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Abstract

Most recent self-supervised learning (SSL) algorithms
learn features by contrasting between instances of images
or by clustering the images and then contrasting between
the image clusters. We introduce a simple mean-shift al-
gorithm that learns representations by grouping images to-
gether without contrasting between them or adopting much
of prior on the structure or number of the clusters. We
simply “shift” the embedding of each image to be close
to the “mean” of the neighbors of its augmentation. Since
the closest neighbor is always another augmentation of the
same image, our model will be identical to BYOL when
using only one nearest neighbor instead of 5 used in our
experiments. Our model achieves 72.4% on ImageNet lin-
ear evaluation with ResNet50 at 200 epochs outperforming
BYOL. Also, our method outperforms the SOTA by a large
margin when using weak augmentations only, facilitating
adoption of SSL for other modalities. Our code is available
here: https://github.com/UMBCvision/MSF

1. Introduction

Most current visual recognition algorithms are super-
vised, meaning that they learn from large scale annotated
images or videos. However, in many applications, the an-
notation process may be expensive, biased, ambiguous, or
involve privacy concerns. Self-supervised learning (SSL)
algorithms aim to learn rich representations from unlabeled
images or videos. Such learned representations can be used
along with small annotated data to provide an accurate vi-
sual recognition model. We are interested in developing bet-
ter SSL models using unlabeled images.

Some recent SSL models learn by contrasting between
instances of images. They pull different augmentations of
an image instance together while pushing them away from
other image instances [23, 11]. Some other SSL methods
cluster the unlabeled images to a set of clusters with the
hope that each cluster will contain semantically similar im-

“Equal contribution

Ajinkya Tejankar’* Hamed Pirsiavash'2

2University of California, Davis

ages. Then, a model that predicts those clusters learns rich
representations similar to supervised learning with labels
[9, 52, 10].

These clustering methods also can be considered as con-
trastive learning since they contrast between different clus-
ters of images. For instance, the SoftMax layer in deep clus-
tering method [9] encourages an image to be assigned to the
correct single cluster and not the other clusters.

Also, most clustering algorithms have strong priors on
the overall structure of the clusters. For instance, deep
clustering (k-means) using Euclidean distance encourages
spherical cluster shapes which we believe is unnecessary
for the purpose of SSL methods.

Recently, BYOL [22] showed that it is possible to learn
rich representations without contrasting between image in-
stances. BYOL [22] works by simply pulling the two views
of an image closer without any contrast with other images.
The better performance of BYOL [22] compared to MoCo
hints that contrasting with other images may be a limiting
constraint. For instance, in MoCo [23], since the negative
images are sampled randomly, they may be from the same
category as the query, resulting in degraded representations.
[42] tries to resolve this issue by not treating all negatives
equally negative.

Inspired by mean shift clustering, we generalize BYOL
to a simple yet effective SSL method where a data point is
pulled closer to not only its other augmentations but also
the nearest neighbors (NNs) of its augmentation. Unlike
DeepCluster [9], SWAV [10], and SeLA [52] that use ex-
plicit, mutually exclusive cluster assignment, our method
uses mean-shift algorithm that groups similar images to-
gether locally without explicit cluster assignment. More-
over, unlike k-means clustering, mean-shift does not have
strong priors on the shape, size, or number of the clusters.
This makes mean-shift suitable for SSL where such priors
are not known. Compared to MoCo [23], SimCLR [11],
SwAV [10] and few others, our method never contrasts be-
tween different images or even cluster centers.

