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Abstract

Video Question Answering (Video QA) aims to give an
answer to the question through semantic reasoning be-
tween visual and linguistic information. Recently, han-
dling large amounts of multi-modal video and language
information of a video is considered important in the in-
dustry. However, the current video QA models use deep
features, suffered from significant computational complex-
ity and insufficient representation capability both in train-
ing and testing. Existing features are extracted using pre-
trained networks after all the frames are decoded, which
is not always suitable for video QA tasks. In this paper,
we develop a novel deep neural network to provide video
QA features obtained from coded video bit-stream to re-
duce the complexity. The proposed network includes sev-
eral dedicated deep modules to both the video QA and the
video compression system, which is the first attempt at the
video QA task. The proposed network is predominantly
model-agnostic. It is integrated into the state-of-the-art net-
works for improved performance without any computation-
ally expensive motion-related deep models. The experimen-
tal results demonstrate that the proposed network outper-
forms the previous studies at lower complexity. https:
//github.com/Nayoung-Kim-ICP/VQAC

1. Introduction

Recent advances in artificial intelligence (AI) have
brought significant attention to the multidisciplinary re-
search area of computer vision (CV) and natural langue
processing (NLP). Video question answering (QA) aims to
give a reasonable answer by jointly conducting visual un-
derstanding and language-specific reasoning. It has a num-
ber of real-time emerging intelligent applications such as
human-AI interactions and communication systems.

Previous video QA studies have focused on develop-

Figure 1. Motivation of the proposed VQAC-baseline network ar-
chitecture. It retrieves residue and motion vectors (MVs) from a
coded bit-stream from only the partial decoding to save compu-
tational resources. The compressed-domain features are used for
generating a motion-appearance aggregation (MA+) feature.

ing sophisticated deep learning models to resolve diverse
reasoning problems in multimodal data. In recent stud-
ies [14, 43, 9, 45, 12], the QA models incorporated exter-
nal memories [14, 12] and attention mechanisms [42, 45]
to improve performance. Nevertheless, the previous stud-
ies straightforwardly used the same baseline neural network
architecture for extracting video features and question fea-
tures. A convolutional neural network (CNN) and 3D-CNN
[34, 6] are used for an appearance feature and a motion
feature, respectively. A recurrent neural network (RNN) is
used for a question feature [11, 25]. Given with the sepa-
rately generated features, the previous models were used to
understand semantic relations to answer the question. How-
ever, several studies indicated that the current approaches
suffered from significantly degraded performance when the
features lacked sufficient representation capabilities [5, 10].
It is problematic that the current baseline model naively
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uses a pre-trained neural network for extracting features.
Few studies have redesigned a baseline structure to pro-

vide more efficient features in the video QA task, likely be-
cause many computational resources are required to exploit
QA features both for training and testing. 3D-CNN is ex-
tremely complex, despite being developed for representing
a homogenous motion. For lightweight features, we intro-
duce compressed-domain features that are included in a bit-
stream of coded video data. Video compression enables a
sequence of frames to be reconstructed using only a few
anchor frames named an intra-coded frame (I-frame) with
complete RGB data and several ingredients for prediction
such as residue and a motion vector (MV). Because most
video content is compressed in advance and the residue and
MVs are readily obtained as intermediate outputs during de-
compression, various CV tasks could be facilitated in the
previous studies [33, 31, 3, 38].

This paper proposes a time-efficient video QA network
using compressed-domain video features (VQAC) to im-
prove performance at lower complexity. Previous QA
works are difficult to apply directly to compressed video
data. Conventional video features such as C3D [34] and I3D
[6] can only be created if complete video frames are avail-
able after decompression. However, full decompression re-
quires extra latency and extensive storage, which further de-
teriorates computational complexity for feature extraction.

In our framework, for an appearance feature, a pre-
trained CNN [30, 16] is applied only to I-frames to avoid
any delay or latency, as depicted in Fig. 1, because non-
anchor P- and B-frames are only available after the I-frames
are fully reconstructed. For motion, residue and MVs are
first retrieved with only the partial decoding of P- and B-
frames to avoid their full reconstruction. The compressed-
domain features are then used for generating motion fea-
tures to replace the existing 3D-CNN.

