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Abstract
People navigating in unfamiliar buildings take advan-

tage of myriad visual, spatial and semantic cues to effi-
ciently achieve their navigation goals. Towards equipping
computational agents with similar capabilities, we intro-
duce Pathdreamer, a visual world model for agents navigat-
ing in novel indoor environments. Given one or more previ-
ous visual observations, Pathdreamer generates plausible
high-resolution 360◦ visual observations (RGB, semantic
segmentation and depth) for viewpoints that have not been
visited, in buildings not seen during training. In regions of
high uncertainty (e.g. predicting around corners, imagining
the contents of an unseen room), Pathdreamer can predict
diverse scenes, allowing an agent to sample multiple real-
istic outcomes for a given trajectory. We demonstrate that
Pathdreamer encodes useful and accessible visual, spatial
and semantic knowledge about human environments by us-
ing it in the downstream task of Vision-and-Language Nav-
igation (VLN). Specifically, we show that planning ahead
with Pathdreamer brings about half the benefit of looking
ahead at actual observations from unobserved parts of the
environment. We hope that Pathdreamer will help unlock
model-based approaches to challenging embodied naviga-
tion tasks such as navigating to specified objects and VLN.

1. Introduction
World models [23], or models of environments [72], are

an appealing way to represent an agent’s knowledge about
its surroundings. An agent with a world model can predict
its future by ‘imagining’ the consequences of a series of
proposed actions. This capability can be used for sampling-
based planning [16, 57], learning policies directly from the
model (i.e., learning in a dream) [17, 23, 64, 25], and for
counterfactual reasoning [6]. Model-based approaches such
as these also typically improve the sample efficiency of deep
reinforcement learning [72, 62]. However, world models
that generate high-dimensional visual observations (i.e., im-
ages) have typically been restricted to relatively simple en-
vironments, such as Atari games [62] and tabletops [16].

Our goal is to develop a generic visual world model
for agents navigating in indoor environments. Specifically,

1. Input

2. Ground truth (2.3m)

3. Ground truth (6.3m)

2. Prediction (2.3m)

3. Prediction (6.3m)

123

Floorplan view (not used in the model)

Figure 1: Generating photorealistic 360◦ visual observa-
tions from an imagined 6.3m trajectory in a previously un-
seen building. Observations also include depth and segmen-
tations (not shown here).

given one or more previous observations and a proposed
navigation action sequence, we aim to generate plausible
high-resolution visual observations for viewpoints that have
not been visited, and do so in buildings not seen during
training. Beyond applications in video editing and content
creation, solving this problem would unlock model-based
methods for many embodied AI tasks, including navigating
to objects [5], instruction-guided navigation [3, 66, 40] and
dialog-guided navigation [74, 26]. For example, an agent
asked to find a certain type of object in a novel building,
e.g. ‘find a chair’, could perform mental simulations using
the world model to identify navigation trajectories that are
most likely to include chair observations – without moving.

Building such a model is challenging. It requires syn-
thesizing completions of partially visible objects, using as
few as one previous observation. This is akin to novel view
synthesis from a single image [19, 80], but with potentially
unbounded viewpoint changes. There is also the related but
considerably more extreme challenge of predicting around
corners. For example, as shown in Fig. 1, any future nav-
igation trajectory passing the entrance of an unseen room
requires the model to plausibly imagine the entire contents

14738



of that room (we dub this the room reveal problem). This
requires generalizing from the visual, spatial and seman-
tic structure of previously explored environments—which
in our case are photo-realistic 3D captures of real indoor
spaces in the Matterport3D dataset [7]. A third problem
is temporal consistency: predictions of unseen building re-
gions should ideally be stochastic (capturing the full distri-
bution of possible outcomes), but revisited regions should
be rendered in a consistent manner to previous observations.

