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Figure 1: Occlusion Sensitivity Analysis. Given an input image (a), a small occluding patch (shown in gray) causes
SPIN [29] to fail (b,c), whereas our method (PARE) (e,f) is robust to the occluder. Sub-figures on the right show the sensi-
tivity of SPIN (d) and PARE (g) to an occluding patch (the size of the white squares) centered at every point in the image.
Warmer colors mean higher average joint error.

Abstract

Despite significant progress, we show that state of the
art 3D human pose and shape estimation methods remain
sensitive to partial occlusion and can produce dramatically
wrong predictions although much of the body is observable.
To address this, we introduce a soft attention mechanism,
called the Part Attention REgressor (PARE), that learns
to predict body-part-guided attention masks. We observe
that state-of-the-art methods rely on global feature repre-
sentations, making them sensitive to even small occlusions.
In contrast, PARE’s part-guided attention mechanism over-
comes these issues by exploiting information about the vis-
ibility of individual body parts while leveraging informa-
tion from neighboring body-parts to predict occluded parts.
We show qualitatively that PARE learns sensible atten-
tion masks, and quantitative evaluation confirms that PARE
achieves more accurate and robust reconstruction results
than existing approaches on both occlusion-specific and
standard benchmarks. The code and data are available for
research purposes at https://pare.is.tue.mpg.de/

1. Introduction
Regressing 3D human pose and shape (HPS) directly

from RGB images has many applications in robotics, com-
puter graphics, AR/VR and beyond. The task is to take a
single image [24, 29, 40] or video sequence [25, 27, 35] as
input and to regress the parameters of a human body model
such as SMPL [33] as output. Powered by deep CNNs, this
task has seen rapid progress [24, 27, 29, 40]. However, in
fully in-the-wild settings, people often appear under occlu-
sion either due to self-overlapping body-parts, due to close-
range interaction with other people or due to occluding ob-
jects such as furniture or other scene content. While pose
estimation under occlusion has been treated in the literature
[8, 9, 14, 19, 42, 43, 53, 54, 59], we highlight that this issue
is particularly important in the context of direct regression
methods. Such methods use all the pixels in the input to pre-
dict a single set of pose and shape parameters. Thus their
pose estimates are particularly sensitive to even small per-
turbations in the observations of the body and its parts.

In this paper, we apply a visualization technique [58] for
occlusion sensitivity analysis that yields insights into when
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and why such methods fail. This indicates that, for state-of-
the-art (SOTA) methods, relatively small occlusions, even
of only a single joint, can lead to entirely implausible pose
predictions. This is illustrated in Fig. 1, where we slide an
occluder over the image, regress body pose, and compute
the average 3D joint error with respect to ground truth. The
heatmaps in Fig. 1 (d,g) illustrate a method’s sensitivity to
a square occluder centered at each pixel location (shown in
white). The visualization reveals that methods like SPIN
[40] are highly sensitive to localized part occlusion. To ad-
dress this issue, we propose a method, based on a novel
part-guided attention mechanism, making direct regression
approaches more robust to occlusion.

The proposed method is called Part Attention REgres-
sor (PARE). It has two tasks: the primary one is learning
to regress 3D body parameters in an end-to-end fashion,
and the auxiliary task is learning attention weights per body
part. Each task has its own pixel-aligned feature extrac-
tion branch. We guide the attention branch with part seg-
mentation labels in the early stages of training and continue
without them for the later stages, thus we call it body-part-
driven attention. Our key insight is that, to be robust to oc-
clusions, the network should leverage pixel-aligned image
features of visible parts to reason about occluded parts.

Given the success of attention-based methods on other
tasks [11, 18, 34, 55], we exploit insights gained from the
occlusion sensitivity analysis to focus attention on body
parts. Therefore, we supervise the attention mask with part
segmentations, but then train end-to-end with pose super-
vision only, allowing the attention mechanism to leverage
all useful information from the body and the surrounding
pixels. This gives the network freedom to attend to regions
it finds informative in an unsupervised way. As a result,
PARE learns to rely on visible parts of the body to improve
robustness to occluded parts and overall performance on 3D
pose estimation (Fig. 1 e-f).