Our approach is the first attempt to apply compressed-
domain features to video QA tasks. Previously, Shou et al.
[29] and Wu et al. [38] proposed to exploit compressed-
domain features in action recognition tasks, identifying only
a few representative motions in a video. Compared with
other CV tasks, the video QA model needs to achieve a
more comprehensive and semantically aligned interpreta-
tion of a video and query. However, it is computationally
intractable to learn such features in end-to-end, consider-
ing the nature of multimodal data. These problems moti-
vate us to apply the compressed-domain features to the QA
task. While the previous studies have only few choices of
the pre-trained features, the compressed features are readily
obtained by decompressing existing data.

The VQAC network produces video QA features that
consider different modalities and more efficient alignments.
Fig. 1 shows an overall scheme of the VQAC-baseline net-
work. The network creates a motion-appearance aggrega-

tion (MA+) feature as output. It is promptly generated by
warping the current appearance feature using a MV and
adapting to temporal dynamics using a residue. The MA+
feature is fused with question features to a decision net-
work to exploit inter-modal correlation, which is crucial for
video-related multimodal tasks. The VQAC-baseline can be
used as a standalone model to operate very fast.

Furthermore, the network can be integrated into the ex-
isting video QA models because the baseline network is
predominantly model agnostic. Previous studies [14, 12]
have attempted to improve performance by understanding
global contexts over a video. The current state-of-the-art
networks commonly use memory modules to retain global
appearance and motion features using read and write oper-
ations. Therefore, we present a VQAC-integration model
that uses both the proposed QA features and some global
features by combining the baseline with the existing model,
which maintains global video and question features.

Our primary contributions are summarized as follows:

• We present a VQAC-baseline network to resolve the
major drawbacks of the previous video QA features:
significant computational complexity and insufficient
representation capability. We introduce compressed-
domain features and develop several dedicated mod-
ules to both the video QA and the video compression
system, which is the first attempt at the video QA task.

• We develop a VQAC-integration network to integrate
the baseline model for improved performance without
any computationally expensive motion models [34].
The VQAC-integration model outperforms the previ-
ous studies for various video QA datasets.

2. Related Works
2.1. Previous video QA studies

Previous image and video QA studies attempted to build
deep learning models to train a joint representation of vi-
sual and language information [2, 23, 7]. For image QA
tasks, CNNs such as VGG [30] and ResNet [16] are used to
extract appearance features, and RNNs such as long short-
term memory (LSTM) are used to encode a sequence of
word embedding initialized with GloVe[25] or BERT[11].
For video QA tasks, motion features are included using 3D-
CNNs such as C3D [34] and I3D [6]. However, straightfor-
ward QA models using CNNs and RNNs could not preserve
key information in long video or wordy sentences [47, 41].

The problems are caused by forgotten QA features in the
previous video frames. Several studies have attempted to
manage critical features over an entire video and sentences
using attention and fusion mechanisms [47, 18, 14, 41, 12,
4]. Temporal visual attention was proposed to exploit tem-
poral correlation among successive frames [27, 44]. The
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mechanism was extended to use spatiotemporal attention
[34, 47, 18, 45, 45]. In [21], a CNN-LSTM network was
used for learning cross-modal features. In [15], a self-
attention mechanism was applied to each frame without ex-
tracting motion.

Memory modules have been efficiently used for pre-
serving the global contexts to improve the performance
[40, 14, 22, 12, 43]. Xiong et al. developed a dynamic
memory network [40] to manage long-term and short-term
contexts. In [14], the memory module was used for combin-
ing motion and appearance features in co-memory attention
for reasoning. In [12], a heterogeneous memory module
was used to train joint attention for global video features.

2.2. Compressed-domain features in video

Video coding standard In existing video coding standards
[36, 32], a video sequence is divided into a group of picture
(GOP), and each frame within a GOP is coded as an I-, P-,
and B- frame. An I-frame is the first frame of the GOP to
maintain full RGB pixels as an anchor. The subsequent P-
and B-frames are then coded with temporal prediction using
a block-based MV. The prediction is conducted by finding
the closest matching block of a previously coded frame as
a reference frame, and a (x, y) vector of the current block
to the reference block is determined as the MV. Because the
current block and the matching block are usually not the
same, the transformed residue is sent to a decoder.