Since we need a large set of embeddings to search for
nearest neighbors, we adopt the memory bank idea [23]
to maintain a random set of embeddings. Also, since the
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Figure 1: MSF method: Similar to BYOL, we maintain two encoders (“target” and “online”). The online encoder is updated with gradient
descent while the target encoder is the moving average of the online encoder. We augment an image twice and feed to both encoders. We
add the target embedding to the memory bank and look for its nearest neighbors in the memory bank. Obviously target embedding itself
will be the first nearest neighbor. We want to shift the embedding of the input image towards the mean of its nearest neighbors, so we
minimize the summation of those distances. Note that our method using only one nearest neighbor is identical to BYOL which pulls
different augmentations together without grouping different instances of images. To our knowledge, our method is the first in grouping
different instances of images without contrasting between image instances or clusters.

model is evolving over time in the learning process, the
old elements in the memory bank will not be valid, so we
adopt the momentum idea from [23] to maintain two en-
coders (“target” and “online”) instead of only one. The on-
line model is updated by the loss and the target model is
updated as a moving average of the online model. We feed
two different augmentations of an image to these two en-
coders, then we push the online embedding of the image to
be close to the average of nearest neighbors of the target en-
coding of the image in the target embedding space. Hence,
similar to most recent SSL methods, our method also uses
the inductive bias that the augmentation should not move
the embedding much.

Our experiments show that our method outperforms
state-of-the-art methods on various settings. For instance,
when trained on unlabeled ImageNet for 200 epochs, it
achieves 72.4% linear ImageNet accuracy which is better
than BYOL at 200 epochs.

Most recent SSL methods use strong augmentations to
improve the accuracy, leading to “augmentation engineer-
ing” to improve SSL. However, in many applications, e.g.,
medical domain, designing such augmentations is not easy
and needs extensive domain knowledge. Hence, designing
SSL methods that do not rely heavily on large variations of
augmentations is interesting. We show that when using only
weak augmentations, our method (MSF w/w) outperforms
BYOL by a large margin. We hypothesize that NNs act as a
proxy for strong augmentations of the query image, so there

is no need for engineering strong augmentations.

2. Method

We are interested in mean-shift clustering, so at each it-
eration we want to encourage the model to shift the embed-
ding of an image to be closer to the average of its nearest
neighbors on a large random set of samples.

Following the notation of BYOL [22], we assume a tar-
get encoder f and an online encoder g. Both encoders have
the same backbone architecture followed by a projection
layer and are initialized equally. The online encoder g is
followed by an additional prediction layer ~ on top of it.
The online encoder g and the prediction layer h are updated
by back-propagating the loss while the target encoder f is
updated by momentum update to be a running average of the
online encoder g. Since nearest neighbor needs a large pool
of examples, we maintain a first-in-first-out (FIFO) memory
bank [23] that includes recent embeddings from the slowly
evolving target encoder f.

Given an unlabeled image x, we augment it randomly
twice to get T (z) and Ty (x). We feed them to encoders and
then normalize them with /5 norm to get u = %

andv = %. We first add u to the memory bank

and then, find the k£ nearest neighbors of « in the memory
bank to get a set of embeddings {z; }?zl. Note that this set
includes w itself. Since we know it is another augmentation
of the same input image, it should be a good target for v.
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Figure 2: Nearest neighbors (NN) of the model at each epoch: For a random query images, we show how the nearest neighbors evolve
at the learning time. Initially, NNs are not semantically quite related, but are close in low-level features. The accuracy of 1-NN classifier
in the initialization is 1.5% which is 15 times larger than random chance (0.1%). This little signal is bootstrapped in our learning method
and results in NNs of the late epochs which are mostly semantically related to the query image. More visualizations can be found in the

appendix.

Finally, we minimize the following loss:

k
Zdzst v, 25)

where, dist(.,.) is the distance metric between two embed-
dings. We use MSE loss (dist(a, b) = ||a — b||3) as the dis-
tance in our experiments. Minimizing this loss is equivalent
to maximizing Cosine similarity as the vectors are already
#5 normalized. The final loss is the summation of the above
loss for all input images.

Ideally, we can average the set of nearest neighbors to
come up with a single target embedding, but since averag-
ing is dependent on the choice of loss function, we simply
minimize the summation of distances. Note that for Eu-
clidean distance, both methods result in identical gradients.

Since wu itself is included in our NN search, it will be
always the best nearest neighbor. Hence, our method with
k = 1 will be identical to BYOL which minimizes ||v —u|3
for each image without using a memory bank.