To quantitatively evaluate the performance of PARE, we
perform experiments on the 3DPW [52], 3DOH [59], and
3DPW-OCC [52] datasets. The results show that PARE
yields consistently lower error than the state-of-the-art for
both occlusion and non-occlusion cases.

In summary, our key contributions are: (1) We apply a
visualization technique [58] to study how local part occlu-
sion can influence global pose; we call this occlusion sen-
sitivity analysis. (2) This analysis motivates a novel body-
part-driven attention framework for 3D HPS regression that
leverages pixel-aligned localized features to regress body
pose and shape. (3) The network uses part visibility cues to
reason about occluded joints by aggregating features from
the attended regions, and by doing so, achieves robustness
to occlusions. (4) We achieve SOTA results on a 3D pose
estimation benchmark featuring occluded bodies, as well as
a standard benchmark.

2. Related Work
We focus on 3D human shape and pose estimation from

RGB images and discuss how previous approaches handle
occlusions in various scenarios, e.g. self occlusion, camera
frame occlusion, and scene object occlusion.

3D pose and shape from a single image. In estimat-
ing human shape and pose, many methods output the pa-
rameters of 3D human body models [3, 33, 39]. Initial
work predicts the 3D body using keypoints and silhou-
ettes [1, 4, 5, 15, 46]. These approaches are fragile, need
manual input, use additional data, e.g. multi-view images,
or do not generalize well to in-the-wild images. SMPLify
[7] was the first automated method to fit the SMPL model
to the output of a 2D keypoint detector [41]. Lassner et
al. [31] employ silhouettes together with keypoints during
fitting. In contrast, deep neural networks regress SMPL pa-
rameters directly from pixels [16, 24, 38, 40, 50, 51]. In
order to deal with the lack of in-the-wild 3D ground-truth,
methods use a 2D keypoint re-projection loss as weak su-
pervision [24, 50, 51], use intermediate 2D representations,
e.g. body/part segmentation [38, 40, 57], 2D sparse key-
points [45, 57], or leverage a human in the loop [31]. Note
that the use of part segmentation in [31, 38, 57] is very dif-
ferent from our approach, in which part segmentations are
used to facilitate soft attention. Kolotouros et al. [29] com-
bine HMR [24] and SMPLify [7] in a training loop. At each
step, HMR initializes SMPLify, which fits the body model
to 2D joints, resulting in better supervision for the network.
The above methods are typically sensitive to occlusion.

Implicit occlusion handling (data augmentation). Ide-
ally, the regressed 3D body should be the same with or with-
out occlusion. Current SOTA pose and shape estimation
methods [24, 27, 29] directly encode the entire input region
as one CNN feature after global average pooling, followed
by body model parameter regression. The lack of pixel-
aligned structure makes it hard for networks to explicitly
reason about the locations and visibility of body parts. A
common way to achieve robustness to occlusion in these
frameworks is through data augmentation. For example,
frame occlusion is often simulated by cropping [6, 23, 43],
whereas object occlusion is approximated by overlaying ob-
ject patches on the image [13, 44]. Instead of applying aug-
mentation to input images, Cheng et al. [8] apply augmenta-
tions to heatmaps that contain richer semantic information
and hence occlusions can be simulated in a more intelligent
way. While helpful, these synthetic occlusions do not fully
capture the complexity of occlusions in realistic images, nor
do they provide insight into how to improve the network ar-
chitecture to be inherently more robust to occlusion.

Explicit occlusion handling. To reason more explicitly
about occlusions, previous work exploits visibility informa-
tion. For example, Cheng et al. [9] avoid including occluded
joints when computing losses during training. Such visi-
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Figure 2: Occlusion sensitivity analysis. Heatmaps illustrate the error of SPIN [29] in individual joints caused by an occluder
placed at each image location. Image size: 224× 224; occluding patch: 40× 40. The title of each heatmap names the joint
and notes the range of the 3D error in mm visualized in the heatmap. See Section 3 for analysis.

bility information is obtained by approximating the human
body as a set of cylinders, which is not realistic and only
handles self occlusion. Wang et al. [54] learn to predict oc-
clusion labels to zero out occluded keypoints before apply-
ing temporal convolution over a sequence of 2D keypoints.