Towards this goal, we introduce Pathdreamer. Given
one or more visual observations (consisting of RGB, depth
and semantic segmentation for panoramas) of an indoor
scene, Pathdreamer synthesizes high-resolution visual ob-
servations (RGB, depth and semantic segmentations) along
a specified trajectory through future viewpoints, using a hi-
erarchical two-stage approach. Pathdreamer’s first stage,
Structure Generator, generates depth and semantic segmen-
tations. Inspired by video prediction [11], these outputs are
conditioned on a latent noise tensor capturing the stochas-
tic information about the next observation (such as the lay-
out of an unseen room) that cannot be predicted determin-
istically. The second stage’s Image Generator renders the
depth and semantic segmentations as realistic RGB images
using modified Multi-SPADE blocks [63, 51]. To maintain
long-term consistency in the generated observations, both
stages use back-projected 3D point cloud representations
which are re-projected into image space for context [51].

Pathdreamer can generate plausible views for unseen in-
door scenes under large viewpoint changes (see Figure 1),
while also addressing the room reveal problem – in this case
correctly hypothesizing that the unseen room revealed at po-
sition 2 will most likely resemble a kitchen. Empirically,
using the Matterport3D dataset [7] and 360◦ observations,
we evaluate both stages of our model against prior work and
reasonable baselines and ablations. We find that the hierar-
chical structure of the model is essential for predicting over
large viewpoint changes, that maintaining both RGB and
semantic context is required, and that prediction quality de-
grades gradually when we evaluate with trajectory rollouts
of up to 13m (with viewpoints 2.25m apart on average).

Encouraged by these results, we investigate whether
Pathdreamer’s RGB predictions can improve performance
on a downstream task: Vision-and-Language Navigation
(VLN), using the R2R dataset [3]. VLN requires agents to
interpret and execute natural language navigation instruc-
tions in a photorealistic 3D environment. A robust finding
from previous research is that performance improves dra-
matically when agents can look ahead at unobserved parts
of the environment while following an instruction [50].
We show that replacing look-ahead observations with Path-
dreamer predictions maintains around half of the gains, a
finding we expect to have significant implications for VLN
research. In summary, our main contributions include:

• Proposing the study of visual world models for generic
indoor environments and defining evaluation protocols
and baselines for future work.
• Pathdreamer, a stochastic hierarchical visual world

model combining multiple, independent threads of
previous work on video prediction [11], semantic im-
age synthesis [63] and video-to-video synthesis [51].
• Extensive experiments characterizing the performance

of Pathdreamer and demonstrating improved results on
the downstream VLN task [3].

2. Related Work
Video Prediction Our work is closely related to the task
of video prediction, which aims to predict the future frames
of a video sequence. While some video prediction meth-
ods predict RGB video frames directly [76, 1, 41, 44],
many others use hierarchical models to first predict an
intermediate representation (such as semantic segmenta-
tion) [47, 35, 77, 82, 42], which improves the fidelity of
long-term predictions [42]. Several approaches have also
incorporated 3D point cloud representations, using projec-
tive camera geometry to explicitly infer aspects of the next
frame [75, 51, 43]. Inspired by this work, we adopt and
combine both the hierarchical two-stage approach and 3D
point cloud representations. Further, since our interest is
in action-conditional world models, we provide a trajectory
of future viewpoints to the model rather than assuming a
constant frame rate and modeling camera motion implicitly,
which is more typical in video generation [44, 42].

Action-Conditional Video Prediction Conditional video
prediction to improve agent reasoning and planning has
been explored in several tasks. This includes video pre-
diction for Atari games conditioned on control inputs [60,
10, 62, 25] and 3D game environments like Doom [23]. In
robotics, action-conditional video prediction has been in-
vestigated for object pushing in tabletop settings to improve
generalization to novel objects [15, 16, 14]. This work has
been restricted to simple environments and low-resolution
images, such as 64×64 images of objects in a wooden box.
To the best of our knowledge, we are the first to investigate
action-conditional video prediction in building-scale envi-
ronments with high-resolution (1024×512) images.

World Models and Navigation Priors World mod-
els [23] are an appealing way to summarize and distill
knowledge about complex, high-dimensional environments.
However, world models can differ in their outputs. While
Pathdreamer predicts visual observations, there is also a
vast literature on world models that predict compact latent
representations of future states [38, 24, 25] or other task-
specific measurements [13] or rewards [61]. This includes
recent work attempting to learn statistical regularities and
other priors for indoor navigation—for example, by min-
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ing spatial co-occurrences from real estate video tours [8],
learning to predict top-down belief maps over room charac-
teristics [58], or learning to reconstruct house floor plans us-
ing audio and visual cues from a short video sequence [65].
In contrast to these approaches, we focus on explicitly pre-
dicting visual observations (i.e., pixels) which are generic,
human-interpretable, and apply to a wide variety of down-
stream tasks and applications. Further, recent work identi-
fies a close correlation between image prediction accuracy
and downstream task performance in model-based RL [4].