Moreover, in the initial stages of the learning, v may be
far from u and the other £ — 1 nearest neighbors may be
semantically different from the query image. Since those
wrong neighbors are still close to u, the loss will still pull
v closer to the neighborhood of u (another augmentation of
v). In later stages of learning, when the representation is
more mature, the other £ — 1 neighbors will be semantically
related and will contribute to learning since u and v are al-
ready closer to each other. Table 2-right and Figure 2 show
that the representation improves as the learning progresses.

wIH

Strength of augmentation: In most exemplar-based
SSL methods, augmentation plays an important role since
the main supervision signal is that the augmentation should
not change the embedding much. Hence, recent methods,
e.g., MoCo v2, SimCLR, and BYOL, use strong augmen-
tations. We believe such aggressive augmentations on the
target embeddings v may add randomness to the learning
process as some of those augmentation do not look natural,
so the nearest neighbors will not be semantically close to
the query image. Hence, we use weaker augmentations for
the target model to make u and z less noisy while still us-
ing strong augmentations for the online model. We refer to
this as the weak/strong (“w/s”) variation. This is inspired
by [40] which uses weak augmentations in semi-supervised
learning. This variation results in almost one point im-
provement over the regular variation where both encoders
use strong augmentations. As shown in Fig. 4 (right), the
nearest neighbors are more pure in the “weak only” setting
which is consistent with our above intuition. Our experi-
ments show that BYOL also benefits from w/s augmentation
to some extent. This is probably due to more robust target
encoding. Finally, we explore a weak/weak “w/w” variation
where both views are augmented with a weak augmentation.

3. Experiments

We report the results of our self-supervised learning and
transfer learning in this section. We use PyTorch library for
all experiments.
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Mem. kNN kNN NN
Size Time  GFLOPS

IM 6.78% 1.05 62.0 649 75.5
128K 0.72% 0.13 62.0 65.2 76.3

Table 1: Additional computational cost of finding NNs: For-
warding through each ResNet50 encoder needs 4.14 GFLOPS, so
finding NN adds a small cost. Note that any method like MoCo
that uses a memory bank needs this additional cost.

20-NN  Transfer
Mean

3.1. Self-supervised Learning

Mean Shift (MSF): We use 0.99 for the the momen-
tum of the target encoder, top-k = 5, and 1.024M for the
memory bank size (which is roughly the same as the size of
ImageNet dataset). Our ablation study shows that a mem-
ory bank of 128K does not degrade the results. We observe
that the added computational cost of NN search is small
compared to the overall forward and backward passes. We
find that MSF with 128K memory bank size and 512 di-
mensions for the embedding, uses less than 0.5GB of extra
GPU memory for the memory bank and less than 1% of ex-
tra computation for finding 5 NN (see Table 1).

BYOL-asym (baseline): Training SSL methods for
more than 200 epochs is not easy due to resource con-
straints. For instance, training BYOL with ResNet50 for
200 epochs takes roughly 7 days on four RTX 2080-Ti
GPUs. Thus, for a fair comparison, we re-implement BYOL
in our own framework and call it BYOL-asym. We note
and justify the major differences between BYOL-asym and
BYOL here. First, we use an asymmetric loss. The orig-
inal BYOL paper [22] uses symmetric loss which passes
each view of the image through both encoders. As a re-
sult, the gradient is calculated over 2 x B instances where
B is the batch size, so each epoch needs twice computa-
tion compared to asymmetric loss. Hence, 200 epochs of
BYOL-asym should be compared with 100 epochs of reg-
ular BYOL. Second, we use a small batch size of 256 in-
stead of 4096. [22] shows that BYOL works well even with
the batch size of 256. Third, we use SGD optimizer in-
stead of LARS. Despite these differences, our implementa-
tion works reasonable well compared to reported results in
prior work. Our MSF uses the same setup for fairness.

