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Abstract

We present an image segmentation algorithm that is de-
veloped in an unsupervised deep learning framework. The
delineation of object boundaries often fails due to the nui-
sance factors such as illumination changes and occlusions.
Thus, we initially propose an unsupervised image decompo-
sition algorithm to obtain an intrinsic representation that
is robust with respect to undesirable bias fields based on a
multiplicative image model. The obtained intrinsic image is
subsequently provided to an unsupervised segmentation pro-
cedure that is developed based on a piecewise smooth model.
The segmentation model is further designed to incorporate a
geometric constraint imposed in the generative adversarial
network framework where the discrepancy between the distri-
bution of partitioning functions and the distribution of prior
shapes is minimized. We demonstrate the effectiveness and
robustness of the proposed algorithm in particular with bias
fields and occlusions using simple yet illustrative synthetic
examples and a benchmark dataset for image segmentation.

1. Introduction

The image segmentation problem plays a significant role
in providing both the appearance (such as texture or bright-
ness) and geometry of objects by partitioning the domain
of image into mutually disjoint regions. It is often consid-
ered as a basis for a higher level of visual understanding
of image contents. Various classical image segmentation
algorithms have been developed based on the variational
framework [10, 42, 11, 55, 13, 9, 45, 46] where an objec-
tive functional that defines a discrepancy between model
and observation is optimized in a solution space of partition-
ing function. The variation of observation from the defined
model is typically computed based on a single measure-
ment leading to an unsupervised algorithm. Albeit a num-
ber of successful unsupervised variational algorithms have
been developed using normalized cuts in graph representa-

tions [24, 52], markov random field models [44, 60], density
estimations in a feature space [22, 23], level set embedding
functions [43, 13] and hierarchical methods in multi-scale
representations [24, 2], their associated limitations that stem
from the complexity of statistical properties in character-
izing regions of interest naturally lead to the development
of supervised algorithms using a large number of training
images. The development of supervised image segmenta-
tion algorithms based on the resurgent neural networks in
particular with locally characteristic convolutional kernels
has been making a significant improvement over the clas-
sical unsupervised approaches [16, 49, 37, 41, 61, 4, 19]
where convolutional neural networks predict the probability
of indication for region of interest. However, the supervised
algorithms generally require extensive manual annotations
that are rarely available and often result in coarse-grained. It
is also often insufficient to generalize an effective segmen-
tation model with respect to both appearance and geometry
albeit data-driven supervision due to the inherited complex-
ity from the variations in lighting conditions and physical
properties of objects. The difficulties in coping with high
dimensional distributions with huge variations lead to the
development of segmentation algorithms by unsupervised
learning schemes using abundant training examples with
partial or crude labels [33, 26, 6, 20, 7, 1, 58]. In particular,
the successful application of generative adversarial networks
(GAN) [27, 47, 50, 3] has been extended to an image segmen-
tation problem [20, 7, 6] where the distribution of composite
images formed by the foreground of the object of interest
and its realistic background is desired to be learned. How-
ever, the distribution for both appearance and geometry of
object turns out difficult to be learned due to its enormous
dimensionality and variations despite a relatively large num-
ber of coarse-grained labels. Thus, it is desired to improve
the learnability [8] of a characteristic distribution for seg-
mentation in a generative learning scheme, which motivates
to simplify a generative model to learn. In this work, we
present an unsupervised segmentation algorithm that learns
an embedding function for a bipartitioning model based on
the statistical homogeneity of appearance and incorporates
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a shape prior that is imposed on the segmentation model
in a GAN framework. Our proposed algorithm considers a
generative learning model only for the geometric property
excluding the appearance (intensity) property of an object
so that such simpler distribution is easier to learn and turns
to be more effective. It is often feasible to create a three
dimensional model for the shape of object and generate a
large collection of projected images from arbitrary viewing
directions. Thus, we propose to learn an unsupervised seg-
mentation model based on the intensity of an object and
impose its geometrical constraint using its shape images of
the same category in the GAN framework. We also propose
to learn an intrinsic image representation that is robust with
respect to undesirable bias fields in an unsupervised way,
so that the proposed unsupervised segmentation model can
be less sensitive to the inhomogeneity of object appearance.
Our unified framework combines the intrinsic image repre-
sentation model and the segmentation model incorporating a
shape constraint that is learned by the GAN algorithm.

