
Learning with Memory-based Virtual Classes for Deep Metric Learning

Byungsoo Ko*1

NAVER/LINE Vision
kobiso62@gmail.com

Geonmo Gu*1

NAVER/LINE Vision
korgm403@gmail.com

Han-Gyu Kim
NAVER Clova Speech

hangyu.kim@navercorp.com

Abstract

The core of deep metric learning (DML) involves
learning visual similarities in high-dimensional embedding
space. One of the main challenges is to generalize from seen
classes of training data to unseen classes of test data. Re-
cent works have focused on exploiting past embeddings to
increase the number of instances for the seen classes. Such
methods achieve performance improvement via augmenta-
tion, while the strong focus on seen classes still remains.
This can be undesirable for DML, where training and test
data exhibit entirely different classes. In this work, we
present a novel training strategy for DML called MemVir.
Unlike previous works, MemVir memorizes both embedding
features and class weights to utilize them as additional vir-
tual classes. The exploitation of virtual classes not only
utilizes augmented information for training but also allevi-
ates a strong focus on seen classes for better generaliza-
tion. Moreover, we embed the idea of curriculum learning
by slowly adding virtual classes for a gradual increase in
learning difficulty, which improves the learning stability as
well as the final performance. MemVir can be easily ap-
plied to many existing loss functions without any modifica-
tion. Extensive experimental results on famous benchmarks
demonstrate the superiority of MemVir over state-of-the-art
competitors. Code of MemVir is publicly available1.

1. Introduction
Deep metric learning (DML) is of great importance

for learning visual similarities in a wide range of vision
tasks, such as image clustering [17], unsupervised learn-
ing [4, 15, 5], and image retrieval [43, 10, 24, 12]. Learning
visual similarity aims to build a well-generalized embed-
ding space that reflects visual similarities of images using
a defined distance metric. Typically, training and test data
exhibit entirely different classes in DML. Thus, the main
challenge is to maximize generalization performance from
a training distribution to a shifted test distribution, which
differs from classic classification tasks that deal with i.i.d.

*Authors contributed equally.
1https://github.com/navervision/MemVir

Conventional MemVir

: class weight: embeddings of , classes
: actual class from current step 𝑡𝑡

: virtual classes from past steps 𝑡𝑡-(𝑀𝑀+1), 𝑡𝑡-2(𝑀𝑀 +1)

NN 𝑓𝑓

Loss

Mini-batch

𝐶𝐶

(𝑁𝑁+1)𝐶𝐶

of

 c
la

ss
es

of

em
be

dd
in

gs

𝐵𝐵

(𝑁𝑁+1)𝐵𝐵

0 end
Steps

𝐶𝐶

(𝑁𝑁+1)𝐶𝐶

of
 c

la
ss

es

of

em
be

dd
in

gs

𝐵𝐵

(𝑁𝑁+1)𝐵𝐵

0 end
Steps

Figure 1. In conventional training, the loss function is com-
puted with actual classes. On the other hand, in MemVir,
classes from previous steps (virtual classes) are used to
compute the loss function along with the actual classes.
Moreover, the number of classes and embeddings are gradu-
ally increased by adding virtual classes, where C and B de-
note number of classes and batch size, N and M are hyper-
parameters for MemVir.

training and test distributions [31, 37].
Current DML approaches focus on learning visual sim-

ilarities with objective functions, which considers pair-
wise similarity (pair-based losses) [6, 38, 46] or similar-
ity between samples and class representatives (proxy-based
losses) [41, 40, 28, 7, 42]. Recent studies propose exploit-
ing additional embeddings from past training steps, which
are saved and controlled in the memory queue, to increase
the number of samples in a mini-batch and that of hard neg-
ative pairs [15, 5, 45, 22]. And yet, these methods of utiliz-
ing past embeddings is still constrained to the seen classes
of the training data. Thus, the trained model might result to
over-fit to the seen classes while under-perform on the un-
seen classes in test data. Therefore, to learn an embedding
space that generalizes, we need to alleviate the strong focus
on seen classes during the training phase [37, 31, 30].

11792

In this paper, we propose a novel training strategy,
which trains a model with Memory-based Virtual classes
(MemVir), for DML. In MemVir, we maintain memory
queues for both class weights and embedding features. In-
stead of using them to increase the number of instances
of seen classes, they are treated as virtual classes to com-
pute the loss function along with the actual classes, as il-
lustrated in Figure 1. Moreover, we incorporate the idea of
curriculum learning (CL) to gradually increase the learn-
ing difficulty by slowly adding virtual classes. The pro-
posed MemVir has the following advantages: 1) MemVir
trains a model with augmented information, which includes
increased number of classes (C → (N + 1)C) and in-
stances (B → (N + 1)B) without additional feature ex-
traction. 2) CL-like gradually increasing the learning dif-
ficulty improves the optimization stability and final perfor-
mance. 3) Exploiting virtual classes help achieve more gen-
eralized embedding space by alleviating excessively strong
focus on seen classes of training data. 4) MemVir can be
easily applied to many existing loss functions to obtain a
significant performance boost without any modification of
the loss function.

Contributions. 1) We propose a novel training strategy
for DML that exploits past embeddings and class weights
as virtual classes to improve generalization. We further im-
prove the training process and performance by incorporat-
ing the idea of CL. 2) We exhaustively analyze our proposed
method and demonstrate that employing virtual classes im-
proves generalization by alleviating a strong focus on seen
classes theoretically and empirically. 3) MemVir achieves
state-of-the-art performance on three popular benchmarks
of DML in both conventional and Metric Learning Reality
Check (MLRC) [33] evaluation protocol.