Augmentation: In all of our experiments, “strong” aug-
mentation refers to the augmentation in MoCo v2 [12]. The
strong augmentation involves the following stochastic oper-
ations: grayscale, color jitter, horizontal flip, and Gaussian
blur. The “weak” augmentation is simply a random crop
of size 224 x 224 with area ratio between 0.2 and 1.0 fol-
lowed by random horizontal flipping with probability 0.5.
MSF w/s refers to our “weak/strong” variation where the
target encoder view is augmented with the weak augmenta-

tion and online encoder view is augmented with the strong
augmentation. MSF w/w refers to our “weak/weak” vari-
ation where both teacher and student views use weak aug-
mentation. BYOL-asym and MSF use the standard SSL
practice of augmenting both views with the strong augmen-
tation.

Architecture: We generally follow [22] for the architec-
tures of both BYOL-asym and MSF. We use the ResNet50
[24] model as backbone in all our experiments. A projection
layer (2 layer MLP) is added on top of the backbone. The
first layer expands the feature channels from 2048 to 4096.
It is followed by BatchNorm and ReLU layers. The final
linear layer reduces the feature channels from 4096 to 512.
The prediction layer architecture is the same as projection
layer except its first layer expands the channels from 512
to 4096. After the pre-training step, online encoder’s back-
bone is evaluated by removing the projection and prediction
layers.

Training: For both BYOL-asym and MSF, we use the
SGD (Ir=0.05, momentum=0.9, and weight decay=1e-4)
optimizer and train for 200 epochs. Learning rate uses co-
sine scheduler.

3.2. Evaluation on ImageNet

Evaluation on full ImageNet. We evaluate the repre-
sentations of the pre-trained model by training linear and
nearest neighbor (NN) classifiers. We use the code pro-
vided by [5] for training both classifiers. A single linear
layer is trained on top of a frozen backbone. The features
from the backbone are normalized to have unit /5 norm and
then scaled and shifted to have zero mean and unit variance
for each dimension. The linear layer is trained with SGD
(Ir=0.01, epochs=40, batch size=256, weight decay=1e-4,
and momentum=0.9). Learning rate is multiplied by 0.1 at
15 and 30 epochs. We use standard supervised ImageNet
augmentations [2] during training. For nearest neighbor,
we pre-process train and val ImageNet sets with center crop
(size 256) augmentation and calculate ¢ normalized em-
beddings by forwarding throught the backbone. We report
Top-1 accuracies on ImageNet val set for linear, 1-NN, and
20-NN classifiers in Table 2.

Evaluation on smaller ImageNet: Similar to [25, 11,

, 5], we evaluate the pre-trained models on the task of
classification with limited ImageNet labels. The training
details are the same as above except the training dataset
sizes are reduced to 1% and 10% of the train set of Ima-
geNet [39]. The results are reported in Table 3.

3.3. Evaluation on Transfer Learning

Linear classification: Following the procedure outlined
in [11, 22], we evaluate the self-supervised pre-trained
models for linear classification task on following datasets:
Food101 [8], SUN397 [49], CIFAR10 [29], CIFAR100
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Method Ref. Batch Epochs Sym.Loss Top-1 NN 20-NN

Size 2x FLOPS Linear .
poc

Supervised [4] 256 100 - 762 714 748
Random-init - - - - 5.1 1.5 2.0
SeLa-v2 [52] [10] 4096 400 v 67.2 - -
SimCLR[ 1] [11] 4096 1000 v 69.3 - -
SWAV [10] [10] 4096 400 v 70.1 - -
DeepCluster-v2 [9] [10] 4096 400 v 702 - - L
SimSiam [13] [13] 256 400 v 70.8 - -
MoCo v2 [23] [13] 256 400 v 71.0 - -
MoCo v2 [23] [12] 256 800 X 711 573  61.0
CompRess T [5] [5] 256  1K+130 X 719 633  66.8
InvP [46] 256 800 X 71.3 - - —
BYOL [22 [22] 256 300 v 71.8 - -
BYOL [22] 221 4096 1000 v 743 628 669
SwAV ¥ [10] [10] 4096 800 v 75.3 - - :
SimCLR[11] [13] 4096 200 v 68.3 - - :
SWAV [10] [13] 4096 200 v 69.1 - -
MoCo v2 [23] [13] 256 200 v 69.9 - -
SimSiam [13] [13] 256 200 v 70.0 - -
BYOL [22] [13] 4096 200 v 70.6 - -
MoCo v2 [23] [12] 256 200 X 67.5 509 543
CO2 [47] [47] 256 200 X 68.0 - -
BYOL-asym [22] - 256 200 X 693 550 592
ISD [47] [42] 256 200 X 69.8 592 620
MSF - 256 200 X 714 60.6  64.0
MSEF w/s - 256 200 X 724 620 649 Apisr el
MSF w/s (128K) - 256 200 X 721 62.0 652 ﬁ;‘.
SimCLR w/w [11]  [22] 4096 300 v 40.2 - - Epoch 200 # P
BYOL w/w [22 221 4096 300 v 60.1 - - ﬁ
MSF w/w - 256 200 X 663 546 574