2. Related Works
The image segmentation problem has been typically con-

sidered as an optimization problem minimizing an energy
functional that is designed to measure the discrepancy be-
tween an observation and a model in a variational frame-
work [42, 11]. A number of image models have been devel-
oped based on edge [55], region [56] and convex optimiza-
tion [9, 46]. The image model based on the statistical homo-
geneity of intensity has been extended to incorporate shape
information as a prior knowledge [25, 12] where an alter-
native optimization is performed to minimize a partitioning
energy and a distance between a partitioning function and an
embedding function for a desired shape. Meanwhile, there
have been a number of works proposing intrinsic representa-
tions robust with respect to imaging conditions [5, 39]. With
the increasing popularity of machine learning techniques
using deep neural network architectures, a fully convolu-
tional network has been developed for semantic segmenta-
tion in a supervised framework where local [37], global [36]
and their combined [17] approaches are proposed using a
set of manually annotated images. Another popular super-
vised deep models for image segmentation have been devel-
oped based on the convolutional encoder-decoder architec-
ture [49, 4] where characteristic features are encoded and
its symmetric decoding leads to localization. To overcome
the limitation of available fine-grained annotations, weakly
supervised methods have been proposed using bounding
boxes [54, 30], regional convolutional network [48, 28], di-
rection features [15], dense sliding windows [21] and at-
tention networks [18, 31]. In contrast to the discriminative
models that predict the probability of segmentation labels,
generative segmentation models have been developed due to
the introduction of effective generative algorithms [34, 27].

An adversarial training approach for segmentation has been
proposed in [38] where a discriminator is learned to distin-
guish between the ground truth segmentation maps and the
ones yielded by a generator. In order to cope with the lack
of manual annotations, semi-supervised learning algorithms
based on GANs have been developed in [53, 32] where fully
convolutional discriminators are learned to differentiate the
ground truth labels from the probability maps obtained by
generators in combination with the adversarial loss on un-
labeled data. Another GAN-based segmentation methods
that are most closely related to our approach include [7, 20]
where an adversarial learning is applied to generate a realis-
tic composite image that consists of layers for the parts of
foreground images and the natural background images. It is
assumed that the composition of image parts obtained from
the foreground image under perturbations and the natural
background is shown to be realistic when the image parts
correspond to the desired segmentation. The distribution to
be learned by the proposed GAN methods in [7, 20] is aimed
to characterize both appearance and geometry of object, thus
leading to a complex and high dimensional discriminator.
In contrast, the desired distribution to be learned by our
generative model only considers the geometrical property of
object as a constraint to an unsupervised segmentation model
based on the object appearance. Thus, our method employs
different learning schemes depending on the characteristic
properties, namely appearance and geometry.

3. Segmentation with Shape Prior via GAN
Let I : Ω ÞÑ R be an image that is assumed to be a scalar

function for ease of mathematical presentation, yet it can
be extended to a vector-valued function for images with
multiple channels. The objective of an image segmentation
task is to obtain a characteristic function χR : Ω ÞÑ t0, 1u
that partitions the image domain Ω as follows:

χRpxq “

#

1 : x P R

0 : x R R,
(1)

where R Ă Ω denotes a region of interest. We introduce
an embedding function φ : Ω ÞÑ p0, 1q for a relaxed form
of the characteristic function χD for computational conve-
nience [9] as defined byR “ tx|φpxq ą ξu where ξ P p0, 1q
denotes a threshold that is typically given by 0.5. In our
segmentation model, we consider an intrinsic image repre-
sentation u : Ω ÞÑ R that is desired to be robust to bias field
leading to a subsequent optimization with respect to φ in
maximizing the following probability:

P pφ, u | Iq “ P pφ | u, IqP pu | Iq, (2)

where the conditional joint probability for segmenting func-
tion φ and intrinsic image u given image I is computed by
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the product of the marginal probability P pφ | u, Iq and the
conditional probability P pu | Iq. Then, the Bayes theorem
leads to the following:

P pφ | u, IqP pu | Iq9P pφ | u, IqP pI | uqP puq, (3)

where we have the following by the chain rule:

P pφ | u, IqP pI | uq “ P pφ, I | uq. (4)

Thus, we have:

P pφ | u, IqP pu | Iq9P pφ, I | uqP puq, (5)
9P pφ | uqP pI | uqP puq, (6)
9P pφ | uqP pu | Iq, (7)

where we assume that φ and I are conditionally independent
given u. Thus, we have:

P pφ, u | Iq9P pφ | uqP pu | Iq. (8)

The problem of interest is to obtain the sequential estima-
tion of optimal intrinsic image u and segmenting function
φ by maximizing P pφ | uqP pu | Iq where P pφ | uq is a
conditional probability for an optimal segmenting function
φ given u and P pu | Iq is a posterior probability defined for
an optimal intrinsic image u given I . We develop an unsu-
pervised learning algorithm for estimating u and φ in a deep
learning framework where u and φ are represented by pa-
rameterized functions constructed by nested composition of
linear and nonlinear functions. We also incorporate a shape
prior into the estimation of φ using a generative adversarial
network.

3.1. Intrinsic Image Representation

We propose to obtain a robust representation of image
with respect to undesirable bias field so that the homogeneity
of appearance statistics is better characterized resulting in
more accurate segmentation. We consider an image forma-
tion model using an additive noise with a multiplicative bias
field as follows:

I “ νpu` ηq, (9)

where the noise process η is assumed to follow a normal
distribution with mean 0 and the bias field ν is assumed to
follow a log-normal distribution with mean 0 imposing a
positive constraint ν ą 0. The computation of an optimal
intrinsic representation u from observation I can be obtained
by maximizing the posterior probability P pu|Iq where we
introduce an auxiliary bias field function ν as follows:

P pu, ν | Iq9P pI | u, νqP pu | νqP pνq, (10)
9P pI | u, νqP puqP pνq, (11)

where u and ν are assumed to be independent so that we
have P pu|νq “ P puq. We have the likelihood probability
based on the Gaussian noise assumption as follows:

P pI | u, νq9 exp

ˆ

´}
I

ν
´ u}22

˙

, (12)

and the prior probabilities for u and ν are given by:

P puq9 exp p´}∇u}q , (13)

P pνq9 exp
`

´}∇ν}22
˘

exp
`

´}ν ´ 1}22
˘

, (14)

where the gradients of u and ν are assumed to follow a
Laplace and a Normal distribution, respectively. In addition,
log ν is assumed to follow a Normal distribution with mean
0. It is desired to preserve significant geometric features in
the reconstruction of u, thus we use a total variation reg-
ularization for u, whereas bias field ν is assumed to have
a smoothly varying intensity field leading to the L2

2 regu-
larization. The optimal solutions of u and ν can be given
by the joint minimization of the following objective func-
tional L1 derived by taking the negative log of the posterior
probability:

L1pu, ν; Iq “ }
I

ν
´ u}22 ` λ}∇u}

` α}∇ν}22 ` β}ν ´ 1}22, (15)

where λ, α, β are control parameters given by positive con-
stants. The intrinsic image u and its associated undesirable
bias field ν are represented by the outputs of a neural network
where the model parameters are optimized by minimizing
the objective function L1 in an unsupervised manner. The
optimal intrinsic representation u for image I is used as an
input for segmentation, as will be discussed in the following
section.