Person-person occlusion is particularly common and
challenging. For multi-person regression, Jiang et al. [21]
use an interpenetration loss to avoid collision and an ordinal
loss to resolve depth ambiguity. Sun et al. [56] estimate all
people in an image simultaneously, enabling their method
to learn about person-person occlusion. While [56] learns
features that are robust to person-person occlusion, PARE
learns to focus attention on individual body parts.

Zhang et al. [59] leverage saliency masks as visibility
information to gain robustness to scene/object occlusions.
Human meshes are parameterized by UV maps where each
pixel stores the 3D location of a vertex, and occlusions are
cast as an image-inpainting problem. The requirement of
accurate saliency maps limits the performance on in-the-
wild images. Furthermore, UV-coordinates can result in
mesh artifacts, as shown in Sup. Mat.

3. Occlusion Sensitivity Analysis

To extract features from the input image region I , current
direct regression approaches [24, 29] use a ResNet-50 [17]
backbone and take the features after global average pool-
ing (GAP), followed by an MLP that regresses and refines
the parameters iteratively. In this section, we investigate
the impact of occlusions on this type of architecture. Our
analysis is inspired by Zeiler et al. [58] who systematically
cover different portions of the image with a gray square to
analyze how feature maps and classifier output changes. In
contrast, we slide a gray occlusion patch over the image
and regress body poses using SPIN [29]. Instead of com-
puting a classification score as in [58], we measure the per-

(a) Left elbow (b) Right ankle
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Figure 3: Occlusion sensitivity meshes for SPIN [29].

joint Euclidean distance between ground truth and predicted
joints. We create an error heatmap, in which each pixel indi-
cates how much error the model creates for joint j when the
occluder is centered on this pixel. In addition to per-joint
heatmaps, we compute an aggregate occlusion sensitivity
map, that shows how the average joint error is influenced
by an occlusion; this is visualized in Fig. 1(d) and in greater
detail in the Sup. Mat.

The per-joint error heatmaps for SPIN are visualized in
Fig. 2 for a sample image from the 3DPW dataset [52].
Each sub-image corresponds to a particular joint and hot
regions are locations where occlusion causes high error in
this joint. This visualization allows us to make several ob-
servations. (1) Errors are low in the background and high
on the body. This shows that SPIN has learned to attend to
meaningful regions. (2) Joints visible in the original image
have high errors when they are occluded by the square, as
expected. (3) For joints that are naturally occluded, the net-
work relies on other regions to reason about the occluded
poses. For example, in the top row of Fig. 2, we observe
high errors for the left/right ankles (which are occluded)
when we occlude the thigh region. Since the network has
no image features for the occluded parts, it must look else-
where in the image for evidence. (4) Such dependencies
happen not only between neighboring parts; occlusion can
have long-range effects (e.g. occluding the pelvis causes er-
rors in the head).

We further overlay the estimated body on the heatmap
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Figure 4: PARE model architecture. Given an input image, PARE extracts two pixel-level features P and F , which are
fused by part attention (green box) leading to the final feature F ′ for camera and SMPL body regression.

to transfer the per-pixel error to visible vertices. We run
this analysis over the complete 3DPW dataset, pool the per-
vertex error across the dataset and visualize the result on a
SMPL body model, giving one occlusion sensitivity mesh
per joint. For example, Fig. 3(a) shows that the left elbow is
sensitive to occlusion of the face, the left shoulder and the
left upper arm region. See Sup. Mat. for more examples.