An I-frame is independently decoded because it uses no
temporal prediction. In contrast, P- and B-frames are fully
reconstructed after all the reference frames are available. In
the worst case, an inter-coded frame can start decoding after
all the other frames in the same GOP are fully reconstructed.
However, the MV and residue can be obtained immediately
as they are partially decoded.
Compressed-domain features MVs and residue as
compressed-domain features have been widely used for
many vision tasks, such as action recognition [29, 38, 46],
saliency detection [20], and video summarization [1]. Be-
cause an MV is produced to minimize the difference be-
tween the current and the reference block, it can reflect a
locally temporal change of a foreground object. Further-
more, the residue can represent the abrupt changes in RGB
values. The amount of residue tends to be larger in bound-
aries of fast-moving objects and scene changes.

Compressed-domain features provided several advan-
tages. First, the computational costs are much lower than
other deep features, such as deep flows [17]. Although
deep features require abundant video data for training, the
compressed-domain features can be obtained from the de-
coding process. The compressed-domain features do not
even require full-frame reconstruction. The decoding pro-
cess consists of entropy decoding, inverse transform and
quantization, and motion-compensation. The features can

be extracted while skipping the motion-compensation pro-
cess, which is the most complicated decoding process. Sec-
ond, the compressed-domain features do not suffer from de-
lay or dependency problems caused by temporal prediction
because they are instantly obtained. The advantages have
increased the number of use cases of compressed features
in CV. However, such efforts have rarely been attempted in
QA tasks.

3. Proposed Method
3.1. VQAC-baseline network

Figure 2. VQAC-baseline network architecture, in which the core
modules such as MV-based warping, question guided attention,
question feature map, and residue weighted vector generation are
indicated by different colors.

Fig. 2 illustrates a block diagram of the VQAC-baseline
network architecture exploiting compressed-domain fea-
tures. Core modules are represented by colored boxes. An
appearance feature f ts ∈ Rdh×dw×dc is extracted from ev-
ery I-frame at time t using a pretrained CNN where dh, dw
and dc are feature dimensions of height, width, and channel,
respectively. The size of a GOP is set to 16 in experiments.
A question feature fw ∈ RNw×dr is initialized with Glove
[25] and encoded with LSTM as in [12] where Nw is the
number of input words and dr is dimension of word fea-
tures. We remove the conventional 3D-CNN for extracting
a motion feature. Instead, a motion feature f tm is obtained
by temporal convolution using an MV.

The features are combined to create an MA+ feature ltv
to adapt for time-varying characteristics in a video to an-
swer a question. Intuitively, when a scene changes abruptly
and an object moves fast, the network can obtain more re-
liable features by analyzing local information. Otherwise,
the complicated motion dynamics are mixed with the fea-
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ture. In contrast, when a video displays a homogenous mo-
tion, it is more advantageous to watch a small difference in
a long sequence to filter out redundancies.

This mechanism is accomplished promptly by the
compressed-domain features in the network. Furthermore,
the feature is generated with examining at the region of in-
terest associated with a question to exploit inter-modal cor-
relation. We illustrate the details in the next subsection.

3.1.1 Motion vector (MV)-based feature warping

In this subsection, we explain how to create a motion fea-
ture f tm ∈ Rdh×dw×dc . Because there is neither an appear-
ance feature nor motion feature in the adjacent frames, an
MV mvt ∈ Rh×w×2 is used for estimating the appearance
feature f t+1

s in the adjacent frame by warping the current
appearance feature f ts . This scheme significantly reduces
computational complexity because it avoids reconstructing
all the frames and applies feature extraction by CNNs in-
dividually. The chunk of the motion-estimated features
around the current time t can be generated with arbitrary
reference frames as in [38]. Therefore, f t+ns is generated
by displacing the pixels of the current feature with a block-
based motion estimation as follows:

f t+ns (u) = f t+n−1
s (u+

1

r
mvt+n−1(

u

r
)), (1)

where n is the number of adjacent features, r is a scaling
factor calculated by h/dh, and u is a spatial coordinate of
features. This approach can keep the dimension of the ap-
pearance feature to help attention to a question and avoid re-
peated extraction whereas the previous studies use the lim-
ited (1-D) feature, directly extracted from a FC layer of a
pretrained network.