3.2. Segmentation Model

We use the obtained intrinsic image u instead of the origi-
nal observation I for segmentation where a piecewise smooth
Mumford-Shah model [42, 13, 55] is applied based on an
embedding function φ for partitioning region of interest with
a Gaussian noise process η as follows:

upxq “ apxq ¨ φpxq ` bpxq ¨ p1´ φpxqq ` ηpxq, (16)

where a : Ω ÞÑ R and b : Ω ÞÑ R are continuous functions
that respectively estimate the interior and exterior of a seg-
menting region that is characterized by function φ. An op-
timal partitioning function φ given u can be obtained by
maximizing the posterior probability P pφ | uq in Eq. (8):

P pφ | uq9P pu | φqP pφq, (17)
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where we have the likelihood probability P pu | φq based
on the Gaussian noise assumption leading to the following
objective functional:

L2pφ, a, b;uq “ γ1}∇φpxq} ` γ2}∇apxq} ` γ2}∇bpxq}

`

ż

Ω

|upxq ´ apxq|2φpxqdx

`

ż

Ω

|upxq ´ bpxq|2p1´ φpxqqdx, (18)

where γ1 and γ2 are positive control parameters for the reg-
ularization of total variation on φ and a, b, respectively.
The partitioning function φ and its associated estimates a
and b for the foreground and the background of segmenting
region are represented by the separate outputs of a neural
network. Note that the optimal estimates a and b can be
directly obtained by applying alternating direction method
of multipliers algorithms [57], but we instead learn the asso-
ciated parameters with a and b in an unsupervised manner.
The prior probability P pφq in (17) is generally given by the
assumption that the gradient of φ follows a Laplace distribu-
tion leading to an implicit regularization term as follows:

P pφq9 exp p´}∇φ}q , (19)

which penalizes the length of partitioning boundary [10].
Whereas we rather establish the joint prior probability
P pφ, ψq with an additional variable ψ that represents a prior
shape in the construction of the prior probability P pφq im-
posed on the segmenting function φ.

We propose to incorporate shape information about a re-
gion of interest into its segmentation exploiting a prior knowl-
edge of segmenting function using a generative adversarial
network (GAN) [27]. We extend the prior probability P pφq
in Eq. (17) leading to an implicit regularization imposed
on the segmenting function φ to the joint prior probability
P pφ, ψq with an additional variable ψ as follows:

P pφ, ψq “ P pφ | ψqP pψq, (20)

where ψ represents an explicit shape. Let S Ă Ω be a
shape and χS be its characteristic function. Let T be a
transformation group acting on the domain Ω. We denote
by ψi a deformed shape from χS by an element ti P T as
follows:

ψipxq “ χS ˝ tipxq, (21)

where ti : Ω ÞÑ Ω and we omit the symbol S in the nota-
tion ψi for ease of presentation. We construct an empirical
distribution of the prior probability P pψq in Eq. (20) by the
equivalence class S “ tψi “ χS ˝ ti | ti P T u of shape S
under the action of the transformation group T . Shape is
represented in the form of binary image, and its statistics
are explicitly formed by a variety of shapes within the same

category. Given a prior probability P pψq on shape S, its
geometric property leads to a constraint in the determina-
tion of partitioning function φ by a conditional probability
P pφ | ψq in Eq. (20). We denotes empirical distribution of
the probability density function Qpφq of partitioning func-
tion φ by R “ tφju where φj is associated with an in-
put image Ij , equivalently, with its intrinsic representation
uj . We construct a conditional probability P pφ | ψq using
Jensen–Shannon divergence DJS as a discrepancy measure
between probability distributions of partitioning function
Qpφq and prior shape P pψq as follows:

´ logP pφ | ψq9DJSpQpφq ‖ P pψqq. (22)