Embodied Navigation Agents High-quality 3D environ-
ment datasets such as Matterport3D [7], StreetLearn [56,
53], Gibson [81] and Replica [71] have triggered intense
interest in developing embodied agents that act in realistic
human environments [2]. Tasks of interest include Object-
Nav [5] (navigating to an instance of a particular kind of
object), and Vision-and-Language Navigation (VLN) [3],
in which agents must navigate according to natural lan-
guage instructions. Variations of VLN include indoor navi-
gation [3, 33, 66, 40], street-level navigation [9, 53], vision-
and-dialog navigation [59, 74, 26], VLN in continuous en-
vironments [39], and more. Notwithstanding considerable
exploration of pretraining strategies [46, 27, 50, 87], data
augmentation approaches [20, 21, 73], agent architectures
and loss functions [86, 48, 49], existing work in this space
considers only model-free approaches. Our aim is to unlock
model-based approaches to these tasks, using a visual world
model to encode prior commonsense knowledge about hu-
man environments and thereby relieve the burden on the
agent to learn these regularities. Underscoring the potential
of this direction, we note that using the ground-truth envi-
ronment for planning with beam search typically improves
VLN success rates on the R2R dataset by 17-19% [20, 73].

Novel View Synthesis We position our work with respect
to novel view synthesis [19, 37, 29, 18, 70, 85, 54]. Methods
for representing 3D scenes include point cloud representa-
tions [80], layered depth images [12], and mesh representa-
tions [68]. Recently, neural radiance fields (NeRF) [55, 52,
83] achieved impressive results by capturing volume den-
sity and color implicitly with a neural network. NeRF mod-
els synthesize very high quality 3D scenes, but a signifi-
cant drawback for our purposes is that they require a large
number of input views to render a single scene (e.g., 20–62
images per scene in [55]). More importantly, these models
are typically trained to represent a single scene, and do not
yet generalize well to unseen environments. In contrast, our
problem demands generalization to unseen environments,
using as little as one previous observation.

3. Pathdreamer
Pathdreamer is a world model that generates high-

resolution visual observations from a trajectory of future

viewpoints in buildings it has never observed. The in-
put to Pathdreamer is a sequence of previous observations
consisting of RGB images I1:t−1, semantic segmentation
images s1:t−1, and depth images d1:t−1 (where the depth
and segmentations could be ground-truth or estimates from
a model). We assume that a corresponding sequence of
camera poses T1:t−1 is available from an odometry sys-
tem, and that the camera intrinsics are known or estimated.
Our goal is to generate realistic RGB, semantic segmen-
tation and depth images for a trajectory of future poses
Tt, Tt+1, . . . , TT , which may be provided up front or it-
eratively by some agent interacting with the returned ob-
servations. Note that we generate depth and segmentation
because these modalities are useful in many downstream
tasks. We assume that the future trajectory may traverse
unseen areas of the environment, requiring the model to not
only in-fill minor object dis-occlusions, but also to imagine
entire room reveals (Figure 1).

Figure 2 shows our proposed hierarchical two-stage
model for addressing this challenge. It uses a latent noise
tensor zt to capture the stochastic information about the
next observation (e.g. the layout of an unseen room) that
cannot be predicted deterministically. Given a sampled
noise tensor zt, the first stage (Structure Generator) gen-
erates a new depth image d̂t and segmentation image ŝt
to provide a plausible high-level semantic representation of
the scene, using as context the previous semantic and depth
images s1:t−1, d1:t−1. In the second stage (Image Gener-
ator), the predicted semantic and depth images ŝt, d̂t are
rendered into a realistic RGB image Ît using previous RGB
images I1:t−1 as context. In each stage, context is provided
by accumulating previous observations as a 3D point cloud
which is re-projected into 2D using Tt.