4. Method

Given the observations above, PARE is designed with
the following insights. First, as shown in Fig. 2, SOTA net-
works [24, 27, 29] learn to attend to meaningful regions im-
plicitly, despite limited spatial information after global av-
erage pooling. To better understand whether body parts are
visible or not, and to know if their locations are occluded,
PARE exploits a pixel-aligned structure, where each pixel
corresponds to a region in the image and stores a pixel-level
representation, namely, a feature volume. Second, since
estimating attention weights and learning end-to-end train-
able features for 3D poses are two different tasks, PARE is
equipped with two feature volumes: one from the 2D part
branch that estimates attention weights and one from the 3D
body branch that performs SMPL parameter regression. Fi-
nally, to model the body part dependencies observed above,
PARE exploits part segmentations as soft attention masks
to adjust the contribution of each feature in the 3D body
branch differently for each joint.

Preliminaries: Body Model. SMPL [33] represents
the body pose and shape by Θ, which consists of the pose
θ ∈ R72 and shape β ∈ R10 parameters. Here we use the
gender-neutral shape model as in previous work [24, 29].
Given these parameters, the SMPL model is a differentiable
function that outputs a posed 3D mesh M(θ, β) ∈ R6890×3.
The 3D joint locations J3D = WM ∈ RJ×3, J = 24, are
computed with a pretrained linear regressor W .

4.1. Model Architecture and Losses

The overall framework of PARE is depicted in Fig. 4.
Our architecture works as follows: given an image I , we
first run a CNN backbone to extract volumetric features,
e.g. before the global average pooling layer for ResNet-50,
followed by two separate feature extraction branches to ob-
tain two volumetric image features. We denote the 2D part
branch as P ∈ RH×W×(J+1), modelling J part attention
and 1 background masks, where H and W are the height
and width of the feature volume and each pixel (h,w) stores
the likelihood of belonging to a body part j. The other
branch, denoted by F ∈ RH×W×C , is used for 3D body
parameter estimation. It has the same spatial dimensions
H ×W as P but a different number of channels, C.

Let Pj ∈ RH×W and Fc ∈ RH×W denote the j-th and
c-th channel of P and F , respectively, and let F ′ ∈ RJ×C

represent the final feature tensor. Each element in Fc con-
tributes proportionally to F ′ according to the corresponding
elements in Pj after spatial softmax normalization σ. For-
mally, the element at location (j, c) in F ′ is computed as:

F ′
j,c =

∑
h,w

σ(Pj)⊙ Fc, (1)

where ⊙ is the Hadamard product. In other words, we
use σ(Pj) as a soft attention mask to aggregate features
in Fc. This operation can be efficiently implemented as a
dot product similar to existing attention implementations:
F ′ = σ(P̃ )⊤F̃ , where P̃ ∈ RHW×J and F̃ ∈ RHW×C de-
note the reshaped P (omitting the background mask) and F
respectively. This attention operation suggests that if a par-
ticular pixel has a higher attention weight, its corresponding
feature contributes more to the final representation F ′. We
supervise the 2D part branch P with ground-truth segmen-
tation labels, which helps the attention maps of visible parts
converge to the corresponding regions. For occluded parts,
however, this encourages 0 attention weights for all pixels
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in Pj because they do not exist in the ground-truth segmen-
tation labels. An attention map with all 0 weights is un-
desirable and, in practice, also impossible since the spatial
softmax ensures that all elements sum to 1. Therefore, we
adopt a hybrid approach that supervises the 2D part branch
only for the initial stage and continues training without any
supervision. This allows the network to attend to other re-
gions to estimate the poses of an occluded joint.

We take the full feature tensor F ′ to regress body shape β
and a weak-perspective camera model with scale and trans-
lation parameters [s, t], t ∈ R2, while each row, F ′

j , is also
sent to different MLPs to predict the rotation of each part,
θj , parameterized as a 6D vector following [27, 29] 1.