2. Related Work
Sample Generation and Memory-based Learning. In

DML, the generation of hard samples has been inves-
tigated to perform training with more informative sam-
ples [8, 49, 12, 24]. DAML [8] and HDML [49] utilize
generative networks to generate synthetic samples, while
Symm [12] and EE [24] generate synthetic samples by ge-
ometric relations. Meanwhile, utilizing information from
previous steps has been explored in many computer vision
tasks [15, 5, 45, 22]. In supervised DML, XBM [45] is
proposed to use memorized embeddings for extending neg-
ative samples in pair-based losses. In XBM, the state differ-
ence between past and current embeddings is disregarded
based on “slow drift” phenomena. On the other hand, [22]
argues that a large accumulated error caused by the state
difference may degrade the training process. They present
BroadFace method for softmax variant losses to control the
error by compensating the state difference and gradient con-
trol. The above-mentioned methods focus on utilizing gen-

erated or memorized information with respect to increasing
the number of instances for the seen classes. However, this
may result in a model overly optimized to the seen classes
while under-performing on the unseen classes in test data.
Rather than disregarding or controlling the state difference,
the proposed MemVir exploits the state difference by em-
ploying the memorized embeddings and class weights as
virtual classes, which are treated as different classes from
the actual (seen) classes. The exploitation of virtual classes
helps achieve more generalized embedding space by allevi-
ating a strong focus on seen classes. Additional comparison
with XBM w.r.t “slow drift” phenomena is included in sup-
plementary Section B.2.

Virtual Class. In image recognition task, Virtual soft-
max [3] has been presented to enhance the discriminative
property of embeddings by injecting a virtual class into the
softmax loss. However, it is not only limited by a single
virtual class but also cannot be used with softmax variants
using l2-normalization. In comparison, MemVir exploits
multiple virtual classes and can be used with any softmax
variants and proxy-based losses.

Curriculum Learning. CL in machine learning is mo-
tivated by the idea of curriculum in human learning, where
the models learn from easier samples first and more difficult
samples later. Imposing CL for model training has been
shown to accelerate and improve the training process in
many machine learning tasks [1, 47, 13, 18]. When exploit-
ing CL, two key factors have to be considered: (1) Scor-
ing the difficulty of each sample; (2) scheduling the pace
by which the sample is presented to the network. To de-
fine the difficulty, bootstrapping and transfer learning have
been used to score the difficulty of each sample [47, 13].
For scheduling, the samples to be presented to the network
can be determined in fixed or adaptive steps [47, 18]. The
main difference between conventional CL and MemVir is
the former schedules within the training data, whereas the
latter (MemVir) increases the learning difficulty with virtual
classes, which are augmented information.

3. Proposed Method
3.1. Preliminary

We define a deep neural network as f : I → X , which
is a mapping from an input data space I to an embed-
ding space X . Let X = [x1, x2, . . . , xH] denote the D-
dimensional embedding features, and each feature xi has a
corresponding label yi ∈ {1, . . . , C}. The generalized form
of the objective function can be written as follows:

L(X,W) = − 1

| X |

|X|∑
i=1

l(xi, yi), (1)

where W denotes the class weights, and l(·) can be any of
the loss functions defined below.

11793

Embeddings
𝑁𝑁 + 1 𝐵𝐵 × 𝐷𝐷

Weights
(𝑁𝑁 + 1)𝐶𝐶 × 𝐷𝐷

Embeddings
Queue 𝔼𝔼

Weights
Queue 𝕎𝕎

Step

Margin 𝑀𝑀

-1-𝑁𝑁(𝑀𝑀+1) -𝑀𝑀-(𝑀𝑀+1)

Mini-batch 𝐵𝐵

CNN

Network 𝑓𝑓

… …

……

… …
A

ctual
V

irtual

𝑁𝑁
𝑁𝑁

×
𝐷𝐷

𝑁𝑁
𝑁𝑁

×
𝐷𝐷

𝐵𝐵
×
𝐷𝐷

𝐶𝐶
×
𝐷𝐷

of steps to use (colored) 𝑁𝑁

𝑀𝑀 𝑀𝑀

Figure 2. Overview of MemVir. Past embeddings and class weights queues are maintained. We select N steps of past
embeddings and weights with margin M in between the selected steps, and use them as additional virtual classes along with
actual classes for loss computation.

The most widely used classification loss function, soft-
max loss, has been revalued as a competitive objective func-
tion in metric learning [48, 2]. The softmax loss is used to
optimize the network f and class weight W :

lsoftmax(xi, yi) = log
eW

T
yi
xi∑C

j=1 e
WT

j xi
, (2)

where Wj ∈ RD denotes the j-th column of weight W ∈
RD×C . The bias b is set to 0 because it does not affect the
performance [28, 7]. The weight Wj is the center of each
class [7, 42] and serves as a representative.

For improved performance and better interpretation, [41,
40, 28] proposes to normalize weights and embedding fea-
tures to lay them on a hypersphere with a fixed radius. We
perform l2-normalization to fix the size of the weights and
embedding features to the following: ‖ Wj ‖= 1 and fea-
ture ‖ xi ‖= 1. Subsequently, we can simplify the log-
its [35] by transforming WT

j xi = ‖Wj ‖‖ xi ‖ cos θj =
cos θj , and define the Norm-softmax loss as follows:

lnorm(xi, yi) = log
eγ cos θyi

eγ cos θyi +
∑C
j=1,j 6=yi e

γ cos θj
, (3)

where γ is a scale factor. The proposed method MemVir
can be used with softmax variants as well as proxy-based
losses because a proxy is a class representative feature
much like class weights of softmax variants. Hence, we in-
clude the details of other loss functions (CosFace [42], Arc-
Face [7], CurricularFace [18], Proxy-NCA [32], and Proxy-
Anchor [21]) in supplementary Section A.