Table 2: Left: Evaluation on full ImageNet: We compare our model on the full ImageNet linear and nearest neighbor benchmarks using
ResNet50. We find that given similar computational budget, our models are better than other state-of-the-art methods. Our w/s variation
works slightly better than the regular MSF. Interestingly, when using weak augmentations only, our method (MSF w/w) outperforms
BYOL and SimCLR with a large margin. We believe this is important in some applications,e g.g. medical domain, where augmentation
engineering is not easy. Note that methods with symmetric loss are not directly comparable with the other ones as they need to feed each
image twice though each encoder. This results in twice the computation for each mini-batch. One may argue that a non-symmetric BYOL
with 200 epochs should be compared with symmetric BYOL with 100 epochs only as they use similar amount of computation. Note that
symmetric MoCo v2 with 400 epochs is almost the same as asymmetric MoCo v2 with 800 epochs (71.0 vs. 71.1). Note that the accuracy
of Random-init for ResNet50 is much lower than AlexNet (14.1% on conv5 layer from [35]). T: CompRess is not directly comparable as
it uses ResNet50 distilled from a larger SSL teacher model (SimCLR-ResNet50x4). 1: SwAV is not comparable as it uses multiple crops
together. Right: Epochwise t-SNE for MSF: We visualize the ¢2 normalized features for 10 random ImageNet classes at certain epochs
of MSF training. We find that over the period of training, semantic clusters are formed in the feature space.

[29], Cars [28], Aircraft [30], Flowers [32], Pets [30], Object detection: Following the procedure outlined in
Caltech-101 [20] and DTD [15]. The appendix includes [23], we use Faster-RCNN [38&] for the task of object detec-
more details on the datasets and training. The results are tion on PASCAL-VOC [19]. We use the code provided at

reported in Table 4. To verify our implementation, we eval- [3] with default parameters. All the weights are finetuned
uate the official 1000-epoch BYOL weights provided in [1] onthe trainval07+12 setand evaluated onthe test07
and compare with the results from [22] in Table 4. set. We report an average over 5 runs in Table 5.
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Fine- Top-1 Top-5
Method wned EPODS 1 000 e 10%
Supervised v 254 564 484 804
PIRL [31] v 800 - - 572 83.8
CO2 [47] v 200 - - 71.0 857
SimCLR [11] v 1000 483 656 755 878
InvP [46] v 800 - - 782 88.7
BYOL [22] v 1000 532 68.8 784 89.0
SwAVT [10] v 800 539 702 785 89.9
MoCo v2 [12] X 800 51.5 63.6 77.6 86.1
BYOL! [22] X 1000 5577 68.6 80.0 88.6
CompRess* [5] X 1K+130 59.7 67.0 823 875
MoCo v2 [12] X 200 436 584 712 829
BYOL-asym X 200 479 613 746 847
ISD [42] X 200 534 63.0 788 859
MSF X 200 535 652 781 864
MSF w/s X 200 555 66,5 799 87.6

Table 3: Evaluation on small labeled ImageNet: We compare
our model on the ImageNet 1% and 10% linear evaluation bench-
marks for ResNet50. The column “Fine-tuned” refers to whether
the full network was fine-tuned or a single linear layer was trained.
Given similar computational budgets, both of our models are better
than other state-of-the-art methods. We evaluate BYOL and MoCo
v2 with our evaluation framework and interestingly, realize that
BYOL performs better in linear evaluation compared to finetun-
ing the whole network on the 1% split. We report these numbers
for fair comparison. * is ResNet50 compressed from SimCLR-
R50x4. t uses a different augmentation strategy than others. I is
our evaluation with the official weights [1].