The method in [13] recognizes a motion using low- and
high-temporal resolution pathways. A high-temporal reso-
lution pathway can capture local temporal changes in the
video. Motivated by [13], we express the motion to tempo-
rally high-resolution features. The purpose of the following
equation is to combine information on the temporal move-
ment of appearances in adjacent frames as

f tm = ReLU(Conv([f ts, ..., f
t+n
s ])), (2)

where [.] is the concatenate operation in the channel axis
and Conv is a 1 × 1 convolution layer with stride 1, pro-
ducing a channel dimension of feature dc × n to dc. As
in [13], f tm goes through no temporal downsampling be-
fore the mixture in the last convolution layer in Eq.(2) but is
slightly modified to increase the number of spatial channels
using a pretrained CNN on each n temporal features.

3.1.2 Question guided attention

Spatial attention with a question was proposed initially to
capture more relevant objects in a frame on a visual question

answering task [42, 8]. We extend this scheme to observe
which regions are attended in both motion and appearance
features based upon the question feature.
Question feature map For the question-guided attention,
we create a question feature map Eq ∈ R(dh×dw)×1, start-
ing with a word feature vector from an LSTM encoder as

Eq =W1

Nw∑
j=1

(f jw)
T , (3)

where W1 ∈ R(dh×dw)×dr are learnable parameters used
for projection on the same space with fs and fm. We select
an LSTM encoder because it requires lower time complex-
ity compared with other encoders (e.g., BERT [11]), show-
ing suitable performance in experiments.
Attention map Ats and Atm refer to the attention maps
formed by a question, focusing on the relevant regions and
movements in the current frame and the adjacent frames.
They are generated from the corresponding feature maps
and the question, given as

Zts =W4 tanh
(
W2Eq + W3f

t
s + b1

)
+ b2, (4)

Ats =
exp(Zts)∑
u exp(Z

t
s(u))

, (5)

where the transform matrices W2 ∈ R1×ds , W3 ∈ Rdc×ds
and W4 ∈ Rds×dc and offsets b1 ∈ Rds and b2 ∈ Rdc are
learnable parameters. ds is the hidden size. In implementa-
tion, we reshape f ts ∈ Rdh×dw×dc to f ts ∈ R(dh×dw)×dc in
Eq.(4) to apply attention on each channel in f ts .

Then, Atm is computed as same in Eq.(4) and Eq.(5). Ata
and Atm share the same learnable parameters for activations
aligned more closely to the similar locations of objects.

Finally, the spatially activated areas Gts and spatially ac-
tivated movements Gtm are designated using the guided lo-
cal attention and video features. Gts and Gtm are given as
f ts � Ats and f tm � Atm, respectively. � is an operation of
element-wise product. The aim of Gts and Gtm is to focus
on specific parts and behaviors on the relevant objects to
answer given a question in the video frames.

3.1.3 Motion-appearance aggregation (MA+) feature

When the scene changes in adjacent frames or objects ap-
pear or disappear based on time t frames, the motion’s ex-
pression accuracy is naturally reduced if we express mo-
tion using these adjacent frames. If motion feature by 3D-
CNN, such as I3D[6] or C3D[34], is used an existing model
[41, 14, 12], it is inherently vulnerable because of limited
representation capability to describe diverse contexts in dy-
namic scenes. Therefore, in this subsection, we explain how
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to generate an MA+ feature vector ltv to overcome those
problems and closely synchronize motion and appearance
features at time t. When the motion and appearance fea-
tures are combined, we use a motion-control parameter αt

to control the degree to which the motion is reliable at the
time. The learnable parameter is used for adjusting the tem-
poral changes based on residual information, given as

αt = encr(R
t
s), (6)

where encr is a residue feature extractor consists of a pool-
ing operation and two FC layers and a following sigmoid
function, as depicted in Fig. 3. Rts is the residue.

Figure 3. Residue feature extractor and a motion-control parameter
to create MA+ feature ltv .

In video compression, the residue is given after the pre-
diction. The amount of the residue becomes larger as more
temporal changes occur in RGB pixels. Consequently, in
Eq.(6), f tm would be generated inappropriately due to inac-
curate MVs, which may degrade performance.