3.2. Learning with Memory-based Virtual Classes

We propose a novel training strategy called MemVir,
which trains a model with virtual classes from past steps

to exploit augmented information and obtain better gen-
eralization. When conventional metric learning trains a
model with given C classes and B embeddings from train-
ing data, MemVir gradually increases the number of classes
(C → (N + 1)C) and embeddings (B → (N + 1)B)
with the virtual classes. We use the naming convention
of MemVir(N ,M), which indicates the hyper-parameters of
the proposed method, to be defined below.

Queuing Past Embeddings and Weights. To form a
class in loss computation, a pair of the class representa-
tive feature (weight) and embedding features are required.
Hence, in MemVir, we maintain two types of memory
queues: embedding queue E and weight queue W, where
each entity of the queues is a collection of embeddings or
class weights of each step as illustrated in Figure 2. For
each step, the collection of embeddings X and weights W
are enqueued to E and W, respectively. The size of each
queue is determined as N(M + 1), where N is the num-
ber of selected steps to use for the loss computation, and
M is the margin between the selected steps. The shape
and position of class clusters vary by each step because the
network parameters change during training process. Such
variance between steps is utilized in MemVir by exploit-
ing weights and embeddings from previous steps as virtual
classes. Here, the difference between the selected steps can
be controlled by the margin M .

Scheduling Usage of Virtual Classes. In MemVir, vir-
tual classes will be utilized to gradually increase learning
difficulty as CL. The scheduling of virtual class usage in-
cludes two periods: warm-up and step-pacing. We turn
on MemVir and begin managing queues after the warm-
up step U (epoch Ue), because the embeddings of the ini-
tial phase are typically scattered without forming clusters,

11794

Algorithm 1: Pseudo-code of MemVir
// f : encoder network
// weight/embed queue: weight and embedding memory queue
// Ue, N , M : warm-up epoch, number of steps, margin

1 for input, label in loader do
2 embed = f .forward(input)
3 weight = f .get class weight()

// Turn on MemVir when it is in use and past warm-up epoch
4 if MemVir is True and epoch ≥ Ue then
5 cur weight = weight.copy()
6 cur embed = embed.copy()
7 cur label = label.copy()

// Prepare embeddings and weights by step-pacing
// The order of each queue is from new to old

8 if len(weight queue) > M then
9 for idx in range(M , len(weight queue), M +1) do

10 pre weight = weight queue[idx]
11 pre embed, pre label = embed queue[idx]

// Create new label indices for virtual classes
12 new label = create new label(pre label)
13 weight.concatenate(weight, pre weight)
14 embed.concatenate(embed, pre embed)
15 label.concatenate(label, new label)
16 end

// Update memory queues
17 enqueue(weight queue, cur weight)
18 enqueue(embed queue, (cur embed, cur label))
19 if len(weight queue) > N(M + 1) then
20 dequeue(weight queue)
21 dequeue(embed queue)

// Compute loss and back-propagation
22 loss = compute loss(weight, embed, label)
23 loss.backward()
24 optimizer.step()
25 end

which can be a distraction for training. It is noteworthy that
we use MemVir without learning rate decay because decay-
ing the learning rate changes the difference between steps;
thus, the learning rate decay can be used with a modifica-
tion of hyper-parameter M of MemVir. After the warm-
up, the step-pacing algorithm takes place by storing embed-
dings and weights of each step in their respective queues
and reusing them for loss computations, as described in Al-
gorithm 1. As the queue size grows, previously stored em-
beddings and weights from every M + 1 steps are selected
as virtual classes when computing the loss at each step. The
number of selected steps for virtual classes would increase
gradually from 0 to N determined by current queue size.
This results in increasing the number of classes by a stair-
case function, and the function s of the number of classes
can be written as:

s(i) =

{
C, i < U,

C ×
{
min(b i−UM+1c, N) + 1

}
, i ≥ U,

(4)

where i denotes the current step. The scheduling function
of MemVir is illustrated by the red line in Figure 3a.

𝑈𝑈+(𝑀𝑀+1)
𝑈𝑈+𝑁𝑁(𝑀𝑀+1)

𝑁𝑁(𝑀𝑀+1) 𝑈𝑈

(a) Different ways of scheduling.

U

(b) Performance by scheduling.

Figure 3. Impact of scheduling. (a) Different ways of
scheduling for adding virtual classes. (b) Performance
of each scheduling case with MemVir(5,100) and Norm-
softmax as baseline on CARS196.

Learning with Multiple Virtual Classes. When we se-
lect N steps of past embeddings and weights from the
queues, it indicates that we have NC virtual classes. We
denote the set of selected past embeddings and weights as
X̃ and W̃ , respectively. Subsequently, we compute the ob-
jective function with virtual classes as follows:

L(X ∪ X̃,W ∪ W̃) = − 1

| X ∪ X̃ |

|X∪X̃|∑
i=1

l(xi, yi), (5)

where l(·) can be any type of loss function. The imple-
mentation of MemVir is simple without any modification of
the loss function, and it gives a significant performance im-
provement in DML without any additional computational
cost in the inference phase.