The optimization procedure is suited in the GAN frame-
work [27, 47, 3]. Let h be a discriminator for the classifica-
tion of shapes and g be a generator for the determination of
partitioning function. The classifier h aims to discriminate
the equivalence class of shape S from its non-equivalence
class generated by the partitioning function φ induced by g.
Then, the objective function that aims to obtain optimal sets
of model parameters for the discriminator network h and the
segmentation network g, respectively, is defined by:

min
g

max
h

`

Eψ„P pψqrlogphpψqqs

` Eφ„Qpφqrlogp1´ hpφqqs
˘

. (23)

Due to the limitation of the objective function such as vanish-
ing gradient and model collapse in Eq. (23) using Kullback-
Leivler divergence, we apply a non-saturating loss for the
generator and add a regularization that is designed to penal-
ize the gradients of the discriminator [50] as follows:

L3pρ, θ;S,Rq “ Eψ„P pψqrlogphpψqqs

´ Eφ„Qpφqrlogphpφqqs ´
κ

2
Eψ„P pψqr}∇hpψq}22s, (24)

where κ ą 0 is a control parameter for the regularization, and
S and R represent the equivalence class of shapes tψiu and
a set of partitioning functions tφju, respectively, and ρ and
θ are sets of model parameters associated with the segmen-
tation network g and the classifier network h, respectively.
The latent space is induced by a set of intrinsic images and
the generator is driven by the segmentation loss in Eq. (18)
whose solution space is constrained by a shape prior via the
discriminator in Eq. (24). As shown in [40], the objective
function defined in Eq. (24) is known to achieve better con-
vergence property than the Wasserstein GAN [3]. Note that
φ : Ω ÞÑ p0, 1q is a smooth function whereas ψ : Ω ÞÑ t0, 1u
is a characteristic function. It is generally required to im-
pose a sparsity constraint }∇φ} following the assumption in
Eq. (19) in order to obtain a binary representation for parti-
tioning boundary. However, the sparsity constraint on the
function φ can be achieved instead by the back-propagation
from the objective function in Eq. (24) due to the binary
representation of ψ.
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Figure 1: Schematic illustration of the proposed neural network architecture. The problems of interest consist of three
constituent parts: (a) obtaining an intrinsic image representation u that is robust to a multiplicative bias field ν for a given
image I , (b) deriving a partitioning function φ that determines a region of interest based on the intrinsic representation u
with its associated foreground and background estimates a and b, respectively, and (c) imposing a geometric constraint to the
partitioning function φ using a given set of prior shapes tψiu. The intrinsic decomposition auto-encoder f is optimized by
minimizing L1. The obtained optimal u is fed into the segmentation auto-encoder g that is optimized by minimizing L2 ` L3.
To impose the geometric constraint on φ, the discriminator h classifies φ and ψ by minimizing L3.

4. Neural Network Architectures

The schematic illustration of the neural network archi-
tectures for each component of the proposed algorithm is
presented in Fig. 1. Let pu, νq “ fpI;wq be an auto-encoder
parameterized by w for the reconstruction of intrinsic im-
age u and the multiplicative bias field ν given input I . Let
pφ, a, bq “ gpu; vq be an auto-encoder parameterized by ρ
for segmenting function φ and its associated estimates a
and b given u. Let hp¨; θq be a classifier parameterized by θ
discriminating real shape ψ from segmenting shape φ. The
optimal model parameter w is obtained by minimizing L1 in
Eq. (15). Similarly, the optimal model parameters ρ and θ
are obtained by minimizing L2 ` L3 in Eq. (18), Eq. (24)
and L3 in Eq. (24), respectively. The generative adversarial
training scheme between g and h driven by L3 in Eq. (24)
imposes the geometric properties of real shape ψ on the re-
sulting segmenting function φ. For the selection of neural
networks for the auto-encoder g and the discriminator h, we
consider a standard convolutional neural network architec-
ture and its variants with skip connections [49] or residual
blocks [29]. The standard structures are adopted for both g
and h based on the results shown in Tab. 2 that compares the
performance of different combinations of g and h.