3.1. Structure Generator: Segmentation & Depth
Pathdreamer’s first stage is the Structure Generator, a

stochastic encoder-decoder network for generating diverse,
plausible segmentation and depth images. Like [51], to pro-
vide the previous observation context, we first back-project
the previous segmentations s1:t−1 into a unified 3D seman-
tic point cloud using the depth images d1:t−1 and camera
poses T1:t−1. We then re-project this point cloud back into
pixel space using Tt to create sparse segmentation and depth
guidance images s

′

t, d
′

t which reflect the current pose.
The input to the encoder is a one-hot encoding of the se-

mantic guidance image s
′

t ∈ RW×H×C , concatenated with
the depth guidance image d

′

t ∈ RW×H×1. The architecture
of the encoder-decoder model is based on RedNet [34] –
a ResNet-50 [28] architecture designed for indoor RGB-D
semantic segmentation. RedNet uses transposed convolu-
tions for upsampling in the decoder and skip connections
between the encoder and decoder to preserve spatial infor-
mation. Since the input contains a segmentation image,
and segmentation classes differ across datasets, the encoder-
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Figure 2: Pathdreamer model architecture at step t. Given a history of visual observations (RGB, depth and semantics) and
a trajectory of future viewpoints, the Structure Generator conditions on a sampled noise tensor before generating semantic
and depth outputs to provide a high-level structural representation of the scene. Realistic RGB images are synthesized by the
Image Generator in the second stage.

decoder is not pretrained. We introduce the latent spatial
noise tensor zt ∈ RH′×W ′×32 into the model by concate-
nating it with the feature map between the encoder and the
decoder. The final output of the encoder-decoder model is a
segmentation image ŝt and a depth image d̂t, with segmen-
tation predictions generated by a C-way softmax and depth
outputs normalized in the range (0, 1) and generated via a
sigmoid function. At each step during inference, the seg-
mentation prediction ŝt is back-projected and added to the
point cloud to assist prediction in future timesteps.

To generate the noise tensor zt, we take inspiration from
SVG [11] and learn a conditional prior noise distribution
pψ(zt|s

′

t, d
′

t). Intuitively, there are many possible scenes
that may be generated for an unseen building region. We
would like zt to carry the stochastic information about the
next observation that the deterministic encoder cannot cap-
ture, and we would like for the decoder to make good use
of that information. During training, we encourage the first
outcome by using a KL-divergence loss to force the prior
distribution pψ(zt|s

′

t, d
′

t) to be close to the posterior dis-
tribution φ(zt|st, dt) which is conditioned on the ground-
truth segmentation and depth images. We encourage the
second outcome by providing the decoder with sampled zt
values from the posterior distribution qφ (conditioned on the
ground-truth outputs) during training. During inference, the
latent noise zt is sampled from the prior distribution pψ and
the posterior distribution qφ is not used. Both distributions
are modeled using 3-layer CNNs that take their input from
the encoder and output two channels representing µ and σ to
parameterize a multivariate Gaussian distribution N (µ, σ).
As shown in Figure 3, the noise is useful in encoding di-
verse, plausible representations of unseen regions.

Overall, the Structure Generator is trained to minimize a
joint loss consisting of a cross-entropy loss Lce for seman-
tic predictions, a mean absolute error term for depth predic-

tions, and the KL-divergence term for the noise tensor:

LStructure = λceLce(st, ŝt)

+ λd

∥∥∥dt − d̂t∥∥∥
1

+ λKLDKL
(
qφ(zt|st, dt), pψ(zt|s

′

t, d
′

t)
)

(1)

where λce, λd, and λKL are weights determined by a grid
search. We set these to 1, 100, and 0.5 respectively.

3.2. Image Generator: RGB
The Image Generator is an image-to-image translation

GAN [22, 78] that converts the semantic and depth predic-
tions ŝt, d̂t from the first stage into a realistic RGB image Ît.
Our model architecture is based on SPADE blocks [63] that
use spatially-adaptive normalization layers to insert context
into multiple layers of the network. As with our Structure
Generator, we maintain an accumulating 3D point cloud
containing all previous image observations. This provides a
sparse RGB guidance image I ′t when re-projected. Similar
to Multi-SPADE [51], we insert two SPADE normalization
layers into each residual block: one conditioned on the con-
catenated semantic and depth inputs [ŝt, d̂t], and one condi-
tioned on the RGB guidance image I ′t. The sparsity of the
RGB guidance image is handled by applying partial convo-
lutions [45]. In total Image Generator consists of 7 Multi-
SPADE blocks, preceded by a single convolution block.