3.3. Discussion and Analysis

3.3.1 Analysis of Scheduling

Figure 3 shows the different ways of scheduling and the per-
formance of each case. In Figure 3a, when the MemVir is
turned on at warm-up stepU , it begins adding virtual classes
after each M + 1 step, gradually. Compared with MemVir,
‘w/o warm-up’ starts adding virtual classes from the initial
steps, whereas ‘w/o step-pacing’ adds all virtual classes at
once after warm-up step U . For the case of ‘w/o warm-
up’, training starts with degraded performance, but finally,
the performance is higher than the baseline. In fact, em-
beddings from virtual classes at the initial steps would be
scattered without forming clusters; thus, it can be a distrac-
tion at the initial steps. Meanwhile, ‘w/o step-pacing’ ex-
hibits a slight performance degradation immediately after
warm-up step U . This is because placing NC number of
virtual classes simultaneously can be too difficult for train-
ing the model. By considering both cases, MemVir is able
to increase the training difficulty gradually for a more stable
optimization.

11795

H
ar

de
r

U

H
ar

de
r

U

Step-
pacing

(a) Difficulty by margin.

H
ar

de
r

U

H
ar

de
r

U

Step-
pacing

(b) Difficulty by number of steps.

Figure 4. Impact of difficulty with Norm-softmax as base-
line on CARS196. Difficulty is measured by loss value of
each step. (a) Difficulty by varying margin parameter M
with a fixed number of steps N = 1. (b) Difficulty by vary-
ing the number of stepsN with a fixed margin ofM = 100.

3.3.2 Analysis of Difficulty

MemVir controls learning difficulty via following hyper-
parameters: number of steps N and margin M . To see
the impact of learning difficulty by each hyper-parameter,
we measure the difficulty with the loss value by follow-
ing [27, 47]. As shown in Figure 4a, a smaller margin of
M results in greater difficulty, which is obvious because the
embeddings from the recent steps would be similar to the
embeddings from the current steps. Furthermore, Figure 4b
shows that adding more virtual classes increases the learn-
ing difficulty. It is noteworthy that the loss value increases
slowly after warm-up step U by adding virtual classes grad-
ually (step-pacing); subsequently, it starts decreasing after
reaching a peak. The detailed performance by different
hyper-parameters is presented in Section 4.4.

3.3.3 Gradient Analysis for Generalization

Considering the distribution shift in training and test data,
strong focus on seen classes has to be alleviated in the gen-
eralization of transfer learning problems such as DML [37,
31, 30]. To demonstrate how MemVir works in generaliz-
ing models during training, we have analyzed the gradient
of the softmax loss. For convenient analysis, the softmax
loss in Equation 2 is re-written as follows:

lsoftmax(xi, yi) = log
eα(xi,yi)∑C
j=1 e

α(xi,j)
, (6)

where α(xi, j) = WT
j xi. The gradient of the softmax loss

over the embedding feature xi can be inducted as follows:

∂lsoftmax(xi, yi)

∂xi
= Wyi −

∑C
j=1 e

α(xi,j)Wj∑C
j=1 e

α(xi,j)

≈ Wyi −
eα(xi,yi)Wyi∑C
j=1 e

α(xi,j)

= τWyi , (7)

U

U

U

U

(a) Cosine similarity (xi, Wyi).

U

U

U

U

(b) Generalization performance.

Figure 5. Generalization analysis with Norm-softmax as
baseline on CARS196. (a) Similarity between embeddings
and corresponding class weights of seen classes in training
data. (b) Performance on unseen classes in test data.

(a) Softmax loss. (b) MemVir + softmax loss.

Figure 6. Illustration of an embedding (xi) and correspond-
ing class weight (Wyi) learning, where Wyi(n) are virtual
class weights originated from the class yi.

τ = 1− eα(xi,yi)∑C
j=1 e

α(xi,j)
. (8)

It is obvious that τ > 0 and τ → 0 when xi → Wyi ,
implying that xi tries to get as close to Wyi as possible,
which is illustrated in Figure 6a. This can result in a strong
focus on the target weight Wyi and an over-fit to the seen
classes of the training data.

In comparison, the gradient of MemVir + softmax loss
over the embedding feature xi can be inducted as follows:

∂lMemV ir(xi, yi)

∂xi
= Wyi −

∑(N+1)C
j=1 eα(xi,j)Wj∑(N+1)C
j=1 eα(xi,j)

≈ Wyi −

∑N
n=0 e

α(xi,y
(n)
i)W

y
(n)
i∑(N+1)C

j=1 eα(xi,j)

= τ0Wyi +

N∑
n=1

τnWy
(n)
i
, (9)

τ0 = 1− eα(xi,yi)∑(N+1)C
j=1 eα(xi,j)

, τn = − eα(xi,y
(n)
i)∑(N+1)C

j=1 eα(xi,j)
(10)

where, y(n)i (n > 0) are virtual classes and y(0)i = yi. It is
obvious that τ0 > 0. However, τ0 would not be close to zero
whether xi is nearby Wyi or not, because the denominator

11796

: Class weight, (current)Embedding color (step): (-1(M+1)) (-2(M+1)) (-3(M+1)) (-4(M+1)) (-5(M+1))

(a) 50th epoch, # of classes = C (b) 60th epoch, # of classes = 6C (c) 200th epoch, # of classes = 6C

Figure 7. t-SNE visualization of 512-dimensional embedding space. Embedding features are extracted by model trained with
MemVir(5,100) on CARS196 training data. Each color indicates step for embedding features.

of τ0 would be large as the virtual classes are close to Wyi .
As illustrated in Figure 6b, this makes it difficult for xi to
get highly close toWyi and thus, alleviates the phenomenon
of the embedding feature becoming extremely close to the
target Wyi . In addition, because τn < 0, xi tries to get
farther away from the virtual classes W

y
(n)
i

. Thus, the al-
leviation would be more extensive and can effectively ease
the intense focus of the softmax loss, leading to a more sub-
stantial generalization. This is empirically shown in Fig-
ure 5. The baseline gradually increases the similarity be-
tween the embeddings and corresponding class weights. By
contrast, when MemVir is turned on at step U , the similar-
ity is slightly degraded by alleviating the strong focus on the
seen classes, and better generalization is achieved as shown
in Figure 5b. The detailed induction is provided in the sup-
plementary Section B.1.