5. Experiments

We demonstrate the robustness and effectiveness of each
component of our proposed algorithm. We perform quan-

titative and qualitative analysis of the performance in the
reconstruction of intrinsic images and the segmentation of
the object of interest. We use a set of simple yet illustrative
synthetic images and LSUN dataset [59] in the evaluation.

5.1. Results on Synthetic Dataset

Dataset. We randomly generate binary images representing
square shapes with varying sizes and locations as shown
in Fig. 2 (e). For the demonstration of the reconstruction
of intrinsic images, we randomly generate a bias field with
intensity gradation within a given variation from an arbitrary
viewing direction as shown in Fig. 2 (c) where the standard
deviations of gradation are set to be 0.1, 0.2, 0.3 and 0.4
from top row to bottom. As shown in Fig. 2, we apply ran-
domly generated bias fields in (c) to binary square images
in (e) to construct composite images in (a) using the multi-
plicative model. In order to show the effectiveness of our
shape prior model, we apply occlusions along the diagonal
lines in addition to the bias fields to the binary square images
as shown in Fig. 3 (a) where the occlusion degrees are set
to be 20%, 40%, 60% and 80% with respect to the regions
of interest from top row to bottom. For the evaluation, we
generate 60k images of size 64ˆ 64 for each configuration
of experiment and use 50k for training, 5k for validation and
5k for testing.
Hyper-parameters. We apply a dynamic scheduling of
learning rate following a sigmoid function with the initial
value 5e-05 and the final value 1e-06 for f , but we use the
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(a) (b) (c) (d) (e) (f) (g)

Figure 2: Segmentation results without shape prior on the
synthetic square images multiplied by bias fields with dif-
ferent standard deviations 0.1, 0.2, 0.3 and 0.4 from (top)
row to (bottom). (a) original image. (b) obtained intrinsic
image. (c) ground truth of bias field. (d) obtained bias field.
(e) ground truth of the shape. (f) obtained segmentation on
the original input. (g) obtained segmentation on the intrinsic
(full model).

(a) (b) (c) (d) (e) (f) (g)

Figure 3: Segmentation results on the synthetic square im-
ages with occlusions at varying degrees 20%, 40%, 60% and
80% from (top) row to (bottom) in addition to bias fields with
std 0.4. (a) original image. (b) obtained intrinsic image. (c)
ground truth of the shape. (d) obtained segmentation on the
original without shape prior. (e) obtained segmentation on
the intrinsic without shape prior. (f) obtained segmentation
on the original with shape prior. (g) obtained segmentation
on the intrinsic with shape prior (full model).

fixed values 1e-05 and 1e-04 for g and h. We use mini-batch
sizes of 120 for f and 128 for g and h. For the parameters
in Eq. (15), we set λ, α, β as 1e-02, 1.5, 1e-04. For the
parameters in Eq. (18), we set γ1, γ2 as 1e-05 and 0.1.
Evaluation. We provide visual illustrations of qualitative
results on the binary shape images with bias fields at varying
variations for the reconstruction of intrinsic images and the
unsupervised segmentation without a shape prior in Fig. 2.