Following SPADE [63], the model is trained with the
GAN hinge loss, feature matching loss [78], and percep-
tual loss [36] from a pretrained VGG-19 [69] model. Dur-
ing training, the generator is provided with the ground-truth
segmentation image st and ground-truth depth image dt.
Our discriminator architecture is based on PatchGAN [32],
and takes as input the concatenation of the ground-truth im-
age It or generated image Ît, the ground-truth depth image
dt and the ground-truth semantic image st. The losses for
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Figure 3: When predicting around corners, the Structure Generator can sample diverse and semantically plausible scene
layouts which are closely reflected in the RGB output of the Image Generator, shown here for two guidance image inputs
(left columns; unseen areas are indicated by solid black regions). Each example shows three alternative room reveals and
the groundtruth. In the bottom example, the model considers various completions for a bedroom but fails to anticipate the
groundtruth’s matching lamp on the opposite side of the bed.

the generator G and the discriminator D are:

LG = −λGANExt [D(G(xt))]

+ λVGG

n∑
i=1

1

n

∥∥∥φ(i)(It)− φ(i)(G(xt))∥∥∥
1

+ λFM

n∑
i

1

n

∥∥∥D(i)(It)−D(i)(G(xt))
∥∥∥
1

(2)

LD =− Ext
[min(0,−1 +D(It))]

− Ext
[min(0,−1−D(G(xt)))] (3)

where xt = (st, dt, I
′
t) denotes the complete set of inputs to

the generator, φ(i) denotes the output of the ith layer of the
pretrained VGG-19 model, D(i) denotes the output of the
discriminator’s i-th layer (conditioning inputs st, dt to the
discriminator have been dropped to save space). Like the
Structure Generator, the Image Generator is not pretrained.

3.3. Training and Inference
Dataset For training and evaluation we use Matter-
port3D [7], a dataset of 10.8k RGB-D images from 90
building-scale indoor environments. For each environment,
Matterport3D also includes a textured 3D mesh which is
annotated with 40 semantic classes of objects and building
components. To align with downstream VLN tasks, in all
experiments the RGB, depth and semantic images are 360◦

panoramas in equirectangular format.

Trajectories To train Pathdreamer, we sampled 400k tra-
jectories from the Matterport3D training environments. To
define feasible trajectories, we used the navigation graphs
from the Room-to-Room (R2R) dataset [3], in which nodes
correspond to panoramic image locations, and edges define

navigable state transitions. For each trajectory 5–8 panora-
mas were sampled, choosing the starting node and the edge
transitions uniformly at random. On average the viewpoints
in these trajectories are 2m apart. Training with relatively
large viewpoint changes is desirable, since the model learns
to synthesize observations with large viewpoint changes in a
single step (without the need to incur the computational cost
of generating intervening frames). However, this does not
preclude Pathdreamer from generating smooth video out-
puts at high frame rates1.

Training The first and second stages of the model are
trained separately. For the Image Generator, we use
the Matterport3D RGB panoramas as training targets at
1024×512 resolution. We use the Habitat simulator [67] to
render ground-truth depth and semantic training inputs and
stitch these into equirectangular panoramas. We perform
data augmentation by randomly cropping and horizontally
rolling the RGB panoramas, which we found essential due
to the limited number of panoramas available.

To train the Structure Generator, we again used Habi-
tat to render depth and semantic images. Since this stage
does not require aligned RGB images for training, in this
case we performed data augmentation by perturbing the
viewpoint coordinates with a random Gaussian noise vec-
tor drawn from N (0, 0.2m) independently along each 3D
axis. The Structure Generator was trained with equirectan-
gular panoramas at 512×256 resolution.

Inference To avoid heading discontinuities during infer-
ence, we use circular padding on the image x-axis for
both the Structure Generator and the Image Generator.