Therefore, the proposed algorithm produces a small
weighting factor to the feature vector to represent tem-
poral changes. Mathematically, the video feature ltv ∈
Rdh×dw×dc is computed as follows:

ltα = αtW5G
t
s(u) + (1− αt)W6G

t
m(u), (7)

where all the matrices W are the learnable parameters. Ac-
cording to Eq.(7), if there are abrupt temporal changes be-
tween scenes and αt goes nearly to 1, ltv is derived mostly
from Gts(u). This implies the network examines an input
video almost frame-by-frame at the time. In contrast, when
there is a slight motion and αt approaches 0, the network
considers only the locally temporal changes inGtm(u). This
mechanisms can synchronize a motion feature and adap-
tively determine the amounts for the temporal changes.

We then, use a 1 × 1 convolutional layer with stride 1,
which converts dimension dc to dc/8 to reduce the channel
dimension, and, apply an FC layer using reshape 1 dimen-
sion vector as follows:

ltv = FC(ReLU(Conv(ltα))), (8)

where ltv ∈ Rds . It is an 1-D vector but produced by cou-
pling all the appearance, motion, and language features.

3.1.4 Multi-modal fusion and decision

For the decision, we use a logit output vector Os as

Os =W7

Nv∑
t=1

ltv +W8

Nw∑
j=1

fw(j), (9)

where W7 and W8 are the learnable parameters, and Nw
and Nv are the numbers of input words and video frames,
respectively. The decision layer consists of two FC layers.
The two layers have 1,024 and 1,000 dimensional outputs
when the number of answer sets is 1,000. The answer is
obtained by maximizing the softmax function Os.

3.2. VQAC-integration network

The VQAC-integration network is proposed to reflect
global and local information jointly. The previous video
QA works have exploited global visual features over an en-
tire video and global question features in a sentence to im-
prove performance using external memory modules. De-
spite its time-efficiency, the VQAC-baseline performance
can be further improved with the global features provided
by the existing video QA modules in addition to the local
features from the VQAC-baseline network.

In the straightforward integration, the network might
combine the feature Os from the VQAC-baseline and the
global features Og only in the decision network. How-
ever, the performance can be limited because the two fea-
tures have not been jointly created. The VQAC-integration
network also attempts to solve this problem. Furthermore,
although the VQAC network borrows global memory struc-
tures in state-of-the-art networks, it does not use 3D-CNN
to extract motion features.

3.2.1 Architecture of VQAC-integration network

Figure 4. VQAC-integration network architecture incorporated
into the existing memory-based architecture. The global visual
and question features are further used to improve the performance
and fused in the decoder to answer the question.
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We illustrate the block diagram of the VQAC-integration
network in Fig.4. The network architecture is designed
to examine a video and question along with global depen-
dency. The VQAC-integration network obtains the mem-
ories Sv and Sw to extract global video and question fea-
tures, respectively. In experiments, heterogeneous memory
[12] and motion-appearance co-memory [14] are used, but
the baseline network can also be applied to any memory
models if global features are offered.

The network first obtains global question and video fea-
tures using existing architectures. It then generates an en-
hanced question feature map and reviews locally spatial and
temporal information for improved question-guided atten-
tion. The question feature map is further enhanced by read-
ing the global question feature Sw from [12] and integrating
it into Eq.(3), given as

Eq =W1

Nw∑
j=1

f jw +W9

Nw∑
j=1

Sjw, (10)

where W9 is a learnable parameter.
The quality of the question feature map is improved by

reading the global features with the encoded feature word-
by-word. Later, Eq is used for guiding which parts of the
video frame should be activated. Eq used in Eq.(4) is re-
placed with the improved one.
Multimodal fusion and decision: We compute the global
output vector Og:

Og =W10

Nw∑
j=1

Sw(j) +W11

Nv∑
j=1

Sv(j). (11)

For the decision, Og and Os are concatenated and decoded
to produce the logit Oo for multi-modal fusion of the global
features and local features as depicted in Fig. 4. The deci-
sion layer has the same architecture in Fig. 2.

