch domain, which may
support that CDPL reinforces the overall effect of mixup
and makes DG performance more robust for target domains
that are significantly distanced from their source domains.

Feature- and Logit-level Contrastive Losses Model F , as
defined as the baseline model (Model G) plus Llogit, had
an average performance improvement of 1.50%. Accuracy
improved and variance decreased across all of the domains.
Therefore, regularization to minimize the logit vector-wise
distance on positive pairs appears effective in extracting
domain invariant features. Furthermore, Model E, which
adds Lfeature and Llogit to the baseline model, exhibited even
greater performance increase. Minimizing feature distances
of positive pairs as well as logit distances, was observed to
be effective in improving DG performance.
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Table 4. Average out-of-distribution test accuracies on the DomainBed setting. Here we compare 14 domain generalization algorithms in
the exact same conditions. Note that we train domain validation set as a model selection method. †: Ours does not use IDCL technique due
to implementational inflexibility on the DomainBed environment. Abbr. D: learning domain-invariant features by matching distributions
across different domains, A: adversarial learning strategy, M : inter-domain mix-up, C: contrastive learning, U : unsupervised domain
adaptation, which is originally designed to take examples from the target domain during training.

Model D A M C U CMNIST [1] RMNIST [16] VLCS [13] PACS [26] OfficeHome [42] TerraIncognita [2] DomainNet [34] Average

SelfReg† (ours) ✓ ✓ ✓ 51.6 ± 0.2 98.0 ± 0.1 77.5 ± 0.0 86.5 ± 0.3 69.4 ± 0.2 51.0 ± 0.4 44.6 ± 0.1 68.4

SelfReg† (no SWA) ✓ ✓ ✓ 52.1 ± 0.2 98.0 ± 0.1 77.8 ± 0.9 85.6 ± 0.4 67.9 ± 0.7 47.0 ± 0.3 41.5 ± 0.2 67.1

CORAL [38] ✓ ✓ 51.5 ± 0.1 98.0 ± 0.1 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 67.5

SagNet [32] ✓ ✓ 51.7 ± 0.0 98.0 ± 0.0 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 67.2

Mixup [45] ✓ 52.1 ± 0.2 98.0 ± 0.1 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 66.7

MLDG [27] 51.5 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 66.7

ERM [41] 51.5 ± 0.1 98.0 ± 0.0 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 66.6

MTL [3] 51.4 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 66.2

RSC [22] 51.7 ± 0.2 97.6 ± 0.1 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 66.1

ARM [47] 56.2 ± 0.2 98.2 ± 0.1 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 66.1

DANN [15] ✓ ✓ ✓ 51.5 ± 0.3 97.8 ± 0.1 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 66.1

VREx [25] ✓ 51.8 ± 0.1 97.9 ± 0.1 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 65.6

CDANN [29] ✓ ✓ 51.7 ± 0.1 97.9 ± 0.1 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 65.6

IRM [1] 52.0 ± 0.1 97.7 ± 0.1 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 65.4

GroupDRO [36] ✓ 52.1 ± 0.0 98.0 ± 0.0 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 64.8

MMD [28] ✓ 51.5 ± 0.2 97.9 ± 0.0 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 63.3

5. Large-scale Experiments on DomainBed

We further conduct experiments using DomainBed [18],
which is a unified testbed useful for evaluating domain
generalization algorithms. This testbed currently provides
seven multi-domain datasets (i.e. ColoredMNIST [1],
RotatedMNIST [16], VLCS [13], PACS [26], Office-
Home [42], TerraIncognita [2], and DomainNet [34]) and
provides benchmarks results of 14 baseline approaches
(i.e. ERM [41], IRM [1], GroupDRO [36], Mixup [45],
MLDG [27], CORAL [38], MMD [28], DANN [15],
CDANN [29], MTL [3], SagNet [32], ARM [47],
VREx [25], and RSC [22]).

As shown in Table 4, we also report scores for our model
evaluated in the setting of DomainBed. We observe in Ta-
ble 4 that ours generally shows matched or better perfor-
mance against alternative state-of-the-art methods, where
ours is ranked top places in terms of average of all seven
benchmarks. Note that ours does not use IDCL (see Sec-
tion 3.5) technique, which we believe that further improve-
ments are highly achievable combined with this technique.
We provide more detailed scores for each domain in the sup-
plemental material. Note that DANN [15] and CORAL [38]
are designed to take examples from the target domain dur-
ing training – i.e. CORAL [38] is trained to minimize the
distance between covariances of the source and target fea-
tures. Note also that some studies [32, 15, 29] use the
adversarial learning setting to obtain an unknown domain-
invariant feature by fitting implicit generative models, such

as GAN (generative adversarial networks). Though GAN
is a powerful framework, the alternating gradient updates
procedure is often highly unstable and often results in mode
collapse [24].

6. Conclusion

In this paper, we proposed SelfReg, a new regulariza-
tion method for domain generalization that leverages a self-
supervised contrastive regularization loss with only pos-
itive data pairs, mitigating problems caused by negative
pair sampling. Our experiments on PACS dataset and Do-
mainBed benchmarks show that our model matches or out-
performs prior work under the standard domain generaliza-
tion evaluation setting. In future work, it would be interest-
ing to extend SelfReg with the siamese network, enabling
the model to choose better positive data pairs.
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