1See https://youtu.be/StklIENGqs0 for our video genera-
tion results.
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The 512×256 resolution semantic and depth outputs of
the Structure Generator are upsampled to 1024×512 using
nearest neighbor interpolation before they are passed to the
Image Generator. In quantitative experiments, we set the
Structure Generator noise tensor zt to the mean of the prior.

4. Experiments
For evaluation we use the paths from the Val-Seen and

Val-Unseen splits of the R2R dataset [3]. Val-Seen contains
340 trajectories from environments in the Matterport3D
training split. Val-Unseen contains 783 trajectories in Mat-
terport3D environments not seen in training. Since R2R
trajectories contain 5-7 panoramas and at least 1 previous
observation is given as context, we report evaluations over
1–6 steps, representing predictions over trajectory rollouts
of around 2–13m (panoramas are 2.25m apart on average).
See Figure 4 for an example rollout over 8.6m. We char-
acterize the performance of Pathdreamer in comparison to
baselines, ablations and in the context of the downstream
task of Vision-and-Language Navigation (VLN).

4.1. Pathdreamer Results
Semantic Generation A key feature of our approach is
the ability to generate semantic segmentation and depth out-
puts, in addition to RGB. We evaluate the generated se-
mantic segmentation images using mean Intersection-Over-
Union (mIOU) and report results for:
• Nearest Neighbor: A baseline without any learned

components, using nearest-neighbor interpolation to
fill holes in the projected semantic guidance image s′t.
• Ours (Teacher Forcing): Structure Generator trained

using the ground truth semantic and depth images as
the previous observation at every time step.
• Ours (Recurrent): Structure Generator trained while

feeding back its own semantic and depth predictions as

previous observations for the next step prediction. This
reduces train-test mismatch and may allow the model
to compensate for errors when doing longer roll-outs.

We also tried training the hierarchical convolutional LSTM
from [42], but found that it frequently collapsed to a sin-
gle class prediction. We attribute this to the large viewpoint
changes and heavy occlusion in the training sequences; we
believe this can be more effectively modeled with point
cloud geometry than with a geometry-unaware LSTM.

As illustrated in Table 1, Pathdreamer performs far better
than the Nearest Neighbor baseline regardless of the num-
ber of steps in the rollout or the number of previous observa-
tions used as context. As expected, performance in seen en-
vironments is higher than unseen. Perhaps surprisingly, in
Figure 5a we show that Recurrent training improves results
during longer rollouts in the training environments (Val-
Seen), but this does not improve results on Val-Unseen, per-
haps indicating that the error compensation learned by the
Image Generator does not easily generalize.

In addition to accurate predictions, we also want gener-
ated results to be diverse. Figure 3 shows that our model can
generate diverse semantic scenes by interpolating the noise
tensor zt, and that the RGB outputs closely reflect the gen-
erated semantic image. This allows us to generate multiple
plausible alternatives for the same navigation trajectory.

RGB Generation To evaluate the quality of RGB panora-
mas generated by the Image Generator, we compute the
Fréchet Inception Distance (FID) [30] between generated
and real images for each step in the paths. We report re-
sults using the semantic images generated by the Structure
Generator as inputs (i.e., our full model). To quantify the
potential for uplift with better Structure Generators, we also
report results using ground truth semantic segmentations as
input. We compare to two ablated versions of our model:
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(a) Semantic segmentation mean-IOU (↑). [TF]: Teacher Forcing.
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(b) RGB generation FID (↓). [GT]: Ground truth semantic inputs.
[SG]: Structure Generator predictions.

Figure 5: Pathdreamer semantic segmentation mean-IOU
(above) and RGB generation FID (below). Results are
shown for Val-Seen (left) and Val-Unseen (right). Confi-
dence intervals indicate the range of outcomes with 1, 2 or
3 previous observations as context.