4. Experiments
In this section, we conduct a series of experiments to

analyze and validate the effectiveness of MemVir. Please
refer to the supplementary material for additional experi-
ments: analysis of memory and computational cost (Section
D.1), impact of learning rate (Section D.2), impact of warm-
up (Section D.3), robustness to input deformation (Section
D.4), impact of embeddings and class weights in virtual
class (Section D.6), and more.

4.1. Experimental Setting

We use three popular datasets for evaluation in DML:
CUB-200-2011 (CUB200) [39], CARS196 [25], and Stand-
ford Online Products (SOP) [34]. We perform two types of
evaluation procedures: conventional evaluation and MLRC
evaluation. Conventional evaluation is based on the com-
mon training and evaluation procedure described in [34,
21]. All experiments are conducted on an Inception net-
work with batch normalization [20] and a 512-dimensional

embedding feature. A batch size of 128, the Adam opti-
mizer [23] with a learning rate of 10−4, and warm-up epoch
Ue = 50 are adopted unless otherwise noted in the ex-
periment. Considering recent works [33, 9] that have pro-
posed improved evaluation procedures for fairness, we in-
clude the MLRC evaluation protocol [33]. In MLRC eval-
uation, the procedure includes hyper-parameter search with
4-fold cross-validation, ensemble evaluation, and the usage
of fair metrics (P@1, RP, and MAP@R). Please refer to
supplementary Section C for details regarding the datasets
and implementation.

4.2. Embedding Space Visualization

In Figure 7, we visualize the embedding space of the
training data via t-SNE [29] to present how MemVir learns
the embedding space. At the 50th epoch in Figure 7a, the
model has been trained with only actual classes and obtains
sparse embedding space with concentration on the actual
classes. When all virtual classes are added at the 60th epoch
in Figure 7b, virtual classes tend to be close to the actual
classes and the embedding space is still sparse as in Fig-
ure 7a. This demonstrates that the model is not fully utiliz-
ing the embedding space and is highly focused on the seen
classes. After enough epochs of training, at the 200th epoch
in Figure 7c, the model obtains dense embedding space with
sufficient discriminative power over all actual and virtual
classes. To sum up, MemVir offers better utilization of em-
bedding space by alleviating strong focus on seen classes
for generalization. We include extended visualization in
supplementary Section D.8.

4.3. Impact of Batch Size and Number of Classes

One advantage of MemVir is that it can utilize aug-
mented information, including an increased number of em-
bedding features and classes without additional feature ex-
traction. To see the impact of the number of embedding

11797

(a) Impact of number of step N (b) Impact of margin M (c) Impact of pair-wise interaction

Figure 8. We use fANOVA [19] to estimate the impact of hyper-parameters. Reported performances are predicted values
from random forest of fANOVA, which is trained with experimental results of MemVir on CARS196.

Batch size 8 16 32 64 128 256 512 1024

Norm-softmax 79.1 82.8 83.1 83.5 83.3 82.8 81.0 78.5
+ MemVir 80.4 83.6 85.0 85.5 85.0 85.0 84.8 84.6
Diff +1.3 +0.8 +1.9 +2.0 +1.7 +2.2 +3.8 +6.1

(a) Impact of batch size.
Class ratio (%) 10 20 30 40 50 60 70 80 90 100

Norm-softmax 56.4 67.3 69.6 74.8 77.7 78.8 79.4 81.7 82.0 83.3
+ MemVir 58.5 70.1 72.8 77.2 80.0 81.3 82.6 83.8 84.1 85.0
Diff +2.1 +2.8 +3.2 +2.4 +2.3 +2.5 +3.2 +2.1 +2.1 +1.7

(b) Impact of number of classes.

Table 1. Impact of batch size and number of classes on
CARS196 dataset. We report Recall@1(%) performance
and underline when MemVir(1,100) exceeds the best per-
formance of the baseline Norm-softmax.

features and classes, we conduct experiments by varying
the batch size and number of classes, where the training
classes are randomly sampled by class ratio. As shown
in Table 1a, the performance of the Norm-softmax base-
line increases from the batch size of 8 to 64 and then de-
creases after, indicating that the increase in the batch size
does not guarantee performance improvement [26, 11]. Ap-
plying MemVir to the baselines allows the models to learn
with twice the number of embedding features by the virtual
classes. MemVir yields performance improvement by 2.5%
on average and exceeds the best performance of the base-
line of batch size 64 with the batch size of only 16. More-
over, we observe that using MemVir is more robust to per-
formance degradation due to the large batch size. As shown
in Table 1b, decreasing the class ratio degrades the perfor-
mance of the Norm-softmax baseline from 83.3% to 56.4%.
With MemVir, which doubles the number of classes with
virtual classes, we observe that the performance increases
by an average of 2.4% and exceeds the best performance of
the baseline with only 80% of the classes.