3.4. Ablation study.

Here, we study the effect of MSF hyperparameters and
design choices like augmentation strategies, top-k, and
memory bank size. We use ResNet50 and train it with Im-
ageNet. In all experiments, we use the default MSF w/s
variant and only vary the parameter of interest.

Same view of an instance to both encoders: One may
argue that the mean-shift grouping and using different views
of the same instance for different encoders are orthogonal
ideas, and mean-shift alone might work. We did an experi-
ment by feeding the same augmented view to both encoders
(T'l = T72) and realized that the model does not learn. It
collapses in the first epoch. Hence, we believe using differ-
ent views is still an important inductive bias.

Effect of k in top-k: This section shows the effect of
sampling different top-k nearest neighbors. We use k values
from set {2, 5,10, 20,50}. We use k = 5 for main experi-
ments, but £ = 10 improves NN by 0.5 point. Note that set-
ting k = 1, makes MSF identical to BYOL. Results are in
the Table 6. Additionally, we plot the purity for each exper-
iment in Figure 4. Purity for a single query is the percentage
of the samples 2 to & in the top-k nearest neighbors (exclud-

ing u itself) which have the same class as the query. Final
purity is calculated by averaging the purities of all samples.
One may study the effect of increasing k gradually during
iterations as a future extension.

Effect of varying Memory Bank size
65 -
60 -
= 55-

S50
g
8 45-
8 40-
<T
35- NN
30- 20-NN

B e 1K ' ' 16K 64K 128K 256K 512K 1024K

Size of Memory Bank

Figure 3: Memory Bank Size: On ImageNet, we do not see an
improvement in increasing the memory bank size beyond 128K
which needs only 0.5GB of GPU memory.

Size of memory bank: CompRess [5] shows that a large
memory bank is important to accurately capture the neigh-
borhood of a random sample in the embedding space. Thus,
we vary the size of the memory bank from 256 to 1M to
evaluate if larger memory bank can help with more accu-
rate nearest neighbors. Results are in Figure 3. Although
our main experiment uses 1M sized memory bank, we find
that 128K works equally well. Note that the size of memory
bank also depends on the training dataset size.

Comparison of different augmentation strategies: Ta-
ble 7 shows results for BYOL and MSF with different aug-
mentation strategies. Comparing “s/s” variants with “w/s”,
we find that BYOL receives a very small boost from the
w/s” variant while MSF improves consistently by ~ 1
point on all three benchmarks. We believe this is due to
better purity of the nearest neighbors while training (also
shown in Fig. 4 (right)). Further, we observe that MSF w/w
is significantly better as compared to BYOL w/w. This can
be attributed to the nearest neighbors serving as a proxy for
strong augmentation.

13

4. Related Work

Self-supervised learning: The aim of self-supervised
learning is to learn representations directly from the data
without using any manual data annotation. Specifically, a
pretext task is designed based on the inherent structure in
the data and a model is trained to solve it. Various pre-
text tasks have been designed that exploit different struc-
tural cues in the data. Here, we focus on following pretext
tasks for images: treating each data point as a single class
to perform instance level classification [18], predicting the
relative location of patches [17, 33], filling up a missing
patch in an image [37], predicting a colored image from
its grayscale version [53, 54], counting objects in an image
[34], predicting the rotation of an image [21], and predict-
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Method Ref. Epochs Food CIFAR CIFAR SUN Cars Aircraft DTD Pets Caltech Flowers Mean
101 10 100 397 | 196 101 102
Supervised [22] 72.3 93.6 78.3 61.9 | 66.7 61.0 74.9 | 91.5 94.5 94.7 78.9
SimCLR [11] [22] | 1000 | 72.8 90.5 74.4 60.6 | 49.3 49.8 75.7 | 84.6 89.3 92.6 74.0
MoCo v2 [12] - 800 72.5 92.2 74.6 59.6 | 50.5 53.2 744 | 84.6 | 90.0 90.5 74.2
BYOL [22] [22]1 | 1000 | 75.3 91.3 78.4 62.2 | 67.8 60.6 755 1904 | 94.2 96.1 79.2
BYOL [22] rep. 1000 | 754 92.7 78.1 62.1 | 67.1 62.0 76.8 | 89.8 922 95.5 79.2
BYOL-asym [22] - 200 70.2 91.5 74.2 59.0 | 54.0 52.1 734 | 86.2 90.4 92.1 74.3
MoCo v2 [12] - 200 70.4 91.0 735 575 | 477 51.2 739 | 813 88.7 91.1 72.6
MSF - 200 70.7 92.0 76.1 59.0 | 60.9 535 72.1 | 89.2 92.1 92.4 75.8
MSF-w/s - 200 712 92.6 76.3 59.2 | 55.6 53.7 732 | 88.7 92.7 92.0 755
MSF-w/s (128K) - 200 72.3 92.7 76.3 60.2 | 59.4 56.3 717 | 898 | 90.9 93.7 76.3