Val-Seen Val-Unseen

Model Context 1 Step 1–6 Steps 1 Step 1–6 Steps

Nearest Neighbor 1 59.5 32.0 59.1 30.6
Ours (Teacher Forcing) 1 84.9 59.2 78.3 50.8
Ours (Recurrent) 1 84.7 65.9 77.5 50.9

Nearest Neighbor 2 57.4 35.2 56.5 33.8
Ours (Teacher Forcing) 2 85.4 64.6 77.4 55.5
Ours (Recurrent) 2 85.1 70.2 76.6 55.7

Nearest Neighbor 3 57.4 38.7 56.1 37.7
Ours (Teacher Forcing) 3 85.1 68.5 77.3 60.4
Ours (Recurrent) 3 84.6 72.7 76.8 60.8

Table 1: Mean-IOU (↑) for generated semantic segmenta-
tions with varying context and prediction steps.

• No Semantics: The semantic and depth inputs st, dt
are removed from the Multi-SPADE blocks.
• SPADE: An ablation of the RGB inputs to the model,

comprising the previous RGB image It−1 and the re-
projected RGB guidance image I ′t. The semantic im-
age st replaces It−1 as input to the model and the I ′t in-
put layers are removed from the Multi-SPADE blocks,
making this effectively the SPADE model [63].

As shown in Table 2, SPADE performs the best in Val-
Seen, indicating that the model has the capacity to mem-

Inputs Val-Seen Val-Unseen

Model Context Obs Sem RGB 1 Step 1–6 Steps 1 Step 1–6 Steps

No Semantics 1 - X 34.1 81.7 35.2 90.8
SPADE 1 GT X 23.3 24.9 47.3 50.3
Ours 1 GT X X 24.1 31.3 32.4 39.9
Ours 1 SG X X 26.2 41.7 34.8 70.4

No Semantics 2 - X 34.0 69.0 39.5 78.6
SPADE 2 GT X 22.8 25.3 52.3 51.2
Ours 2 GT X X 23.5 31.2 35.3 39.9
Ours 2 SG X X 25.8 38.4 38.2 61.0

No Semantics 3 - X 35.6 60.4 41.9 67.5
SPADE 3 GT X 23.1 26.2 52.8 50.7
Ours 3 GT X X 23.2 31.7 35.5 39.2
Ours 3 SG X X 25.6 36.7 38.5 52.9

Table 2: FID scores (↓) for generated RGB images with
varying context and prediction steps, using either ground
truth semantics (GT) or Structure Generator predictions
(SG) as input.

orize the training environments. In this case, RGB inputs
are not necessary. However, our model performs notice-
ably better in Val-Unseen, highlighting the importance of
maintaining RGB context in unseen environments (which is
our focus). Performance degrades significantly in the No
Semantics setting in both Val-Seen and Val-Unseen. We
observed that without semantic inputs, the model is unable
to generate meaningful images over longer horizons, which
validates our two-stage hierarchical approach. These results
are reflected in the FID scores, as well as qualitatively (Fig-
ure 6); Image Generator’s outputs are significantly crisper,
especially over longer horizons. Due to the benefit of guid-
ance images, the Image Generator’s textures are also gen-
erally better matched with the unseen environment, while
SPADE tends to wash out textures, usually creating images
of a standard style. Figure 5b plots performance for every
setting step-by-step. FID of the Image Generator improves
substantially when using ground truth semantics, particu-
larly for longer rollouts, highlighting the potential to benefit
from improvements to the Structure Generator.

4.2. VLN Results
Finally, we evaluate whether predictions from Path-

dreamer can improve performance on a downstream visual
navigation task. We focus on Vision-and-Language Navi-
gation (VLN) using the R2R dataset [3]. Because reaching
the navigation goal requires successfully grounding natural
language instructions to visual observations, this provides a
challenging task-based assessment of prediction quality.

In our inference setting, at each step while moving
through the environment we use a baseline VLN agent
based on [79] to generate a large number of possible future
trajectories using beam search. We then rank these alterna-
tive trajectories using an instruction-trajectory compatibil-
ity model [84] to assess which trajectory best matches the
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Figure 6: Visual comparison of ablated Image Generator
outputs on Val-Unseen with ground truth segmentation and
depth. Both RGB and semantic context are important for
best performance.

instruction. The agent then executes the first action from
the top-ranked trajectory before repeating the process. We
consider three different planning horizons, with future tra-
jectories containing 1, 2 or 3 forward steps.