Overall, our total loss is:

L = λ3DL3D+λ2DL2D+λSMPLLSMPL+λPLP , (2)

where each term is calculated as:

L3D = ∥J3D − Ĵ3D∥2F ,
L2D = ∥J2D − Ĵ2D∥2F ,

LSMPL = ∥Θ − Θ̂∥22,

LP =
1

HW

∑
h,w

CrossEntropy
(
σ(Ph,w), P̂h,w

)
,

where x̂ represents the ground truth for the corresponding
variable x. To compute the 2D keypoint loss, we need the
SMPL 3D joint locations J3D(θ, β) = WM(θ, β), which
are computed from the body vertices with a pretrained lin-
ear regressor W . With the inferred weak-perspective cam-
era, we compute the 2D projection of the 3D joints J3D ,
as J2D ∈ RJ×2 = sΠ(RJ3D) + t, where R ∈ SO(3) is
the camera rotation matrix and Π is the orthographic projec-
tion. λ is a scalar coefficient to balance the loss terms. Let
Ph,w ∈ R1×1×(J+1) denote the fiber of P at the location
(h,w), and P̂h,w ∈ {0, 1}(J+1) denotes the ground-truth
part label at the same location, expressed as a one-hot vec-
tor. The part segmentation loss LP is the cross-entropy loss
between Ph,w after softmax and P̂h,w, averaged over H×W
elements. Note that this softmax normalizes along the fiber
Ph,w while the one in Eq. 1 normalizes over the slice Pj .

4.2. Implementation Details

As mentioned above, the body-part label supervision via
LP is applied on the attention tensor P only in the initial
stages of training. It is later removed by setting λP to zero,
turning the attention mechanism into an unsupervised pure
soft-attention. The absence of body-parts due to occlusion
is the main motivation for this training scheme. Setting λP

1With slight abuse of notations, θ is in axis-angle form when passed
to the SMPL model but in 6D-vector form during the regression and loss
computation.

(a) SPIN

Left Ankle Error

Left Elbow Error

Right Wrist Error

(b) PARE
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Figure 5: Occlusion sensitivity mesh. Meshes visualize
the (a) SPIN and (b) PARE average joint errors.
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Figure 6: Per joint occlusion sensitivity analysis of three
different methods: SPIN [29], HMR-EFT [23] (trained with
occlusion augmentation), and PARE. PARE is consistently
more robust to occlusion.

to zero allows the attention mechanism to also consider pix-
els beyond the body itself. Hence, the final attention maps
do not necessarily (and often do not) resemble body part
segmentations, as shown later in Fig. 7 and Sup. Mat. If
a body part is visible, it focuses on that part directly; if it
is occluded, the attention is free to leverage other informa-
tive regions in the image. In Sec. 5, we analyze how the
accuracy of part segmentation impacts body reconstruction.

We evaluate both ResNet-50 [17] and HRNet-W32 [48]
networks as the backbone. Since ResNet-50 is widely used
in other SOTA methods [24, 27, 29], we choose it as the
default backbone for most of the experiments unless stated
otherwise. We extract the 7× 7× 2048 feature volumes be-
fore global average pooling. For the 2D and 3D branches,
we use three 2× upsampling followed by 3×3 convolutional
layers applied with batch-norm and ReLU. The number of
conv kernels is 256. For HRNet-W32, since it already pro-
vides volumetric features with a higher resolution, we only
use two 3× 3 convolutional layers applied with batch-norm
and ReLU as the 2D and 3D branches.

To obtain part attention maps, we apply J +1 1× 1 con-
volutional kernels to 2D part features to reduce the channel
dimension. After obtaining the J × C final feature F ′, we
use separate linear layers to predict each SMPL joint rota-
tion θj . We regress shape and camera parameters from the
flattened F ′ vector. We use a fixed image size of 224× 224
for all experiments. The Adam optimizer with a learning
rate of 5 × 10−5 and batch size 64 is used to optimize our
model. PARE is end-to-end trainable in a single stage, un-
like recent multi-stage methods [10, 16, 37, 57].
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3DPW