4.4. Impact of Hyper-parameters

For hyper-parameter analysis, we use the fANOVA
framework [19], which can estimate the pattern and im-
portance of each hyper-parameter and pair-wise interaction.
We report the hyper-parameter analysis of CUB200 and
SOP as well as the details of the fANOVA in the supple-
mentary Section C.3 and D.5. As illustrated in Figure 8,
the performance on CARS196 improves as the number of
stepsN increases. The performance improves until the mar-
gin M = 20, and then stabilizes after a slight degradation.
However, the patterns of the impact of the hyper-parameters
differ for each dataset because the characteristics of each
dataset and the number of classes are diverse. We observe
two common patterns among all datasets. First, a margin
M larger than zero is typically better than M = 0; this is
because classes from adjacent steps would be too similar to
act as different classes and hence become distractions. Sec-
ond, N exceeding one is typically better than N = 1. This
is because by using more steps N , the effect of CL can be
exploited more effectively by scheduling addition of virtual
classes with a longer time.

4.5. Comparison with Related Methods

We compare MemVir with related methods from image
recognition task, including the virtual class (Virtual soft-
max [3]), the memory-based (BroadFace [22]), and the CL
(CurricularFace [18]) methods. Also, we include XBM [45]
from DML to compare with BroadFace. For a fair compar-
ison, we follow the experimental setting of [22, 18], which
consists of a stochastic gradient descent (SGD) optimizer,
a learning rate of 5 × 10−3, a batch size of 512, and the
ResNet50 backbone [16]. As presented in Table 3, Vir-
tual softmax degrades the performance, whereas MemVir +
softmax improves the performances of both datasets. When
we combine XBM with ArcFace, we observe performance
degradation when the memory size is large, as reported in
BroadFace [22]. The performance can be further improved

11798

CUB200 CARS196 SOP
Method P@1 RP MAP@R P@1 RP MAP@R P@1 RP MAP@R

Norm-softmax [41] 65.65 ± 0.30 35.99 ± 0.15 25.25 ± 0.13 83.16 ± 0.25 36.20 ± 0.26 26.00 ± 0.30 75.67 ± 0.17 50.01 ± 0.22 47.13 ± 0.22
MemVir + Norm-softmax 69.22 ± 0.15 37.92 ± 0.16 27.10 ± 0.13 85.81 ± 0.18 38.78 ± 0.19 28.92 ± 0.17 75.77 ± 0.20 50.24 ± 0.22 47.45 ± 0.25
CosFace [42] 67.32 ± 0.32 37.49 ± 0.21 26.70 ± 0.23 85.52 ± 0.24 37.32 ± 0.28 27.57 ± 0.30 75.79 ± 0.14 49.77 ± 0.19 46.92 ± 0.19
MemVir + CosFace 69.79 ± 0.26 37.85 ± 0.23 27.08 ± 0.28 87.57 ± 0.13 39.10 ± 0.21 29.56 ± 0.26 75.88 ± 0.27 49.95 ± 0.37 47.18 ± 0.38
ArcFace [7] 67.50 ± 0.25 37.31 ± 0.21 26.45 ± 0.20 85.44 ± 0.28 37.02 ± 0.29 27.22 ± 0.30 76.20 ± 0.27 50.27 ± 0.38 47.41 ± 0.40
MemVir + ArcFace 69.33 ± 0.41 37.82 ± 0.28 26.96 ± 0.25 88.02 ± 0.18 39.12 ± 0.15 29.63 ± 0.15 76.05 ± 0.30 50.56 ± 0.33 47.75 ± 0.32
Proxy-NCA [32] 65.69 ± 0.43 35.14 ± 0.26 24.21 ± 0.27 83.56 ± 0.27 35.62 ± 0.28 25.38 ± 0.31 75.89 ± 0.17 50.10 ± 0.22 47.22 ± 0.21
MemVir + Proxy-NCA 69.25 ± 0.32 37.31 ± 0.12 26.43 ± 0.17 87.02 ± 0.15 38.51 ± 0.15 28.76 ± 0.16 76.97 ± 0.31 50.81 ± 0.26 48.02 ± 0.27
Proxy-anchor [21] 69.73 ± 0.31 38.23 ± 0.37 27.44 ± 0.35 86.20 ± 0.21 39.08 ± 0.31 29.37 ± 0.29 75.37 ± 0.15 50.19 ± 0.14 47.25 ± 0.15
MemVir + Proxy-anchor 69.81 ± 0.28 38.57 ± 0.14 27.83 ± 0.16 86.40 ± 0.18 40.27 ± 0.20 30.58 ± 0.20 77.80 ± 0.17 53.21 ± 0.12 50.35 ± 0.13

Table 2. [MLRC evaluation] Performance (%) on three famous datasets in image retrieval task. We report the performance
of concatenated 512-dim over 10 training runs. Bold numbers indicate the best score within the same loss and dataset.