4. Experimental Results
Implementation details We implemented the proposed
network using Pytorch [24] with an NVIDIA Quadro RTX
6000. In the network, f ts has a 28 × 28 × 512 dimension,
extracted at the end of the layer 2 of the Resnet152 [16].
Glove 300D [26] is used for question word embedding. For
a codec, we use an H.264/AVC decoder [37] to decompress
bitstreams and obtain MVs and residue. Whereas the size
of a macroblock is 16×16, the partition of sub-blocks is set
to four 8× 8. We set ds and n to 512 and 2, respectively.
Training details We used the cross-entropy loss function
[28] in training and performed backpropagation using the
Adam optimizer [19].
Datasets We conducted performance comparisons using
MSR-VTT QA and MSVD QA [41] datasets. MSVD QA
has 1,970 video clips and 50,505 QA sets. MSR-VTT QA

has 10,000 video clips and 243,680 QA sets. Each dataset
is divided into training, validation, and testing sets as in
[41, 43, 12]. They are widely used for VideoQA to quanti-
tatively evaluate the performance because they also contain
long, high-fidelity sentences.
Measurement metric Top-1 accuracy compares the cor-
rect answer with the predicted answer corresponding to the
highest probability. Top-k accuracy is also considered. For
a question such as “Who is walking down a path?,” the
semantically reasonable answer might be one of “Man,”
“Someone,” and “Human,” although the correct answer was
“Person.” Therefore, we use the Mean Rank (MR) and
Mean Rank Reciprocal (MRR) [35], and Wu-Palmer Simi-
larity (WUPS) scores [39] to compare the accuracies. MR
is calculated as the rank in the query. MRR is the reciprocal
value of MR. WUPS measures the semantic similarity.

4.1. Performance evaluation and analysis

Table 1. Performance comparisons using the top-1 accuracy

Performance (%) in MSVD QA

Method MEM What Who Others All
(8149) (4,552) (456) (13,157)

E-VQA [41] - 9.7 42.2 80.5 23.4
DLAN [47] - 21.1 46.0 79.8 31.7
AMU [41] - 20.6 47.5 80.3 32.0

ST-VQA [18] - 18.1 50.0 79.0 31.2
VQAC(Base) - 13.4 55.6 77.9 31.5

CO-MEM [14] X 19.6 48.7 77.6 31.7
HME [12] X 22.4 50.1 70.9 33.7

VQAC(CO) X 22.9 50.8 74.3 34.3
VQAC(HME) X 26.9 53.6 68.5 37.8

Performance (%) in MSR-VTT QA

Method MEM What Who Others All
(49,869) (20,385) (2,567) (72,821)

E-VQA [41] - 18.9 38.7 74.8 26.4
DLAN [47] - 25.4 42.8 73.8 32.0
AMU [41] - 26.2 43.0 73.3 32.5

ST-VQA [18] - 24.5 41.2 73.4 30.9
VQAC(Base) - 24.5 43.3 73.8 31.5

CO-MEM [14] X 25.4 43.5 70.3 32.0
HME [12] X 26.5 43.6 75.5 33.0

VQAC(CO) X 27.2 44.1 75.9 33.6
VQAC(HME) X 29.1 46.5 77.2 35.7

Compared methods We conduct the performance evalua-
tion of the proposed algorithm compared with the recent
VideoQA algorithms DLAN [47], ST-VQA [18], E-VQA
[41], AMU [41], CO-MEM [14], and HME [12]. The
VQAC-baseline network is referred to as VQAC(Base).
We also use external global memories VQAC(HME)
and VQAC(CO), where heterogeneous Memory [12] and
motion-appearance co-memory [14] were used for global
features, respectively.
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Quantitative performance analysis Table 1 illustrates
the accuracies of the different question types of MSVD
and MSR-VTT QA. Five QA algorithms including
VQAC(Base) from the top use no external memory mod-
ules to preserve global features, whereas the subsequent
four algorithms use memory modules. In the compar-
isons, VQAC(HME) presents the highest average perfor-
mance among the compared algorithms. Both in MSVD
QA and MSR-VTT QA, VQAC(HME) and VQAC(CO) im-
prove the performance by approximately 1.7%∼4.1% over
the original HME and CO-MEM, respectively. This result
implies that VQAC-baseline improves performance.