The instruction-trajectory compatibility model is a dual-
encoder that separately encodes textual instructions and tra-
jectories (encoded using visual observations and path ge-
ometry) into a shared latent space. To improve performance
on incomplete paths, we introduce truncated paths into the
original contrastive training scheme proposed in [84]. The
compatibility model is trained using only ground truth ob-
servations. However, during inference, RGB observations
for future steps are drawn from three different sources:
• Ground truth: RGB observations from the actual en-

vironment, i.e., look-ahead observations.
• Pathdreamer: RGB predictions from our model.
• Repeated pano: A simple baseline in which the most

recent RGB observation is repeated in future steps.
• Blank pano: A simple baseline in which blank images

are provided as future observations.
Note that in all cases the geometry of the future trajectories
is determined by the ground truth R2R navigation graphs.
In Table 3, we report Val-Unseen results for this experiment
using standard metrics for VLN: navigation error (NE), suc-
cess rate (SR), shortest path length (SPL), normalized Dy-
namic Time Warping (nDTW) [31], and success weighted
by normalized Dynamic Time Warping (sDTW) [31].

Consistent with prior work [20, 73], we find that look-
ing ahead using ground truth visual observations provides a
robust performance boost, e.g., success rate increases from
44.6% with 1 planning step (top panel) to 59.3% with 3
planning steps (bottom panel). At the other extreme, the
Repeated pano baseline is weak, with a success rate of just

Observations Plan Steps NE ↓ SR ↑ SPL ↑ nDTW ↑ sDTW ↑

Repeated pano 1 6.75 35.7 33.8 52.0 31.2
Blank pano 1 7.29 35.9 33.7 50.9 31.5
Pathdreamer 1 6.55 39.9 38.3 54.6 35.2
Ground truth 1 5.80 44.6 42.7 58.9 39.4

Repeated pano 2 6.76 36.8 34.0 51.8 31.7
Blank pano 2 6.65 40.0 37.2 53.3 34.8
Pathdreamer 2 5.8 46.5 43.9 59.1 41.2
Ground truth 2 4.95 54.3 51.3 64.9 48.3

Repeated pano 3 6.25 40.6 37.7 55.6 35.2
Blank pano 3 6.48 41.9 38.8 54.2 36.1
Pathdreamer 3 5.32 50.4 47.3 61.8 44.4
Ground truth 3 4.44 59.3 55.8 67.9 52.7

Table 3: VLN Val-Unseen results using an instruction-
trajectory compatibility model to rank alternative future tra-
jectories with planning horizons of 1, 2 or 3 steps.

35.7% with 1 planning step (top row). The Blank pano base-
line is similar, with a success rate of 35.9%. This is not
surprising: these baselines deny the compatibility model
any useful visual representation of the next action, which
is crucial to performance [20, 73]. However, increasing
the planning horizon does improve performance even for
the Repeated/Blank pano baselines, since the compatibility
model is able to compare the geometry of alternative future
trajectories. Finally, we observe that using Pathdreamer’s
visual observations closes about half the gap between the
Repeated pano baseline and the ground truth observations,
e.g., 50.4% success with Pathdreamer vs. 40.6% and 59.3%
respectively for the others. We conclude that using Path-
dreamer as a visual world model can improve performance
on downstream tasks, although existing agents still rely on
using a navigation graph to define the feasible action space
at each step. Pathdreamer is complementary to current
SOTA model-based approaches, and a combination would
likely lead to further boosts in VLN performance, which is
worth investigating in future work.

5. Conclusion
Pathdreamer is a stochastic hierarchical visual world

model that can synthesize realistic and diverse 360◦

panoramic images for unseen trajectories in real buildings.
As a visual world model, Pathdreamer also shows strong
promise in improving performance on downstream tasks,
which we show with VLN. Most notably, we show that
Pathdreamer captures around half the benefit of looking
ahead at actual observations from the environment. The ef-
ficacy of Pathdreamer in the VLN task may be attributed
to its ability to model fundamental constraints in the real
world, and thus relieve agents from having to learn the
geometry and visual and semantic structure of buildings.
Applying Pathdreamer to other embodied navigation tasks
such as Object-Nav [5], VLN-CE [39] and street-level nav-
igation [9, 53] are natural directions for future work.
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