Method MPJPE ↓ PA-MPJPE ↓ PVE ↓

te
m

po
ra

l

HMMR [24] 116.5 72.6 -
Doersch et al. [12] - 74.7 -
Sun et al. [49] - 69.5 -
VIBE [27] 93.5 56.5 113.4
MEVA [35] 86.9 54.7 -

m
ul

ti
st

ag
e Pose2Mesh [10] 89.2 58.9 -

Zanfir et al. [57] 90.0 57.1 -
I2L-MeshNet [37] 93.2 58.6 -
LearnedGD [47] - 56.4 -

si
ng

le
st

ag
e

HMR [24] 130.0 76.7
CMR [30] - 70.2 -
SPIN [29] 96.9 59.2 135.1
HMR-EFT [23] - 54.2 -

PARE (R50) 82.9 52.3 99.7
PARE (HRNet-W32) 82.0 50.9 97.9
PARE (HRNet-W32) w. 3DPW 74.5 46.5 88.6

Table 1: Evaluation on the 3DPW dataset. The units for
mean joint and vertex errors are in mm. PARE models out-
perform temporal, multi-stage, and single-stage state-of-
the-art methods.

5. Experiments

Training. We train PARE on COCO [32], MPII [2],
LSPET [22], MPI-INF-3DHP [36], and Human3.6M [20]
datasets. More details about these datasets are provided in
Sup. Mat. Pseudo-ground-truth SMPL annotations for in-
the-wild datasets are provided by EFT [23]. The part seg-
mentation labels are obtained through rendering segmented
SMPL meshes, as visualized in Fig. 4. We use 24 parts cor-
responding to 24 SMPL joints. See Sup. Mat. for samples
of part segmentation labels. We used the PyTorch reimple-
mentation [28] of Neural Mesh Renderer [26] to render the
parts. For samples without a part segmentation label, we do
not supervise the 2D branch.

For the ablation experiments, we train PARE and our
baselines on COCO for 175K steps and evaluate on 3DPW
and 3DPW-OCC datasets. We then incorporate all the train-
ing data to compare PARE to previous SOTA methods. This
pretraining strategy accelerates convergence and reduces
the overall training time. It takes about 72 hours to train
PARE until convergence on an Nvidia RTX2080Ti GPU.

To increase robustness to occlusion, we use common oc-
clusion augmentation techniques; i.e. synthetic occlusion
(SynthOcc) [44] and random crop (RandCrop) [23, 43]. All
PARE and baseline HMR-EFT models are trained with Syn-
thOcc augmentation unless stated otherwise, e.g. Table 4.
Evaluation. The 3DPW [52] test split, 3DPW-OCC [52, 59],
and 3DOH [59] datasets are used for evaluation. We re-
port Procrustes-aligned mean per joint position error (PA-
MPJPE) and mean per joint position error (MPJPE) in mm.
For 3DPW we also report per vertex error (PVE) in mm.
Comparison to the state-of-the-art. Table 1 compares
PARE with previous single-RGB-image HPS estimation

3DPW-OCC 3DOH

Method MPJPE ↓ PA-MPJPE ↓ PVE ↓ MPJPE ↓ PA-MPJPE ↓

Zhang et al. [59] - 72.2 - - 58.5
SPIN [29] 95.6 60.8 121.6 104.3 68.3
HMR-EFT [23] 94.4 60.9 111.3 75.2 53.1

PARE (R50) 90.5 56.6 107.9 63.3 44.3

Table 2: Evaluation on occlusion datasets 3DPW-OCC,
3DOH. Here all methods except SPIN are trained with the
same datasets, i.e. COCO, Human3.6M and 3DOH.

methods. We report PARE results with two different
backbones: ResNet-50 and HRNet-W32. PARE improves
the PA-MPJPE performance by 10% compared to HMR-
EFT [23], one of the best-performing recent methods.

Table 2 demonstrates the performance of PARE on
occlusion-specific datasets. Here Zhang et al. [59], HMR-
EFT [23], and PARE are trained with COCO, Human3.6M,
and 3DOH for a fair comparison. We report the SPIN re-
sults for reference. HMR-EFT is the fair alternative to
SPIN, since SPIN uses HMR as the architecture. PARE
consistently improves the performance on these occlusion
datasets. Although HMR-EFT is trained with exactly the
same augmentation and data as PARE, it performs worse.