CARS196 SOP
Method R@1 R@2 R@4 R@1 R@10 R@100

SoftMax 78.3 86.4 91.9 76.6 89.4 95.8
Virtual SoftMax 75.1 84.1 90.1 74.5 87.9 94.8
MemVir + SoftMax 79.2 87.0 92.1 78.9 90.6 96.2

ArcFace 78.8 86.4 91.7 76.9 89.1 95.0
XBM + ArcFace 78.9 86.2 91.9 78.1 89.7 95.8
BroadFace + ArcFace 79.5 87.3 92.0 80.2 91.0 95.9
MemVir + ArcFace 80.7 88.1 92.7 80.8 91.3 96.5

CurricularFace 79.9 87.3 92.0 79.8 90.7 95.6
MemVir + CurricularFace 81.0 87.9 92.9 81.3 91.7 98.8

Table 3. Performance (%) comparison with related methods
on CARS196 and SOP dataset.

by adding compensation technique and gradient control pre-
sented in BroadFace. However, exploiting the memorized
features as virtual classes in MemVir shows a higher per-
formance boost than just utilizing them for the increased
number of instances in XBM and BroadFace. Consider-
ing that CurricularFace has already included the idea of CL,
MemVir can improve the performance even further by pro-
viding virtual classes as harder cases. Moreover, it is note-
worthy that the experimental results show the flexibility of
MemVir for different types of backbones and optimizers.
Extended experiments with different experimental settings
are presented in the supplementary Section D.7.

4.6. Comparison with State-of-the-art

Finally, we compare the proposed method with state-
of-the-art methods in DML. In the conventional evalua-
tion shown in Table 4, every softmax variant and proxy-
based loss combined with MemVir show significantly im-
proved performance in every dataset. The average per-
formance improvements are 2.3%, 3.4%, and 1.1% for
CUB200, CARS196 and SOP, respectively. In compar-
ison with the memory-based (XBM), sample generation
(Symm, EE), and other recent methods (MS, SoftTriple and
ProxyGML), MemVir shows competitive performance in all
datasets. Even in the MLRC evaluation shown in Table 2,
which is specifically designed in terms of fairness, MemVir
improves performance in every dataset and metric substan-

Method CUB200 CARS196 SOP

Multi-similarity (MS)† [44] 64.5 82.1 76.3
SoftTriple [36] 65.4 84.5 78.3
ProxyGML [50] 66.6 85.5 78.0
Symm [12] + MS [38] 64.9 82.4 76.9
EE [24] + MS [44] 65.1 82.9 77.0
XBM [45] + Contrastive [14] 65.8 82.0 79.5

Softmax 64.2 81.5 76.3
MemVir + Softmax 66.8 (+2.6) 86.5 (+5.0) 77.8 (+1.5)
Norm-softmax [41] 64.9 83.3 78.6
MemVir + Norm-softmax 67.3 (+2.4) 86.8 (+3.5) 79.6 (+1.0)
CosFace [42] 65.7 83.6 78.6
MemVir + CosFace 67.7 (+2.0) 86.6 (+3.0) 79.7 (+1.1)
ArcFace [7] 66.1 83.7 78.8
MemVir + ArcFace 67.4 (+1.3) 86.5 (+2.8) 80.0 (+1.2)
Proxy-NCA [32] 64.3 82.0 78.1
MemVir + Proxy-NCA 68.3 (+4.0) 86.5 (+4.5) 79.2 (+1.1)
Proxy-anchor† [21] 67.7 84.9 78.9
MemVir + Proxy-anchor 69.0 (+1.3) 86.7 (+1.8) 79.7 (+0.8)

Table 4. [Conventional evaluation] Recall@1 (%) on three
famous datasets in image retrieval task. † denotes evaluation
in a fair setting described in supplementary Section C.2.1.

tially. These results demonstrate the flexibility and effec-
tiveness of MemVir in DML. Please refer to the supple-
mentary Section D.9 for extended results of the metrics and
comparisons with existing methods in conventional evalua-
tion, as well as additional performance report of separated
128-dim in MLRC evaluation.

5. Conclusion

In this paper, we have presented a novel training strat-
egy that exploits memory-based virtual classes and incor-
porates the idea of CL. Theoretical and empirical analysis
demonstrates that employing virtual classes as augmented
information help achieve better generalization by alleviat-
ing a strong focus on seen classes. Furthermore, we show
that gradually increasing the learning difficulty by slowly
adding virtual classes improves the training process and fi-
nal performance. Considering that MemVir is easily appli-
cable to existing loss functions for better generalization, it
is hence a competitive training strategy in DML.

11799

References
[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Ja-

son Weston. Curriculum learning. In Proceedings of the 26th
annual international conference on machine learning, pages
41–48, 2009.

[2] Malik Boudiaf, Jérôme Rony, Imtiaz Masud Ziko, Eric
Granger, Marco Pedersoli, Pablo Piantanida, and Ismail Ben
Ayed. A unifying mutual information view of metric learn-
ing: cross-entropy vs. pairwise losses. arXiv preprint
arXiv:2003.08983, 2020.

[3] Binghui Chen, Weihong Deng, and Haifeng Shen. Vir-
tual class enhanced discriminative embedding learning. In
Advances in Neural Information Processing Systems, pages
1942–1952, 2018.

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709,
2020.

[5] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020.

[6] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning
a similarity metric discriminatively, with application to face
verification. In 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), vol-
ume 1, pages 539–546. IEEE, 2005.

[7] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4690–
4699, 2019.

[8] Yueqi Duan, Wenzhao Zheng, Xudong Lin, Jiwen Lu, and
Jie Zhou. Deep adversarial metric learning. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2780–2789, 2018.

[9] Istvan Fehervari, Avinash Ravichandran, and Srikar Ap-
palaraju. Unbiased evaluation of deep metric learning al-
gorithms. arXiv preprint arXiv:1911.12528, 2019.

[10] Albert Gordo, Jon Almazán, Jerome Revaud, and Diane Lar-
lus. Deep image retrieval: Learning global representations
for image search. In European conference on computer vi-
sion, pages 241–257. Springer, 2016.

[11] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

[12] Geonmo Gu and Byungsoo Ko. Symmetrical synthesis for
deep metric learning. arXiv preprint arXiv:2001.11658,
2020.