Table 2 presents the performance comparisons using dif-
ferent metrics such as the top-10, MR, MRR, and WUPS
scores. We also choose HME and AMU for the comparisons
because the codes are available. E-MN is also reported
in [41]. VQAC(HME) provides the highest performance
among the previous algorithms for all metrics. For instance,
the proposed algorithm yields approximately 5.6% higher
top-10 accuracy in MSVD QA and approximately 3.2% in
MSR-VTT QA than HME. The MR value represents the
ranking of a predicted answer, so a lower value indicates
higher performance.For WUPS scores, VQAC(HME) ex-
hibits significantly improved performance in WUPS 0.0 and
comparable performance in WUPS 0.9.

Table 2. Performance comparisons in MSVD QA and MSR-VTT
QA using the top-10, MR, MRR, and WUPS accuracies

Method Performance in MSVD QA dataset
Top-10 MR MRR WUPS 0.9 WUPS 0.0

E-MN[41] 57.7 % 5.19 0.41 35.7 % 70.0 %
AMU[41] 65.5 % 4.50 0.46 38.9 % 70.0 %
HME[12] 64.9 % 4.48 0.46 41.2 % 72.8 %

VQAC(HME) 70.5 % 3.90 0.51 45.0 % 72.9 %

Method Performance (%) in MSR-VTT QA dataset
Top-10 MR MRR WUPS 0.9 WUPS 0.0

E-MN[41] 60.0 % 5.00 0.42 35.8 % 65.5 %
AMU[41] 62.1 % 4.83 0.43 35.9 % 66.2 %
HME[12] 64.9 % 4.50 0.46 40.7 % 68.3 %

VQAC(HME) 68.1 % 4.18 0.49 42.4 % 69.2 %

Time complexity measurement We measure the inference
time in MSVD QA dataset, in which the resolution of the
video clips is 512 × 512 and illustrate the results in Table
3. For the comparisons, we choose AMU [41] and HME
[12] because their source codes are available and the time
complexity can be measured in the same platform.

In Table 3, we consider the measurement time in decom-
pressing video frames (Dec) and extracting the correspond-
ing features (Ext) to prepare the features. Once the features
are available, the execution time (Exe) to operate the model
is added. Thus, the total time is the summation of Ext,
Dec, and Exe. The time is measured in on average for ev-

Table 3. Measurement time complexity (min) in MSVD QA
dataset. The total time comprises the measurement time in de-
compressing video frames (Dec.) and extracting the corresponding
features (Ext.) and that in executing the network models (Exe.).

Module Dec. & Ext. Time Model Exe. Time Total
(min)fs

(TI )
fm

(TM )
3D-CNN

(Tp) sv , sw Others
Time 4.0 0.7 7.4

AMU X - X - 0.3 11.7
HME X - X 0.3 0.2 11.9

VQAC(HME) X X - 0.3 0.5 5.5
VQAC(Base) X X - - 0.2 4.9

ery 1,000 videos. As depicted in Table 3, VQAC(Base) is
the fastest at approximately 4.9 min, and VQAC(HME) is
the next at approximately 5.5 min. The measurement time
is only around 46.2 % that of HME (i.e. 11.9 min).

For more details, we profiled the measurement time. fs
is used as an appearance feature. It takes 3.2 min to de-
compress 20 I-frames from the bit-streams and 0.8 min to
extract the features from a pretrained CNN in MSVD QA
dataset. It is used for all the compared methods. However,
the main difference is computing time in the motion feature.
VQAC(Base) and VQAC(HME) take 0.4 min for retrieving
MVs from the bit-streams and 0.3 min for subsequent pro-
cesses to generate motion features, thus providing 0.7 min.
In contrast, HME and AMU require substantially more time
due to 3D-CNN. 3D-CNN uses 15 additional P-frames, so
it requires more decompression time approximately at 6.4
min. It consumes 7.4 min in total, by considering feature
extractions in 3D-CNN, which takes 1.0 min.

Although VQAC(HME) uses global features, it takes
less time than the other compared algorithms. In Exe,
though the execution time for sv and sw required for
read/write operations to memories is dominant, it does not
occupy a large portion in the total time. “Others” include
the measurement time required during attention, fusion, etc.
Qualitative performance evaluation In Fig. 5, we visual-
ize Video QA examples in MSVD dataset. The examples
in the left column show the answers related to motion. For
example, when a question “What are two man doing?” is
given in the first row, VQAC(HME) produces the correct
answer “Fight,” but HME answers “Stand.” It is shown that
the VQAC(HME) successfully follows the subject.