We also quantify our occlusion sensitivity analysis. Fig-
ure 5 shows the average joint error of SPIN and PARE meth-
ods on the 3DPW test split. SPIN is quite sensitive to up-
per body occlusions, especially around the head and back.
PARE is more robust to occlusions and yields lower error
overall. See Sup. Mat. for the per-joint version of Fig. 5.
Figure 6 shows the per-joint breakdown of the mean 3D er-
ror from the occlusion sensitivity analysis for three differ-
ent methods, SPIN, HMR-EFT, and PARE. Here, we retrain
HMR-EFT using SynthOcc for a fair comparison. Again,
PARE improves the occlusion robustness of all joints.
Qualitative comparison. We qualitatively compare SPIN,
HMR-EFT, and PARE in Fig. 8. Even though occlusion
augmentation improves robustness to occlusion as seen in
the HMR-EFT results, it is not sufficient on its own. PARE,
with its attention mechanism, performs well even in chal-
lenging occlusion scenarios. More qualitative samples, in-
cluding failure cases, are provided in Sup. Mat.
Does part attention help? Table 3 summarizes our abla-
tion experiments that explore the concept of part attention.
First, we compare our results with Neural Body Fitting [38]
trained with identical settings to ours. NBF [38] can be
seen as a straightforward combination of part segmenta-
tion and human body regression. Table 3 shows that NBF’s
two-stage approach is outperformed even by the HMR-EFT
baseline. Subsequently, we compare different types of su-
pervision for the 2D part branch P and sampling methods to
obtain final features F ′ from F . “Unsup” means P is not su-
pervised. Inspired by HoloPose [16], we first supervise the
2D branch with keypoints and pool the 3D features via bilin-
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(a) Input Image Hips Left Knee Right Knee Left Ankle Right Ankle Neck Left Shoulder

(b) PARE result Right Shoulder Left Arm Right Arm Left Elbow Right Elbow Left Hand Right Hand

Figure 7: PARE attention visualization. Attention maps predicted by the 2D part branch for different joints in image (a).
For occluded joints like row 2 right hand, PARE learns to attend to larger, more distant, regions to glean information.

3DPW 3DPW-OCC

Method MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓

NBF [38] 100.4 63.2 103.5 70.4
HMR-EFT 99.0 59.9 97.9 64.7

P Supervision F Sampling

(a) Joints Pooling 95.2 58.9 95.4 63.1
(b) Joints Attention 95.3 58.8 98.9 63.9

(c) Unsup Attention 94.8 57.9 95.9 62.7
(d) Parts Attention 94.5 57.3 94.7 61.2
(e) Parts/Unsup Attention 93.4 57.1 93.9 61.6
(f) Parts Pooling 97.9 59.1 99.8 64.8

Table 3: Exploring part attention. The “P Supervision”
column shows the type of supervision for the 2D part branch
P . “F Sampling” shows the type of feature sampling
method for F . All methods are trained on COCO-EFT with
a ResNet-50 backbone.

ear sampling (Table 3-a). Even though this gives lower error
than HMR, the improvement is not significant. Intuitively,
sparse keypoints do not cover enough spatial area to be able
to reason about body parts. Because the 2D branch pre-
dicts Gaussian heatmaps, which cover a larger spatial area
than discrete keypoints, we explore soft attention instead of
pooling to have a larger effective receptive field (Table 3-b).
In doing so, however, we do not leverage the full potential
of soft attention, which can learn which regions to attend
to implicitly from the data. So, we remove supervision for
the 2D branch to see if soft attention alone can work as well
as explicit supervision (Table 3-c). Upon visualizing the re-
sulting attention maps, we find that they are not focused on
the body parts. To induce more structure, we supervise the
2D branch with part segmentation labels (Table 3-d). This
approach works significantly better than the above attempts.
There is a remaining caveat, however: by supervising with
a segmentation loss, we constrain the attention map to the
parts only, whereas a pure soft attention has the potential
to attend to any region it finds informative. Consequently,
we train with mixed supervision, applying the part segmen-
tation loss for around 125K steps, then continuing to train
without supervision (Table 3-e). This final version produces