[13] Guy Hacohen and Daphna Weinshall. On the power of cur-
riculum learning in training deep networks. arXiv preprint
arXiv:1904.03626, 2019.

[14] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensional-
ity reduction by learning an invariant mapping. In 2006 IEEE
Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR’06), volume 2, pages 1735–1742.
IEEE, 2006.

[15] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9729–9738, 2020.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[17] John R Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji
Watanabe. Deep clustering: Discriminative embeddings
for segmentation and separation. In 2016 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 31–35. IEEE, 2016.

[18] Yuge Huang, Yuhan Wang, Ying Tai, Xiaoming Liu,
Pengcheng Shen, Shaoxin Li, Jilin Li, and Feiyue Huang.
Curricularface: adaptive curriculum learning loss for deep
face recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5901–5910, 2020.

[19] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An
efficient approach for assessing hyperparameter importance.
In International conference on machine learning, pages 754–
762. PMLR, 2014.

[20] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015.

[21] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak.
Proxy anchor loss for deep metric learning. arXiv preprint
arXiv:2003.13911, 2020.

[22] Yonghyun Kim, Wonpyo Park, and Jongju Shin. Broad-
face: Looking at tens of thousands of people at once for face
recognition. arXiv preprint arXiv:2008.06674, 2020.

[23] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[24] Byungsoo Ko and Geonmo Gu. Embedding expansion: Aug-
mentation in embedding space for deep metric learning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 7255–7264, 2020.

[25] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
Proceedings of the IEEE international conference on com-
puter vision workshops, pages 554–561, 2013.

[26] Alex Krizhevsky. One weird trick for parallelizing convo-
lutional neural networks. arXiv preprint arXiv:1404.5997,
2014.

[27] M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-
paced learning for latent variable models. In Advances in
neural information processing systems, pages 1189–1197,
2010.

[28] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha
Raj, and Le Song. Sphereface: Deep hypersphere embedding
for face recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 212–220,
2017.

11800

[29] Laurens van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(Nov):2579–2605, 2008.

[30] Timo Milbich, Karsten Roth, Homanga Bharadhwaj,
Samarth Sinha, Yoshua Bengio, Björn Ommer, and
Joseph Paul Cohen. Diva: Diverse visual feature aggregation
fordeep metric learning. arXiv preprint arXiv:2004.13458,
2020.

[31] Timo Milbich, Karsten Roth, Biagio Brattoli, and Björn Om-
mer. Sharing matters for generalization in deep metric learn-
ing. arXiv preprint arXiv:2004.05582, 2020.

[32] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Le-
ung, Sergey Ioffe, and Saurabh Singh. No fuss distance met-
ric learning using proxies. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 360–368,
2017.

[33] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A met-
ric learning reality check. arXiv preprint arXiv:2003.08505,
2020.

[34] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio
Savarese. Deep metric learning via lifted structured fea-
ture embedding. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4004–4012,
2016.

[35] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz
Kaiser, and Geoffrey Hinton. Regularizing neural networks
by penalizing confident output distributions. arXiv preprint
arXiv:1701.06548, 2017.

[36] Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong
Jin. Softtriple loss: Deep metric learning without triplet sam-
pling. In Proceedings of the IEEE International Conference
on Computer Vision, pages 6450–6458, 2019.

[37] Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta,
Bjoern Ommer, and Joseph Paul Cohen. Revisiting train-
ing strategies and generalization performance in deep metric
learning. arXiv preprint arXiv:2002.08473, 2020.

[38] Kihyuk Sohn. Improved deep metric learning with multi-
class n-pair loss objective. In Advances in neural information
processing systems, pages 1857–1865, 2016.

[39] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011.

[40] Feng Wang, Jian Cheng, Weiyang Liu, and Haijun Liu. Ad-
ditive margin softmax for face verification. IEEE Signal Pro-
cessing Letters, 25(7):926–930, 2018.

[41] Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon
Yuille. Normface: L2 hypersphere embedding for face veri-
fication. In Proceedings of the 25th ACM international con-
ference on Multimedia, pages 1041–1049, 2017.

[42] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong
Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface:
Large margin cosine loss for deep face recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5265–5274, 2018.

[43] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg,
Jingbin Wang, James Philbin, Bo Chen, and Ying Wu. Learn-
ing fine-grained image similarity with deep ranking. In Pro-

ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1386–1393, 2014.

[44] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and
Matthew R Scott. Multi-similarity loss with general pair
weighting for deep metric learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 5022–5030, 2019.

[45] Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R
Scott. Cross-batch memory for embedding learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6388–6397, 2020.

[46] Kilian Q Weinberger and Lawrence K Saul. Distance met-
ric learning for large margin nearest neighbor classification.
Journal of Machine Learning Research, 10(Feb):207–244,
2009.

[47] Daphna Weinshall, Gad Cohen, and Dan Amir. Curriculum
learning by transfer learning: Theory and experiments with
deep networks. arXiv preprint arXiv:1802.03796, 2018.

[48] Andrew Zhai and Hao-Yu Wu. Classification is a
strong baseline for deep metric learning. arXiv preprint
arXiv:1811.12649, 2018.

[49] Wenzhao Zheng, Zhaodong Chen, Jiwen Lu, and Jie Zhou.
Hardness-aware deep metric learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 72–81, 2019.

[50] Yuehua Zhu, Muli Yang, Cheng Deng, and Wei Liu. Fewer is
more: A deep graph metric learning perspective using fewer
proxies. arXiv preprint arXiv:2010.13636, 2020.

11801