4.2. Ablation study

Ablation tests are conducted in the following condition.
We turn off each of the core modules and compare the per-
formance versus the VQAC or VQAC(HME). Results rep-
resented with [w/H] is compared with VQAC(HME). Oth-
erwise, they are compared with VQAC(Base).

• [w/o MV] is tested to see the changes w/o features using
an MV. Only the appearance is used for ltv in Eq.(7).
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Table 4. Results of the ablation tests by turning off each module to see the performance changes. w/H means a test in VQCA(HME).We
also conduct bootstrap sampling five times and report µ and σ on second lien.

Test [w/o MV] [w/o R] [w/ DMC] [w/ SF] [w/H + w/o MV] [w/H + w/o R] [w/ H + w/o sw] [w/ H + w/ 3D]

(%) 30.3(O 1.1 ) 31.0 (O 0.4 ) 30.7 (O 0.7 ) 31.2 (O 0.2 ) 34.2 (O 3.5 ) 36.5 (O 1.2 ) 35.4 (O 2.3 ) 36.0 (O 1.7 )
µ(σ) 29.3 (0.03) 30.3 (0.58) 30.0 (0.06) 30.9 (0.24) 30.9 (0.16) 35.5 (0.08) 33.3 (0.06) 34.6 (0.04)

Figure 5. Qualitative performance evaluation in several data sam-
ples of MSVD dataset.

• [w/o R] is tested to see the effect of residue. αt is set
to 0.5, so encr becomes inactive. The appearance and
motion play equal roles in Eq.(7).

• [w/ 3D] and [w/ SF] are tested when f tm in Eq.(2) is re-
placed with C3D [34] and the slow-fast [13], respectively.

• [w/ DMC] is tested when the compressed-domain fea-
tures develop for the other CV task such as action recog-
nition [29] are used instead of f tm.

• [w/ H + w/o sw] is tested when the global question fea-
ture sw in VQCA(HME) is removed in Eq.(10). Eq does
not consider sw.

Table 4 illustrates the results of the ablation tests. In
[w/o MV] and [w/H + w/o MV], we observe 1.1% and
3.5% performance drops at approximately, respectively, in
the top-1 performance. This result indicates the efficiency
of the proposed compressed-domain features. Furthermore,
we observe some drops in [w/ SF] though the motion fea-
ture is generated from [13]. [w/ DMC] presents a 0.7%
performance drop. This result shows that the compressed-
domain feature [29] for action recognition is not suitable
for video QA because it has no consideration of the mul-
timodality (language). In fact, action recognition needed
to discern only few representative motions in a video. In
[w/o R] and [w/H+w/o R], the performance drops by ap-
proximately 0.4% and 1.2%, respectively. [w/ H + w/o sw]
presents a 2.3% performance drop. These results confirm
that our enhanced Eq using global feature functions effi-
ciently. Instead of creating motion features using motion
vectors, [w/ H + w/ 3D] produces a 1.7% drop in perfor-
mance and increases complexity. It is more efficient to cre-

ate motion features using the proposed algorithm for both
the performance and speed.

Figure 6. Visualization of the activation map Gt+
s in a several data

samples in MSVD dataset.

Visualization of the question guided attention In Fig. 6,
we visualize some examples withGt+s . The red region is the
importance of the attention, whereas the blue region is the
opposite. The examples in the first row illustrate answers re-
lated to appearance. For example, when a question, “What
is a person riding in an area?,” is given, the proposed model
makes a correct answer “Horse.” The attention successfully
follows the movements of the horse. The second example il-
lustrates answers related to motion. When a question in the
fourth row, “What is a horse doing?,” is given, the proposed
network produces the correct answer “Jump” by accurately
recognizing the subject.

5. Conclusion
In this paper, a deep neural network that exploits

compressed-domain features was proposed to yield video
QA features. The proposed network considered inter-modal
correlation and computational complexity. The proposed
network provides the baseline framework but also the inte-
grated to the state-of-the-art networks for improved perfor-
mance.
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