3DPW 3DPW-OCC

Method MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓

HMR-EFT + SynthOcc 99.0 59.9 97.9 64.7

PARE 95.0 57.6 94.4 61.3
PARE + SynthOcc 94.5 57.3 94.7 61.2
PARE + SynthOcc + RandCrop 95.7 58.1 97.8 62.6

Table 4: Ablation of different occlusion augmentation
strategies. We demonstrate the effect of synthetic occlu-
sion (SynthOcc) and random crop (RandCrop) augmenta-
tion on the final performance. All methods are trained on
COCO-EFT with ResNet-50 as the backbone.

3DPW 3DPW-OCC

Method MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓

HMR-EFT ResNet-50 99.0 59.9 97.9 64.7
PARE ResNet-50 93.4 57.1 93.9 61.6

HMR-EFT HRNet-W32 92.6 55.9 90.2 57.8
PARE HRNet-W32 89.0 54.3 87.1 57.0

Table 5: Ablation of backbone architectures. All methods
are trained on COCO-EFT.

the “best of both worlds” and the lowest error. We also ex-
periment with part segmentation and pooling to explore the
effect of soft-attention (Table 3-f). Finally, to demonstrate
the statistical significance, we performed a two-sided t-test
for all experiments in Table 3; specifically p<0.01 for rows
(c) vs. (d), (d) vs. (e), and (b) vs. (d).

In addition to joint errors, we measure the mean part seg-
mentation IoU (intersection over union) to better understand
how part segmentation and the final pose and shape estima-
tion interact when we do not use part supervision. Mean
IoU on the 3DPW test set is 1%, 85%, 74% for (c) unsup,
(d) parts, and (e) parts/unsup methods respectively. Lower
segmentation accuracy does not hurt the body reconstruc-
tion. We provide further body-part segmentation results
during different stages of the training in Sup. Mat.

Figure 7 visualizes these attention maps on sample im-
ages. Part attention learns to attend to body parts or image
regions as needed to estimate body shape and pose.
Occlusion Augmentation. We report the effect of occlu-
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(a) SPIN (b) HMR-EFT (c) PARE (a) SPIN (b) HMR-EFT (c) PARE

Figure 8: Qualitative results on COCO (rows 1-4) and 3DPW (rows 5-6) datasets. From left to right: Input image, (a)
SPIN [29] results, (b) HMR-EFT [23] results, (c) PARE results.

sion augmentation techniques in Table 4. SynthOcc im-
proves the performance on both 3DPW and 3DPW-OCC over
vanilla training. Applying RandCrop right at the begin-
ning of the training hurts the performance. Therefore, we
start applying crop augmentation after 175K training steps.
Between 30%-50% of a bounding box is cropped with the
probability of 0.3. Even though crop augmentation does not
improve performance on 3DPW and 3DPW-OCC, we find it
useful for true in-the-wild images, which often contain sig-
nificant frame occlusion. See Sup. Mat. for more examples.
Effect of CNN backbones. As shown in Table 5, HRNet-
W32, which produces effective high-resolution representa-
tions, performs better than ResNet-50. PARE provides con-
sistent improvements over HMR-EFT with both backbones.

6. Conclusion
We present a novel Part Attention Regressor, PARE,

which regresses 3D human pose and shape by exploiting
information about the visibility of individual body parts,

and thus gaining robustness to occlusion. PARE is based on
the insights gleaned from our occlusion sensitivity analysis.
In particular, we observe dependencies between body parts
and argue that the network should rely on visible parts to
improve predictions for occluded parts and, hence, the over-
all performance of 3D pose estimation. Our novel body-
part-driven attention mechanism captures such dependen-
cies, using soft attention guided by regressed body part seg-
mentation masks. The network learns to use part segmenta-
tions as visibility cues to reason about occluded joints and
aggregating features from the attended regions. This im-
proves robustness to occlusions of different types: scene,
self, and frame occlusion. Detailed ablation studies show
how each choice contributes to our state-of-the-art perfor-
mance on benchmark datasets.
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