Table 4: Linear layer transfer learning evaluation: We compare various SSL methods on transfer tasks by training linear layers. Under
similar computational budgets, we show that our models are consistently better or on par with other state-of-the-art methods. Only a single
linear layer is trained on top of features. No train time augmentations are used. “rep.” means we have reproduced the results using our

evaluation framework for better comparison.
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Figure 4: Comparison of purity:

Epochs

Epochs

Ideally, we want all k nearest neighbors to be from the same category as the input image, so we

calculate the percentage of correct neighbors for each input, average it over all images, and call it purity. We exclude the first NN which is
identical to u, so the accuracy is over £ — 1 neighbors. We find this metric to be very handy in evaluating the model at the training time since
it comes almost for free. (left) shows the purity for different k values with respect to epoch number while (middle) compares the purity
of “w/s” variation with the regular “s/s” variation for £ = 5. Purity is higher for “w/s” variation which is consistent with our intuition.
In (right), at each epoch of our MSF w/s (top-k = 10) model, we calculate purity for the target encoder using either only weak (orange)
or only strong (blue) augmentations. We see that strong setting has lower purity. This suggests that the stronger augmentation makes the
nearest neighbors more noisy. This is aligned with our intuition for using weak augmentation for the target model in w/s variation.

ing the pseudo-labels obtained from clustering [9, 52]. Note
that designing the pretext task or the augmentations itself is
still manual and needs domain knowledge.

Instance discrimination: Recently, the task of instance
discrimination [18] has shown great promise. The ba-
sic idea is to treat each image as single class. This is
also referred as contrastive learning where positive samples
(augmented views of the same instance) are pushed close
and away from the negative samples (all other instances).
While [18] took a parametric approach for this classifi-
cation, [48] took a non-parametric approach. The non-
parametric approach has seen broad adoption with great re-
sults [23, 11, 31, 55,43, 10]. Two important components of
these methods are: memory bank (source of negative sam-
ples) and augmentation (constructing positive samples). A
simple but effective technique using a momentum encoder

to populate the memory bank is proposed in [23]. A rigor-
ous study of the impact of different augmentations and hy-
perparameters is conducted in [ 1 | ]. Improved augmentation
strategies are proposed in [10, 11, 44]. Instance discrimina-
tion can also be viewed from an information theoretic per-
spective as the task of maximizing the information between
different views of a single image [26, 45, 6].

Consistency regularization: Although negative pairs
were thought to be central in preventing the collapse of
representations for instance discrimination, [22] proposed
a method that does not collapse despite not using any neg-
atives. The objective in [22, 13] simply pulls augmented
views of the same image close without any contrast with
negative samples. This is also referred to as consistency
regularization in the semi-supervised learning framework
[41]. Inspired by [22], we propose a more general form of
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Method Ref. Epochs AP;q AP APys

Sup. IN [13] - 81.3 535 58.8
Scratch [13] - 60.2 33.8 33.1
Symmetric loss. 2x FLOPS

SimCLR [13] 200 81.8 555 614
MoCo v2 [13] 200 823 57.0 633
BYOL [13] 200 814 553 61.1
SwAV [13] 200 81.5 554 614
SimSiam [13] 200 824 57.0 63.7

Asymmetric loss.