0.1 0.2 0.3 0.4
bias std

0.75

0.80
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1.00

Io
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intrinsic

20 40 60 80
occlusion degree (%)
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0.8

1.0
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U

original
intrinsic
original + shape
intrinsic + shape

Figure 4: Results on the ablation study for the segmentation
with different methods on the square images with (left) bias
fields at varying std and (right) occlusions at varying degrees
in addition to the bias fields with std 0.4. x-axis represents
the degree of degrading factors (left) bias field and (right)
occlusion and y-axis represents IoU score.

method occlusion bias (std)
(%) 0.1 0.2 0.3 0.4

original

20 0.8652 0.7808 0.7776 0.7394
40 0.7405 0.5890 0.5884 0.5524
60 0.5880 0.3961 0.3871 0.3544
80 0.3164 0.2358 0.2151 0.1999

intrinsic

20 0.8866 0.8971 0.8757 0.8714
40 0.7671 0.7790 0.7555 0.7569
60 0.6332 0.5576 0.5781 0.5770
80 0.6319 0.4183 0.3451 0.3168

original
+ shape

20 0.9985 0.9962 0.9951 0.9923
40 0.9918 0.9970 0.9256 0.8810
60 0.9007 0.6497 0.6201 0.6475
80 0.6131 0.4053 0.3795 0.3911

intrinsic
+ shape
(full model)

20 0.9990 0.9983 0.9983 0.9991
40 0.9987 0.9977 0.9492 0.9365
60 0.9555 0.9570 0.9278 0.9490
80 0.8958 0.7839 0.7458 0.7649

Table 1: Segmentation results by the ablation study with
different configuration of the methods. The average IoU
values are presented for the square images with varying
degrees of occlusions and bias field variations.

It is clearly demonstrated that the segmentation results ob-
tained from the intrinsic images are better across all the
variations in the bias fields whereas the segmentation quality
on the original ones deteriorates as the standard deviation
of the bias field increases. Their quantitative comparisons
based on the intersection of union (IoU) are provided in
Fig. 4 (left) where x-axis indicates the standard deviation
of gradation and y-axis indicates the IoU score obtained
from the original images in green and the intrinsic images
in pink. We give ablation results on the square images in-
cluding occlusions with varying degrees from low (top) to
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Figure 5: Examples of the rendered object images (top) and their shape images (bottom) generated from ShapeNet.

standard (g) skip (g) residual (g)
standard (h) 0.6303 0.6190 0.5876
residual (h) 0.6013 0.6013 0.5793

Table 2: Comparison of the segmentation IoU on LSUN
car with different network architectures of our model in-
corporating shape prior. Each column represents different
auto-encoder network g and each row indicates different
discriminator network h.

high (bottom) in addition to a fixed degree of bias fields (0.4)
in Fig. 3. The segmentation results without shape prior are
shown to suffer from the occlusions as shown in (d) and (e).
Similarly, the results on the original images with bias fields
yield partial failure due to the unsatisfied assumption on the
image model as shown in (d) and (f) whereas it is shown
that the intrinsic images alleviate the degrading effects in (e)
and (g). Our full model is shown to be robust to both occlu-
sions and uneven biases as shown in (g). The ablation results
with different methods on the shape images with occlusions
and bias fields are provided in Fig. 4 (right) where x-axis
indicates the occlusion degrees and y-axis indicates the IoU
score. The average IoU scores with the different methods
using the square images with varying degrees of degrading
factors that are occlusions and bias fields are presented in
Tab. 1 where our full model (intrinsic + shape) yields the best
results and the performance gap increases over the degrees
of degradation factors.

5.2. Results on LSUN Dataset

Dataset. In the evaluation of our algorithm for real images,
we consider 4 categories including airplane, boat, car and
chair in LSUN dataset [59] where images are color and of
the size 64ˆ 64. Since the ground truth for the object seg-
mentation in LSUN dataset is not available, we employ a
Mask R-CNN model [28] that has been trained using COCO
dataset [35] to obtain pseudo-labels for the object segmen-
tation. In this experiment, we only consider images with a
single object whose size is between 5% and 95% with re-
spect to the image size. Examples of object images and their
pseudo-labels are shown in Fig. 6 (a) and (d), respectively.
For the 4 different categories airplane, boat, car and chair,

method car boat airplane chair
original 0.3126 0.2002 0.2131 0.3543
intrinsic 0.3250 0.2348 0.2307 0.3683

original + shape 0.6303 0.4756 0.4544 0.4824
intrinsic + shape 0.6340 0.4901 0.4714 0.4776
PerturbedGAN 0.5026 0.3122 0.3049 0.3902