MoCo v2 [12] 800 825 574 64.0
InvP [46] 800 81.8 562 615
MoCo v2 [12] 200 824 57.0 63.6
CO2 [47] 200 82.7 572 64.1
BYOL-asym - 200 819 56.8 635
MSF - 200 822 56.7 634
MSF w/s - 200 822 56.6 63.1

Table 5: Transfer learning to PASCAL VOC object detec-
tion: We compare our models on the transfer task of object
detction. We find that given a similar computational budget, our
method is better than BYOL. The models are trained on the VOC
trainval07+12 set and evaluated on the test 07 set. We re-
port average over 5 runs.

k=1 k=2 k=5 k=10 k=20 k=50

NN 558 61.0 620 625 620 615
20-NN 59.1 642 649 657 654 649

Table 6: Effect of k in top-k: Our study shows that MSF is not
very sensitive to k. While k = 10 performs the best, we report the
main results for £k = 5. Note that setting & = 1 makes our method
identical to BYOL-asym.

it where the positives can also come from the close neigh-
borhood of a sample grouping similar images together.
Clustering methods: Another class of methods based
on clustering have shown promise. The basic idea is to al-
ternate between clustering and learning the representations
[50, 51]. This approach was first scaled to large scale pre-
training in [17]. A big concern in these methods is to pre-
vent the collapse of all representations into a single cluster.
To that end, an optimal transport based formulation of clus-
tering is proposed in [52]. An online clustering algorithm
based on the formulation of [52] is proposed in [10].
Clustering and instance discrimination: Clustering
methods can be seen as the generalizing the instance dis-
crimination framework. Only the views from the same sam-
ple can be positives in instance discrimination [ 18, 48], but
all the members (and their views) of a cluster are positives
in clustering based methods [7, 10]. A more flexible mid-
dle ground is where the set of positives are based on the

Method Aug. Top-1 NN 20-NN

BYOL-asym s/s 693 550 592
BYOL-asym w/s 69.5 558  59.1
BYOL f[22] w/w  60.1 - -

MSF sls 714 606  64.0

MSF w/s 724 620 649
MSF w/w 663 546 574

Table 7: Comparison augmentations strategies: In s/s, both
views are strongly augmented while in w/w they are weakly aug-
mented. w/s refers to weak augmentation for target view and
strong augmentation for the online view. w/s improves our method
more compared to BYOL. This may be due to more pure nearest
neighbors. In w/w setting, MSF is significantly better than BYOL
as the nearest neighbors can be a good substitute for strong aug-
mentation. T: uses 4096 batch size, 300 epochs, and symmetric
loss.

local neighborhood of a sample: top-k nearest neighbors of
a sample in [27], nearest neighbors of a sample that are also
the members of the same cluster in [55], and top-k graph
distance based neighbors in [46]. Our method shares the
motivation behind these works: embeddings should be lo-
cally clustered around high density regions. We also use
top-k nearest neighbors as positives [27, 46], but our method
is fundamentally different as there is no notion of negatives
in our method. Intuitively, we enforce a more simpler and
flexible constraint: move each sample closer to its near-
est neighbors in each iteration. This idea is inspired from
Mean-Shift Clustering [14, 16] where the cluster assign-
ment for each sample is iteratively updated to be the mean
of its nearest neighbors. In contrast to the k-means clus-
tering, Mean-Shift does not make strong assumptions about
the shape of clusters.

5. Conclusion

We introduce a simple but effective SSL. method based
on grouping similar images together in an online fashion.
We simply shift the embedding of an image towards the
mean of its nearest neighbors. MSF with k£ = 1 is iden-
tical to BYOL so MSF can be seen as a generalized form of
BYOL. Our extensive experiments show that MSF performs
better or on-par compared to state-of-the-art SSL methods
on various tasks including ImageNet linear evaluation.
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