ReDO 0.4637 0.3618 0.4110 0.4181
GrabCut 0.5122 0.3325 0.4026 0.5127

Table 3: Segmentation IoU on LSUN dataset with different
methods. (intrinsic + shape) denotes our full model.

the numbers of images used are 71,590, 49,642, 75,973 and
60,606 for training, 7,954, 5,516, 8,441 and 6,734 for vali-
dation, and 8,726, 6,196, 9,407 and 7,271 for testing. In the
construction of a shape prior model for each category, we
generate binary shape images by random projections from
3 dimensional object models in ShapeNet [14]. We apply
morphological operations to the obtained projection images
in order to have simple shapes without holes and the num-
bers of generated images are 97,080, 46,536, 179,904 and
162,672 for airplane, boat, car and chair, respectively. In
Fig. 5, examples of the rendered projection images and their
binary shapes are shown at top row and bottom, respectively.
Hyper-parameters. We apply the same learning rate
scheduling to f as done in Sec. 5.1. We use 1e-03 for the
fixed learning rate of g and h. We use the same mini-batch
size as done in Sec. 5.1. For the parameters in Eq. (15), we
set λ, α and β as 1e-02, 15 and 1e-04. For the parameters in
Eq. (18), we set γ1 and γ2 as 1e-02 and 0.1.
Evaluation. We perform an ablation study and a compar-
ative analysis based on LSUN dataset. In our comparison,
we consider the state-of-the-art techniques including per-
turbedGAN [7], redrawing of objects (ReDO) [20], Grab-
Cut [51]. For the implementation of the algorithms under
comparison, we use their official codes with the recom-
mended parameters. Since the network that maps input
images to the generator is unavailable in the perturbedGAN
work, we add an encoder to the publicly available codes.
For the initial condition of GrabCut, we employ a generic
condition using central squares. Examples of the qualitative
comparisons are provided in Fig. 6 where (a) original im-
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 6: Segmentation results on LSUN dataset. (a) original. (b) obtained intrinsic. (c) obtained bias field. (d) pseudo-label
by Mask R-CNN. (e) our result on the original without shape prior. (f) ours on the intrinsic without shape prior. (g) ours on the
original with shape prior. (h) ours on the intrinsic with shape prior (full model). (i) PerturbedGAN. (j) ReDO. (k) GrabCut.

age, (b) obtained intrinsic image, (c) obtained bias field, (d)
pseudo-label obtained by Mask R-CNN, and segmentation
result by (e) our model without shape prior on the original
image, (f) our model without shape prior on intrinsic image,
(g) our model with shape prior on original image, (h) our
model with shape prior on intrinsic image, (i) result by Per-
turbedGAN, (j) result by ReDO and (k) result by GrabCut
are shown. It is visually demonstrated that our full model
(intrinsic + shape) outperforms the other algorithms under
comparison. In particular, our model provides more accurate
results compared to (i) and (j) where the GAN framework
considers both appearance and geometric properties, indicat-
ing that simplifying the distribution to be learned by GAN
leads to more robust performance. The quantitative evalua-
tion is presented based on IoU in Tab. 3. Our ablation studies
show that using the intrinsic representation and shape priors
significantly improves the quality of the segmentation.

6. Conclusions

We have presented an unsupervised segmentation algo-
rithm developed in a deep learning framework where a shape
prior is incorporated by generative adversarial networks. In
addition, we have developed an unsupervised deep learn-
ing technique to obtain an intrinsic representation that is
robust to undesired bias fields. We have demonstrated the
effectiveness of our algorithm to biases and occlusions using
synthetic images. The comparative analysis with the recent
benchmark works on LSUN dataset indicates the potential
of our method to real applications.
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